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The integrals in Gradshteyn and Ryzhik.
Part 5: Some trigonometric integrals

Tewodros Amdeberhan , Luis A. Medina and Victor H. Moll

Abstract. We present evaluations and provide proofs of definite integrals in-

volving the function xp cosn x. These formulae are generalizations of 3.761.11 and
3.822.1, among others, in the classical table of integrals by I. S. Gradshteyn and

I. M. Ryzhik.

1. Introduction

The table of integrals [4] contains a large variety of evaluations of the type

(1.1) I =
∫ b

a

A(x)R(sinx, cosx) dx

where A is an algebraic function, R is rational and −∞ 6 a < b 6 ∞. We present a
systematic discussion of two families of integrals of this type. This paper is part of a
general program started in [9, 10, 11, 12] intended to provide proofs and context to
the formulas in [4].

The first class considered here corresponds to the complete integrals

(1.2) c(n, p) :=
∫ π/2

0

xp cosn x dx,

and

(1.3) s(n, p) :=
∫ π/2

0

xp sinn x dx,

where n, p ∈ N. In section 2 we present closed-form expressions for these integrals.
These expressions involve the sums

(1.4)
∑

16k16k26···6kj6n

1
k2
1k

2
2 · · · k2

j

,
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that are closely related to the multiple zeta values

(1.5) ζ(i1, i2, . . . , is) =
∑

0<k1<k2<···<ks

1
ki1
1 k

i2
2 · · · kis

s

.

The reader will find in Section 3.4 of [3] an introduction to these sums.
In general, one does not expect such elementary evaluations to extend to p 6∈ N.

For example, the change of variables x = πt2/2 produces

(1.6)
∫ π/2

0

x−1/2 cosx dx =
√

2π
∫ 1

0

cos
(
πt2

2

)
dt.

The latter integral is evaluated in terms of the cosine Fresnel function

(1.7) FresnelC[x] :=
∫ x

0

cos
(
πt2

2

)
dt,

which indeed is not an elementary function.
The second class considered here presents generalizations of the formula 3.822.1

in [4] stated as

(1.8)
∫ ∞

0

cos2n+1 x√
x

dx =
1

22n

√
π

2

n∑
k=0

(
2n+ 1
n+ k + 1

)
1√

2k + 1
, n ∈ N.

The integral in (1.8) can be transformed via t = x2 to provide the evaluation of

(1.9)
∫ ∞

0

cos2n+1 t2 dt,

that is given as the case p = 2 in Theorem 3.2.
Section 3 contains analytic expressions for the generalizations

(1.10) Cn(p, b) :=
∫ ∞

0

x−p cos2n+1(x+ b) dx,

and

(1.11) Sn(p, b) :=
∫ ∞

0

x−p sin2n+1(x+ b) dx.

The last section also contains some evaluations obtained by differentiation with respect
to parameters. An illustrative example is

(1.12)
∫ ∞

0

∫ ∞

0

log x log y
√
xy

cos(x+ y) dx dy = (γ + 2 log 2)π2,

that is equivalent to

(1.13)
∫ ∞

0

∫ ∞

0

log x log y cos(x2 + y2) dx dy =
1
16

(γ + 2 log 2)π2.

A generalization of this evaluation appears as Example 3.3.
The method described in the present work gives impetus to a class of integrals that

are closely related to the particular integral computations addressed in this paper.
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2. The first example

In this section we present the evaluation in closed-form of the definite integrals

(2.1) c(n, p) :=
∫ π/2

0

xp cosn x dx.

A special case of this appears as 3.822.1 in [4].
The first step towards the evaluation of c(n, p) is to produce a recurrence.

Theorem 2.1. The integral c(n, p) satisfies the recurrence

c(n, p) =
n− 1
n

c(n− 2, p)− p(p− 1)
n2

c(n, p− 2),(2.2)

for n > 2, p > 2.

