SCIENTIA Series A: Mathematical Sciences, Vol. 15 (2007), 61–65 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2007

SOME CHARACTERIZATIONS OF LOCALLY SEPARABLE METRIZABLE SPACES

XUN GE

ABSTRACT. In this paper, we prove that a space X is a locally separable metrizable space iff X has a locally countable base, iff X is a locally Lindelöf space with a σ -weakly hereditarily closure-preserving base.

1. INTRODUCTION

A space X is locally separable (resp. locally Lindelöf, locally hereditarily separable) if for each $x \in X$, there is a neighborhood U of x such that U is a separable (resp. Lindelöf, hereditarily separable) subspace of X. A locally separable metrizable space means a metrizable and locally separable space (see [4], for example). P. Alexandroff [1] characterized locally separable metrizable spaces by topological sums of separable metrizable spaces (also see [4, 4.4.F(c)]). Notice that a space X is a metrizable space iff X has a σ -locally finite base (the classical Nagata-Smirnov Metrizable Theorem, see [7, 8], for example) and a space X is a separable metrizable space iff X has a countable base. It is natural to raise the following question.

Question 1.1. Can locally separable metrizable spaces be characterized by spaces with a certain base?

On the other hand, D. K. Burke, R. Engelking and D. Lutzer[3] proved that a space X is a metrizable space iff X has a σ -hereditarily closure-preserving base to generalize Nagata-Smirnov Metrizable Theorem, and give an example to show that "hereditarily closure-preserving" can not be relaxed to "weakly hereditarily closure-preserving" here. Thus we have the following question.

Question 1.2. Is a locally separable (resp. locally hereditarily separable, locally Lindelöf) space with a σ -weakly hereditarily closure-preserving base a locally separable metrizable space?

²⁰⁰⁰ Mathematics Subject Classification. 54C10, 54D20, 54D65, 54D80.

Key words and phrases. metrizable space, locally separable space, locally Lindelöf space, locally countable base, σ -weakly hereditarily closure-preserving base.

This project was supported by NSFC(No.10571151 and 10671173) and NSF(06KJD110162).

XUN GE

In this paper, we investigate Question 1.1 and Question 1.2. We prove that a space X is a locally separable metrizable space iff X has a locally countable base, iff X is a locally separable space with a σ -locally countable base, iff X is a locally Lindelöf space with a σ -weakly hereditarily closure-preserving base.

Throughout this paper, all spaces are assumed to be regular and T_1 . \mathbb{N} and ω_1 denote the set of all natural numbers and the first uncountable ordinal, respectively. Let \mathcal{P} be a family of subsets of X. $\bigcup \mathcal{P}$ and $\overline{\mathcal{P}}$ denote the union $\bigcup \{P : P \in \mathcal{P}\}$ and the family $\{\overline{P} : P \in \mathcal{P}\}$, respectively. If A is a subset of a space X, then $(\mathcal{P})_A$ and $\mathcal{P} \bigcap A$ denote the subfamily $\{P \in \mathcal{P} : P \bigcap A \neq \emptyset\}$ of \mathcal{P} and the family $\{P \bigcap A : P \in \mathcal{P}\}$, respectively. If $x \in X$, then $(\mathcal{P})_{\{x\}}$ is abbreviated to $(\mathcal{P})_x$. Let \mathcal{U} and \mathcal{V} be two covers of a space X. \mathcal{V} is called a refinement of \mathcal{U} , if for every $V \in \mathcal{V}$ there is $U \in \mathcal{U}$ such that $V \subset U$. A refinement \mathcal{V} of \mathcal{U} is called an open refinement of \mathcal{U} , if each element of \mathcal{V} is open in X. One may refer to [2] for undefined notations and terminology.

2. Spaces with a σ -Locally Countable Base

Definition 2.1. Let \mathcal{U} be a family of subsets of a space X.

(1) \mathcal{U} is called point-countable if $(\mathcal{U})_x$ is countable for each $x \in X$.

(2) \mathcal{U} is called locally-countable if for each $x \in X$, there is a neighborhood U_x of x such that $(\mathcal{U})_{U_x}$ is countable.

(3) \mathcal{U} is called star-countable if $(\mathcal{U})_U$ is countable for each $U \in \mathcal{U}$.

Remark 2.2. It is clear that each star-countable open cover of a space X is locallycountable.

Definition 2.3. A space X is called meta-Lindelöf if each open cover of X has a point-countable open refinement.

Lemma 2.4. Let X be a separable, meta-Lindelöf space. Then X is Lindelöf.

