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Evaluation of Gaussian integrals by Adomian decomposition

∗Lazhar Bougoffa and † Randolph C. Rach

Abstract. In this paper, we present a new adaptation of the Adomian decompo-

sition method, which permits evaluation of the Gaussian integrals as a convenient

convergent series.

1. Introduction

The Adomian decomposition method (ADM) [1]-[6] can be an effective procedure
for the evaluation of certain difficult integrals such as the Gaussian integrals. To tackle
this problem, we begin by considering the general heat equation for an infinite rod
with an arbitrary initial condition:

∂u
∂t = k ∂

2u
∂x2 , −∞ < x <∞, k > 0, t > 0,

u(x, 0) = f(x),
| u(x, t) | 6 M for all x ∈ R, t > 0.

(1.1)

The explicit representation of the solution to this initial-value problem is given by

(1.2) u(x, t) =
1√

4kπt

∫ ∞
−∞

f(ξ)e−
(ξ−x)2

4kt dξ, −∞ < x <∞, t > 0.

The function G(x, t) = 1√
4kπt

e−
x2

4kt in the integrand is called the fundamental solution

of the heat equation. For a proof, we can refer to any book on partial differential
equations, e.g., (pp. 45-48 [7]).

It may happen in this case that the integral
∫∞
−∞ f(ξ)e−

(ξ−x)2
4kt dξ in the RHS of (1.2)

is not expressible in terms of elementary functions nor adequately tabulated. In this
note, we produce evaluations of this type of integrals involving the error function using
the Adomian decomposition method (ADM) [1]-[6].

2000 Mathematics Subject Classification. Primary 35C10, Secondary 40A05 and 40A10.
Key words and phrases. Gaussian integral, Mordell integral, Adomian decomposition method.

1



2 ∗LAZHAR BOUGOFFA AND † RANDOLPH C. RACH

2. Analysis

Let us consider this example using the Adomian decomposition method (ADM)
[1]-[6]. First, we define the linear operator L, and the linear remainder operator R as

(2.1) Lu =
∂u

∂t
and Ru =

∂2u

∂x2
.

We rewrite the original equation (1.1) in Adomian’s operator-theoretic notation as

(2.2) Lu = kRu.

Define the inverse operator as

(2.3) L−1(u) =

∫ t

0

∂u

∂t
dt.

Thus,

(2.4) L−1Lu(x, t) = u(x, t)− u(x, 0),

where u(x, 0) = f(x). Upon substitution, we have

(2.5) u(x, t) = f(x) + kL−1Ru(x).

In the classic Adomian decomposition method, we decompose the solution into the
solution components un to be determined by recursion as

(2.6) u(x, t) =

∞∑
n=0

un(x, t).

Upon substitution of Eq. (2.6) into Eq. (2.5), we obtain
∞∑
n=0

un(x, t) = f(x) + k

∫ t

0

∞∑
n=0

∂2un
∂x2

(x, t)dt.(2.7)

Then we establish an appropriate Adomian recursion scheme as{
u0(x, t) = f(x),

un+1(x, t) = k
∫ t

0
∂2un
∂x2 (x, t)dt, n > 0.

(2.8)

In view of (2.8), the components u0(x, t), u1(x, t), u2(x, t), ... are immediately deter-
mined as 

u0(x, t) = f(x),
u1(x, t) = kf (2)(x)t,

u2(x, t) = k2f (4)(x) t
2

2! ,

u3(x, t) = k3f (6)(x) t
3

3! ,
... .

(2.9)

Consequently, the solution is given as

(2.10) u(x, t) =

∞∑
n=0

knf (2n)(x)
tn

n!
.

Since the Global Maximum Principle can be used to give a proof of uniqueness for
this problem, the resulting formulas must agree with this. Thus
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Theorem 1. Let f : R→ R be a continuous function and 2n−times differentiable
in R. Then

(2.11)

∫ ∞
−∞

f(ξ)e−
(ξ−x)2

4kt dξ =
√

4kπt

∞∑
n=0

f (2n)(x)
(kt)n

n!
,

where −∞ < x <∞, t > 0, k > 0.

Proof. This follows simply from (1.2) and (2.10). �

Corollary 2.

(2.12)

∫ ∞
−∞

f(x)e−bx
2

dx =

√
π

b

∞∑
n=0

f (2n)(0)
( 1

4b )
n

n!
, b > 0.

This is a new helpful tool in calculating the Gaussian integrals as a convenient
convergent series.

3. Examples

In order to verify the accuracy of our present method, we present some elementary
examples. The reader will find a more advanced approach to the evaluation of many
related integrals in [8].

Example 3.1.

(3.1)

∫ ∞
0

e−bx
2

dx =

√
π

4b
, b > 0.

This comes from letting f(x) = 1 in (2.12).

Example 3.2.

(3.2)

∫ ∞
−∞

e−bx
2

cos(rx)dx =

√
π

b
e−

r2

4b , for all real numbers r.

This follows simply by letting f(x) = cos(rx) and f (2n)(0) = (−1)nr2n, n > 0 in
(2.12).

Example 3.3.

(3.3)

∫ ∞
−∞

x4e−bx
2

dx =
3

4b2
.

This follows simply by letting f(x) = x4 and

f (2n)(0) =

{
4!, n = 2

0, otherwise
(3.4)

in (2.12).

Example 3.4. ∫ ∞
−∞

(
ex + e−x

)
e−bx

2

dx = 2

√
π

b
e

1
4b .(3.5)

This follows simply by letting f(x) = ex + e−x and f (2n)(0) = 2, n > 0 in (2.12).
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Example 3.5.

(3.6)

∫ ∞
−∞

e−p
2ξ2−qξdξ =

√
π

p
e
q2

4p2 .

The evaluation of this integral follows directly from completing the square −p2ξ2−qξ =

−p2(ξ − q
2p2 )2 + q2

4p2 and letting x = q
2p2 , p

2 = 1
4kt and f(ξ) = 1 in (2.11) .

Example 3.6. The integral

(3.7)

∫ ∞
−∞

ξe−pξ
2−2qξdξ =

q

p

√
π

p
e
q2

p

is evaluated from completing the square in the exponent and letting f(ξ) = ξ, x = q
p

and p = 1
4kt in (2.11).

Example 3.7. The Mordell integral (1920) is defined as [9, 10]

(3.8) M(a, b, c, d) =

∫ ∞
−∞

eaξ
2+bξ

ecξ + d
dξ, Re(a) < 0.

This type of integrals for particular values of a, b, c, d was evaluated by Ramanujan
[11]. Mordell (1933) classified these according to the values of the parameters and
evaluated them in terms of Jacobi’s theta and other related functions, using the method
of complex contour integration. It can easily be evaluated by our Theorem 1. Indeed,

completing the square aξ2 + bξ = a(ξ + b
2a )2 − b2

4a , and taking f(x) = 1
ecx+d .

If we choose b = 0, that is x = 0 and d = 1, then f(0) = 1
2 and f (2n)(0) = 0, n > 1.

Letting these and a = − 1
4kt in (2.12), we readily obtain

(3.9) M(a, 0, c, 1) =

∫ ∞
−∞

eaξ
2

ecξ + 1
dξ =

1

2

√
−π
a
.
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