Proof. The identity cos2 x = 1− sin2 x yields

c(n, p) = c(n− 2, p)− I(n, p)(2.3)

where

I(n, p) :=
∫ π/2

0

xp cosn−2 x sin2 x dx.

Now

I(n, p) =
∫ π/2

0

xp sinx× d

dx

(
− 1
n− 1

cosn−1 x

)
dx

=
1

2n− 1

∫ π/2

0

(
xp cosx+ pxp−1 sinx

)
cosn−1 x dx

=
c(n, p)
n− 1

+
p

n− 1

∫ π/2

0

xp−1 sinx cosn−1 x dx.

Moreover ∫ π/2

0

xp−1 sinx cosn−1 x dx =
∫ π/2

0

xp−1 d

dx

(
− 1
n

cosn x

)
dx

=
p− 1
n

c(n, p− 2).

�

Strategy: According to (2.2), the integral c(n, p) can be evaluated in terms of the
initial values given in the table. The indices m and q have the same parity as n and
p respectively and range over 0 6 m 6 n and 0 6 q 6 p.

n modulo 2 p modulo 2 initial conditions
0 0 c(m, 0) c(0, q)
1 0 c(m, 0) c(1, q)
0 1 c(m, 1) c(0, q)
1 1 c(m, 1) c(1, q)
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We now evaluate the initial conditions c(n, 0), c(n, 1), c(0, p) and c(1, p).

The expression for c(0, p).
The computation of the identity

(2.4) c(0, p) =
1

p+ 1

(π
2

)p+1

is immediate.

The expression for c(n, 0).
This is classical. The result appears as 3.621.3 and 3.621.4 in [4].

Theorem 2.2. (Wallis’ formula and companion). Let n ∈ N0. Then

(2.5) c(2n, 0) =
π

22n+1

(
2n
n

)
,

and

(2.6) c(2n+ 1, 0) =
22n

(2n+ 1)
(
2n
n

) .
The shortest proof of Theorem 2.2 employs the representation

(2.7) c(n, 0) =
∫ π/2

0

cosn x dx = 2n−1B

(
n+ 1

2
,
n+ 1

2

)
,

that appears as 3.621.1 in [4]. Here B is the Euler’s beta function defined by the
integral

(2.8) B(x, y) =
∫ 1

0

tx−1(1− t)y−1 dt.

The expression (2.7) follows from the change of variables t = cosu. To express (2.5)
and (2.6), in terms of the beta function, employ the standard relation

(2.9) B(x, y) =
Γ(x) Γ(y)
Γ(x+ y)

,

and the special values

(2.10) Γ(n) = (n− 1)! and Γ(n+ 1
2 ) =

√
π (2n)!
22n n!

that are valid for n ∈ N.

The identity in Theorem 2.2, in the case n is even, that is,

(2.11) c(2n, 0) =
∫ π/2

0

cos2n θ dθ =
π

22n+1

(
2n
n

)
,

is Wallis’s formula and sometimes found in calculus books (see e.g. [6], page 492).
To prove it, first write cos2 θ = 1 − sin2 θ and use integration by parts to obtain the
recursion

c(2n, 0) =
2n− 1

2n
c(2n− 2, 0).(2.12)
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Then verify that the right side of (2.11) satisfies the same recurrence together with
the initial value π/2 for n = 0.

We now present a new proof of Wallis’s formula (2.11) in the context of rational
integrals. Extensions of the ideas in this proof have produced rational Landen trans-
formations. The reader will find in [1, 2, 5, 7, 8] details on these transformations.

Start with

c(2n, 0) =
∫ π/2

0

cos2n θ dθ =
∫ π/2

0

(
1 + cos 2θ

2

)n

dθ.