Proof. Let \mathcal{U} be an open cover of X. X is meta-Lindelöf, so there is a point-countable open refinement \mathcal{V} of \mathcal{U} . Let D be a countable dense subset of X, and put $\mathcal{V}' = (\mathcal{V})_D$. It is clear that \mathcal{V}' is countable. We claim that \mathcal{V}' covers X. In fact, if $x \in X$, then $x \in V$ for some $V \in \mathcal{V}$. D is dense in X, so $V \cap D \neq \emptyset$, hence $V \in \mathcal{V}'$, consequently, \mathcal{V}' covers X. For each $V \in \mathcal{V}'$, there is $U_V \in \mathcal{U}$ such that $V \subset U_V$. Put $\mathcal{U}' = \{U_V : V \in \mathcal{V}'\}$, then \mathcal{U}' is a countable subcover of \mathcal{U} . So X is Lindelöf.

Lemma 2.5. The following are equivalent for a space X.

(1) X has a locally-countable base.

(2) X has a star-countable base.

Proof. $(2) \Longrightarrow (1)$ from Remark 2.2. We only need to prove that $(1) \Longrightarrow (2)$.

Let \mathcal{B} be a locally-countable base of X. For each $x \in X$, there is a neighborhood U_x of x such that $(\mathcal{B})_{U_x}$ is a countable subfamily, put $\mathcal{B}_x = \{B \in \mathcal{B} : B \subset U_x\}$ and $\mathcal{B}' = \bigcup\{\mathcal{B}_x : x \in X\}$. It is easy to prove that \mathcal{B}' is a star-countable base of X. \Box

The following lemma is due to [2, Lemma 3.10].

Lemma 2.6. Let \mathcal{B} be a star-countable family of subsets of a space X. Then \mathcal{B} can be expressed as $\mathcal{B} = \bigcup \{ \mathcal{B}_{\alpha} : \alpha \in \Lambda \}$, where each subfamily \mathcal{B}_{α} is countable and $(\bigcup \mathcal{B}_{\alpha}) \cap (\bigcup \mathcal{B}_{\beta}) = \emptyset$ whenever $\alpha \neq \beta$.

Theorem 2.7. The following are equivalent for a space X.

(1) X is a locally separable metrizable space.

(2) X is a locally separable space with a σ -locally-countable base.

(3) X is a locally Lindelöf space with a σ -locally-countable base.

(4) X has a locally-countable base.

(5) X is a topological sum of separable metrizable spaces.

Proof. $(1) \Longrightarrow (2)$. It is clear.

(2) \implies (3). Let X be a locally separable space with a σ -locally-countable base \mathcal{B} . For each $x \in X$, there is a neighborhood U of x such that U is separable. It suffices to prove that U is Lindelöf. It is easy to see that $\mathcal{B} \cap U$ is a σ -locally-countable base of subspace U. Notice that each space with a σ -locally-countable base is meta-Lindelöf. Thus, U is separable and meta-Lindelöf. By Lemma 2.4, U is Lindelöf.

(3) \implies (4). Let X be a locally Lindelöf space with a σ -locally-countable base $\mathcal{B} = \bigcup \{ \mathcal{B}_n : n \in \mathbb{N} \}$, where each \mathcal{B}_n is locally-countable in X. Let $x \in X$ and let U be a Lindelöf neighborhood of x. Let $n \in \mathbb{N}$. For each $y \in U$, there is an open neighborhood U_y of y such that U_y intersects at most countable many elements of \mathcal{B}_n . The open cover $\{U_y : y \in U\}$ of U has a countable subcover \mathcal{V} . Put $V = \bigcup \mathcal{V}$, then $U \subset V$ and V intersects at most countable many elements of \mathcal{B}_n . So U intersects at most countable many elements of \mathcal{B}_n . Moreover, U intersects at most countable many elements of \mathcal{B}_n . Thus \mathcal{B} is a locally-countable base of X.