Now introduce ψ = 2θ and expand and simplify the result by observing that the odd
powers of cosine integrate to zero. The inductive proof of (2.11) requires

c(2n, 0) = 2−n

bn/2c∑
i=0

(
n

2i

)
c(2i, 0).(2.13)

Note that c(2n, 0) is uniquely determined by (2.13) along with the initial value c(0, 0) =
π/2. Thus (2.11) now follows from the identity

f(n) :=
bn/2c∑
i=0

2−2i

(
n

2i

)(
2i
i

)
= 2−n

(
2n
n

)
.(2.14)

We now provide a mechanical proof of (2.14) using the theory developed by Wilf
and Zeilberger, which is explained in [13, 14]; the sum in (2.14) is the example used
in [14] (page 113) to illustrate their method. The command

ct(binomial(n, 2i) binomial(2i, i)2−2i, 1, i, n,N)

produces

f(n+ 1) =
2n+ 1
n+ 1

f(n),(2.15)

and one checks that 2−n
(
2n
n

)
satisfies this recursion. Note that (2.12) and (2.15) are

equivalent under

c(2n, 0) =
π

2n+1
f(n).

The proof is complete.

Closed form expression for c(1, p).
We now consider the evaluation of

(2.16) c(1, p) :=
∫ π/2

0

xp cosx dx.

The following evaluation appears as 3.761.11 in [4].

Theorem 2.3. Let p ∈ N and δodd,p be Kronecker’s delta function at the odd
integers. Then

(2.17) c(1, p) =
ξp∑

k=0

(−1)k p!
(p− 2k)!

(π
2

)p−2k

− (−1)ξpδodd,p p!
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where ξp = bp
2c.

Proof. Both sides of the equation (2.17) satisfy the initial value problem

(2.18) up − p(p− 1)up−2 =
(π

2

)p

and u0 = 1, u1 =
π − 2

2
.

Actually the recurrence (2.18) is obtained using integration by parts in (2.16). Iterat-
ing this recurrence yields the right hand side of (2.17). �

Note 2.4. The result in Theorem 2.3 can be expressed in terms of the Taylor
polynomial for cosx:

(2.19) fp(x) = (−1)ξpp!

−1 +
ξp∑

k=0

(−1)k

(2k + 1)!
x2k+1

 .

The formula (2.17) can be restated

(2.20) c(1, p) =

{
fp(π/2), for p odd,
f ′p(π/2), for p even.

Closed form expression for c(n, 1): in fact, this would be the last initial condition
we require to execute the strategy outlined at the beginning of this section.

Theorem 2.5. The integral c(n, 1) satisfies the recurrence

c(n, 1) =
n− 1
n

c(n− 2, 1)− 1
n2
.(2.21)

Proof. The identity cos2 x = 1− sin2 x yields

(2.22) c(n, 1) = c(n− 2, 1)− J,

where

(2.23) J =
∫ π/2

0

x sin2 x cosn−2 x dx.

Integration by parts leads to

(2.24) J =
1

n− 1

∫ π/2

0

(sinx+ x cosx) cosn−1 x dx.

This produces (2.21). �

The solution of (2.21) yields a closed-form formula for c(n, 1).

Theorem 2.6. The integral c(n, 1) is given according to the parity of n, by

(2.25) c(2n, 1) =

(
2n
n

)
22n+2

(
π2

2
−

n∑
k=1

22k

k2
(
2k
k

)) ,
for even indices. For odd indices, we have

(2.26) c(2n+ 1, 1) =
22n

(2n+ 1)
(
2n
n

) (π
2
−

n∑
k=0

(
2k
k

)
22k (2k + 1)

)
.
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To establish this result we solve a more general recurrence than (2.21).

Lemma 2.7. Let an, bn and rn be sequences with an, bn 6= 0. Assume that zn

satisfies

(2.27) anzn = bnzn−1 + rn, n > 1

with initial condition z0. Then

(2.28) zn =
b1b2 · · · bn
a1a2 · · · an

(
z0 +

n∑
k=1

a1a2 · · · ak−1

b1b2 · · · bk
rk

)
.

Proof. Introduce the integrating factor dn with the property that dnbn = dn−1an−1.
The recurrence (2.27) becomes

(2.29) Dn −Dn−1 = dnrn,

where Dn = dnanzn. Therefore, by telescoping,

(2.30) Dn = D0 +
n∑

k=1

dkrk,

with D0 = d0a0z0. To find the integrating factor, observe that

(2.31)
dn

dn−1
=
an−1

bn
.

Thus

(2.32) dn =
a0a1 · · · an−1

b1b2 · · · bn
d0.

Replacing in (2.30) yields (2.28). �

Corollary 2.8. Let n ∈ N and assume that zn satisfies

(2.33) 2nzn = (2n− 1)zn−1 + rn, n > 1,

with the initial condition z0. Let λj = 22j
(
2j
j

)−1
, then

(2.34) zn =
1
λn

(
z0 +

n∑
k=1

λkrk
2k

)
.

Proof. Use an = 2n and bn = 2n− 1 in Lemma 2.7. �

We now apply Lemma 2.7 on the recurrence (2.21), repeated here for convenience
to the reader,

c(n, 1) =
n− 1
n

c(n− 2, 1)− 1
n2
.

Observe that this recurrence splits naturally into even and odd branches. The value of
c(2n, 1) is determined completely by c(0, 1), and c(2n+ 1, 1) by c(1, 1). Hence, there
is no computational interaction between c(2n, 1) and c(2n + 1, 1). Let xn = c(2n, 1)
so that xn satisfies

(2.35) 2nxn = (2n− 1)xn−1 −
1
4n
,



54 T. AMDEBERHAN , L. A. MEDINA AND V. H. MOLL

with the initial condition

(2.36) x0 = c(0, 1) =
π2

8
.

Similarly, yn = c(2n+ 1, 1), the odd component of c(n, 1), satisfies

(2.37) (2n+ 1)yn = 2nyn−1 −
1

2n+ 1

and the initial condition

(2.38) y0 = c(1, 1) =
π

2
− 1.

The expressions for zn in Lemma 2.7 yield the formulas for c(2n, 1) and also
c(2n+ 1, 1) in Theorem 2.6. The proof is complete.

Note 2.9. The finite sums in (2.25) and (2.26) do not have closed-form, but it is
a classical result that, in the limit,

(2.39)
∞∑

k=1

22k

k2
(
2k
k

) =
π2

2

and

(2.40)
∞∑

k=0

(
2k
k

)
22k(2k + 1)

=
π

2
.

Note 2.10. Formula 3.821.3 in [4] gives formulas equivalent to (2.25) and (2.26),
respectively.

Finally, we conclude this section by presenting the sought for closed form expres-
sion for the integral c(n, p), for arbitrary n, p ∈ N. The recurrence (2.2), in the case
of even indices n, becomes

(2.41) 2nXn(p) = (2n− 1)Xn−1(p)−
p(p− 1)

2n
Xn(p− 2)

where Xn(p) = c(2n, p). The initial value

(2.42) X0(p) =
1

(p+ 1)2p+1
πp+1

given in (2.4) and the recurrence (2.41) show the existence of rational numbers an,p,p+1−2j

such that

(2.43) Xn(p) =
ξp∑

j=0

an,p,p+1−2jπ
p+1−2j ,
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with ξp = bp
2c. The recurrence (2.41) is now expanded as

2n
ξp∑

j=0

an,p,p+1−2jπ
p+1−2j = (2n− 1)

ξp∑
j=0

an−1,p,p+1−2jπ
p+1−2j(2.44)

− p(p− 1)
2n

ξp−1∑
j=0

an,p−2,p−1−2jπ
p−1−2j .

The fact that the coefficients an,p,j ∈ Q allows us to match the corresponding
powers of π in (2.44). The highest order term is πp+1. Only two of the sums contain
this power, therefore

(2.45) 2nan,p,p+1 = (2n− 1)an−1,p,p+1.

The initial condition

(2.46) a0,p,p+1 =
1

(p+ 1)2p+1

comes from (2.42). The solution to the initial value problem (2.45, 2.46) is then found
using Corollary 2.8 (here rn = 0), namely that

(2.47) an,p,p+1 =

(
2n
n

)
(p+ 1)22n+p+1

.

The coefficient of the next highest power πp−1, in (2.44), yields the recurrence

(2.48) 2nan,p,p−1 = (2n− 1)an−1,p,p−1 −
p(p− 1)

2n
an,p−2,p−1.

Observe that the last term in this relation is given by (2.47). Moreover, (2.42) shows
that a0,p,p−1 = 0. The solution to (2.48), following Corollary 2.8, is

(2.49) an,p,p−1 = −
p
(
2n
n

)
22n+p+1

n∑
k1=1

1
k2
1

.

The next power of π in (2.44) produces

(2.50) 2nan,p,p−3 = (2n− 1)an−1,p,p−3 +
p(p− 1)(p− 2)

n22n+p

(
2n
n

) n∑
k1=1

1
k2
1

,

with a0,p,p−3 = 0. One more use of Corollary 2.8 yields

(2.51) an,p,p−3 =

(
2n
n

)
p!

22n+p+1 (p− 3)!

n∑
k2=1

k2∑
k1=1

1
k2
1k

2
2

.

This procedure can be repeated until all descending powers of π have been ex-
hausted, hence a complete closed form for the integrals c(n, p) will be made possible.
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Theorem 2.11. Let n, p ∈ N and let ξp = bp
2c. Then the even branches Xn(p) =

c(2n, p) of the integral

(2.52) c(n, p) =
∫ π/2

0

xp cosn x dx

are given by

(2.53) Xn(p) =
ξp∑

j=0

an,p,p+1−2jπ
p+1−2j + δodd,p · a∗n,p,

and the value of an,p,p+1−2j for p > 2 and 0 6 j 6 ξp is given by

an,p,p+1−2j =
(−1)j

(
2n
n

)
p!

22n+p+1 (p+ 1− 2j)!

∑
16k16k26···6kj6n

1
k2
1k

2
2 · · · k2

j

,

and

(2.54) a∗n,p =
(−1)ξp

(
2n
n

)
p!

22n

∑
16k16k26···6kp6n

1
k2
1k

2
2 · · · k2

p

kp∑
j=1

22j

j2
(
2j
j

) .
Similarly, for the odd branches Y (n, p) = c(2n+ 1, p) we have

(2.55) Yn(p) =
ξp∑

j=0

bn,p,p−2jπ
p−2j + δodd,p · b∗n,p,

with

bn,p,p−2j =
(−1)j p! 22n+2j−p

(2n+ 1)
(
2n
n

)
(p− 2j)!

∑
06k16k26···6kj6n

1
(2k1 + 1)2(2k2 + 1)2 · · · (2kj + 1)2

,

and

b∗n,p =
(−1)ξp p! 22n

(2n+ 1)
(
2n
n

) ∑
06k16k26···6kp6n

1
(2k1 + 1)2(2k2 + 1)2 · · · (2kp + 1)2

kp∑
j=0

(
2j
j

)
22j(2j + 1)

.

3. Some examples on the halfline

In this section we provide an analytic expression for

(3.1) Cn(p, b) =
∫ ∞

0

x−p cos2n+1(x+ b) dx,

and

(3.2) Sn(p, b) =
∫ ∞

0

x−p sin2n+1(x+ b) dx.

In the table [4] the evaluation of the special case p = 1
2 and b = 0:

(3.3)
∫ ∞

0

cos2n+1 x√
x

dx =
1

22n

√
π

2

n∑
k=0

(
2n+ 1
n+ k + 1

)
1√

2k + 1
,
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and

(3.4)
∫ ∞

0

sin2n+1 x√
x

dx =
1

22n

√
π

2

n∑
k=0

(−1)k

(
2n+ 1
n+ k + 1

)
1√

2k + 1
,

as 3.822.2 and 3.821.14.

Theorem 3.1. Let 0 < p < 1 and n ∈ N0 := N ∪ {0}. Then

(3.5)
∫ ∞

0

x−p cos2n+1 x dx =
Γ(1− p)

22n
sin
(πp

2

) n∑
k=0

(
2n+1
n−k

)
(2k + 1)1−p

,

and

(3.6)
∫ ∞

0

x−p sin2n+1 x dx =
Γ(1− p)

22n
cos
(πp

2

) n∑
k=0

(−1)k

(
2n+1
n−k

)
(2k + 1)1−p

.

Proof. The identity 2 cosx = eix + e−ix and the binomial theorem yield
(3.7)∫ ∞

0

x−p cos2n+1 x dx = 2−2n−1
n∑

k=0

(
2n+ 1
k

)∫ ∞

0

x−p
(
ei(2n+1−2k)x + e−i(2n+1−2k)

)
dx.

Recall the Heaviside step function defined by H(x) = 1, if x > 0 and H(x) = 0
otherwise. Then, each of the integrals in (3.7) is evaluated using the Fourier transform

(3.8)
∫ ∞

−∞
H(x)x−pe−iωx dx =

Γ(1− p)
|ω|1−p

exp(−iπ(1− p)sign(ω)/2).

�

Corollary 3.2. Let p > 1 be real and n ∈ N0. Then

(3.9)
∫ ∞

0

cos2n+1 xp dx =
1

22n
Γ
(
p+ 1
p

)
cos
(
π

2p

) n∑
k=0

(
2n+1
n−k

)
(2k + 1)1/p

,

and

(3.10)
∫ ∞

0

sin2n+1 xp dx =
1

22n
Γ
(
p+ 1
p

)
sin
(
π

2p

) n∑
k=0

(−1)k

(
2n+1
n−k

)
(2k + 1)1/p

.

Proof. The change of variables x 7→ x1/(1−p) in the results of Theorem 3.1 gives
the result. �

The last result described here is a further generalization of Theorem 3.1.

Theorem 3.3. Assume b ∈ R, 0 < p < 1 and n ∈ N0. Define

(3.11) Cn(p, b) =
∫ ∞

0

x−p cos2n+1(x+ b) dx

and

(3.12) Sn(p, b) =
∫ ∞

0

x−p sin2n+1(x+ b) dx.
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Then

(3.13) Cn(p, b) =
Γ(1− p)

22n

n∑
k=0

(
2n+ 1
n− k

)
sin(πp

2 − (2k + 1)b)
(2k + 1)1−p

,

and

(3.14) Sn(p, b) =
Γ(1− p)

22n

n∑
k=0

(−1)k

(
2n+ 1
n− k

)
cos(πp

2 − (2k + 1)b)
(2k + 1)1−p

.

Proof. Denote the left-hand side of (3.13) and (3.14) by fn(b) and gn(b) respec-
tively. Differentiation with respect to the parameter b yields

∂gn

∂b
− (−1)n(2n+ 1)fn = (2n+ 1)

n−1∑
j=0

(−1)j

(
n

j

)
fj(b)(3.15)

∂fn

∂b
+ (−1)n(2n+ 1)gn = −(2n+ 1)

n−1∑
j=0

(−1)j

(
n

j

)
gj(b).

Considering b and p fixed, we now show that the right-hand side of (3.13) and (3.14)
satisfy the system (3.15) with the same initial conditions. This will establish the result.

In the case of the right-hand side of (3.13), it is required to check the identity

2−2n
n∑

k=0

(−1)k

(
2n+ 1
n− k

)
sin(π

2 p− (2k + 1)b)
(2k + 1)1−p

=

(2n+ 1)
n∑

j=0

(−1)j

(
n

j

)
2−2j

j∑
k=0

(
2j + 1
j − k

)
sin(π

2 p− (2k + 1)b)
(2j + 1)1−p

.

To verify this we compare the coefficients of the transcendental terms
sin(π

2 p− (2k + 1)b)
(2k + 1)1−p

.

It turns out that this question is equivalent to validating the identity

(3.16) (−1)k2−2n

(
2n+ 1
n− k

)
(2k + 1) = (2n+ 1)

n∑
j=k

(−1)j2−2j

(
n

j

)(
2j + 1
j − k

)
To this end, we employ the WZ-technology as explained in [14]. This method produces
the recurrence

(3.17) 2(n+ k + 1)(n+ 1− k)u(n+ 1− k)− (n+ 1)(2n+ 3)u(n, k) = 0.

To prove (3.16) simply check that both sides of (3.16) satisfy the recurrence (3.17) as
well as the initial condition u(0, 0) = 1.

The identities∫ ∞

0

x−p cos(x+ b) dx = −Γ(1− p) sin(b− pπ
2 )(3.18) ∫ ∞

0

x−p sin(x+ b) dx = Γ(1− p) cos(b− pπ
2 ),
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which are special cases of∫ ∞

0

x−p cos(ax+ b) dx = −ap−1Γ(1− p) sin(b− pπ
2 )(3.19) ∫ ∞

0

x−p sin(ax+ b) dx = ap−1Γ(1− p) cos(b− pπ
2 ),

show that the corresponding initial values in (3.13) (respectively 3.14) match. The
evaluations (3.19) appear as 3.764.1 and 3.764.2 in [4]. To establish (3.18) expand
cos(x+ b) as cosx cos b− sinx sin b, use the change of variables x 7→ xp, and Theorem
3.1. �

We now discuss some definite integrals that follow from Theorem 3.3.

Example 3.1. Differentiating (3.13) with respect to p and setting p = 1
2 and b = 0

gives, after the change of variables x 7→ x2,

(3.20)∫ ∞

0

log x cos2n+1 x2 dx = −
√
π

22n+3
(π + 2γ + 4 log 2)

n∑
k=0

(
2n+ 1
n− k

)
1√

4k + 2

−
√
π

22n+2

n∑
k=0

(
2n+ 1
n− k

)
log(2k + 1)√

4k + 2
,

where we have used the value Γ′(1/2) = −
√
π(γ + 2 log 2).

Example 3.2. Assume 0 < p, q < 1. Multiplying (3.13) by b−q and integrating
over the half-line yields (after replacing b by y)∫ ∞

0

∫ ∞

0

cos2n+1(x+ y)
xpyq

dA = −Γ(1− p)Γ(1− q) cos
(
π(p+ q)

2

)
×

n∑
k=0

(
2n+ 1
n− k

)
(2k + 1)p+q−2

22n
.

In particular, for n = 0,

(3.21)
∫ ∞

0

∫ ∞

0

cos(x+ y)
xpyq

dA = −Γ(1− p)Γ(1− q) cos
(
π(p+ q)

2

)
.

The derivative ∂2

∂p∂q at p = q = 1
2 produces the evaluation

(3.22)
∫ ∞

0

∫ ∞

0

log x log y
√
xy

cos(x+ y) dx dy = (γ + 2 log 2)π2

that we promised in the Introduction.

Example 3.3. Iterating the method described in the previous example yields∫
Rn

+

(
cos ‖x‖2

)
·

n∏
j=1

log xj dV =
(−1)∆nπn/2

22n

{
Reψn if n is even,
Imψn if n is odd,



60 T. AMDEBERHAN , L. A. MEDINA AND V. H. MOLL

with

(3.23) ∆n =
n(n+ 1)

2
, ψn =

(
γ + 2 log 2 +

πi

2

)n

eπin/4.

Here ‖x‖2 = x2
1 + · · ·+ x2

n and γ is Euler’s constant. For instance, for n = 3 we have∫ ∞

0

∫ ∞

0

∫ ∞

0

log x log y log z cos(x2+y2+z2) dx dy dz =
π3/2

8
(−16ξ3+12ξ2π+6ξπ2−π3),

where ξ = γ + 2 log 2.
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