(4) \Longrightarrow (5). Let X have a locally-countable base. Then X has a star-countable base \mathcal{B} from Lemma 2.5. By Lemma 2.6, \mathcal{B} can be expressed as $\mathcal{B} = \bigcup \{\mathcal{B}_{\alpha} : \alpha \in \Lambda\}$, where each subfamily \mathcal{B}_{α} is countable and $(\bigcup \mathcal{B}_{\alpha}) \cap (\bigcup \mathcal{B}_{\beta}) = \emptyset$ whenever $\alpha \neq \beta$. For each $\alpha \in \Lambda$, put $X_{\alpha} = \bigcup \mathcal{B}_{\alpha}$, then $\{X_{\alpha} : \alpha \in \Lambda\}$ is a family of mutually disjoint open subspace of X. So X is a topological sum of $\{X_{\alpha} : \alpha \in \Lambda\}$: $X = \bigoplus \{X_{\alpha} : \alpha \in \Lambda\}$. For each $\alpha \in \Lambda$, it is easy to see that \mathcal{B}_{α} is a countable base of subspace X_{α} , so X_{α} is a separable metrizable space. Thus, X is a topological sum of separable metrizable spaces.

 $(5) \implies (1)$. Let X be a topological sum of separable metrizable spaces. It is clear that X is locally separable. On the other hand, it is well known that each topological sum of metrizable spaces is metrizable (see [4, Theorem 4.2.1] or [6, Theorem 2.1.8], for example). So X is metrizable.

3. Spaces with a σ -Weakly Hereditarily Closure-Preserving Base

Definition 3.1. [3]. Let \mathcal{P} be a family of subsets of a space X.

(1) \mathcal{P} is called closure-preserving if $\overline{\bigcup \mathcal{P}'} = \bigcup \overline{\mathcal{P}'}$ for any $\mathcal{P}' \subset \mathcal{P}$.

(2) \mathcal{P} is called hereditarily closure-preserving if $\{H(P) : P \in \mathcal{P}\}$ is closure-preserving for each $P \in \mathcal{P}$ and any $H(P) \subset P$.

(3) \mathcal{P} is called weakly hereditarily closure-preserving if $\{x_P : P \in \mathcal{P}\}$ is closurepreserving for each $P \in \mathcal{P}$ and any $x_P \in P \in \mathcal{P}$. **Lemma 3.2.** Let X be a Lindelöf space with a σ -weakly hereditarily closure-preserving base. Then X is first countable.

Proof. Let $\mathcal{B} = \bigcup \{\mathcal{B}_n : n \in \mathbb{N}\}$ be a σ -weakly hereditarily closure-preserving base of X, where each \mathcal{B}_n is weakly hereditarily closure-preserving. We only need to prove that for each non-isolated point x of X, there is a countable neighborhood base at x. Let x be a non-isolated point of X, it suffices to prove that $(\mathcal{B}_n)_x$ is countable for each $n \in \mathbb{N}$. If not, then there is $n \in \mathbb{N}$ such that $(\mathcal{B}_n)_x = \{B_\alpha : \alpha < \lambda\}$ is uncountable, where $\lambda \geq \omega_1$. Because $X - \{x\}$ is not closed in X, $U \cap (X - \{x\}) \neq \emptyset$ for any open neighborhood U of x in X. Pick $x_1 \in B_1 \cap (X - \{x\}), x_2 \in (B_2 - \{x_1\}) \cap (X - \{x\})$. For $\alpha < \omega_1$, assume that we have obtained $x_\alpha \in (B_\alpha - \{x_\beta : \beta < \alpha\}) \cap (X - \{x\})$ such that $x_\beta \in (B_\beta - \{x_\gamma : \gamma < \beta\}) \cap (X - \{x\})$ for each $\beta < \alpha$. Since $\{B_\alpha : \alpha < \lambda\}$ is weakly hereditarily closure-preserving, $\{x_\beta : \beta < \alpha + 1\}$ is closed in X, thus $(B_{\alpha+1} - \{x_\beta : \beta < \alpha + 1\}) \cap (X - \{x\}) \neq \emptyset$. Pick $x_{\alpha+1} \in (B_{\alpha+1} - \{x_\beta : \beta < \alpha + 1\}) \cap (X - \{x\})$. By the induction method, we construct an uncountable subset $B = \{x_\alpha : \alpha < \omega_1\}$ of X such that B is a closed discrete subspace of X. This contradicts Lindelöfness of X.

Remark 3.3. "Lindelöf" in Lemma 3.2 can be replaced by "hereditarily separable" from the proof of Lemma 3.2.

Corollary 3.4. Let X be a locally Lindelöf (or locally hereditarily separable) space with a σ -weakly hereditarily closure-preserving base. Then X is first countable.

Proof. By Remark 3.3, we only give a proof for the non-parenthetic part. Let \mathcal{B} be a σ -weakly hereditarily closure-preserving base of X. Let $x \in X$, then there is a neighborhood U of x such that U is a Lindelöf subspace of X. It is easy to check that $\mathcal{B} \cap U$ is a σ -weakly hereditarily closure-preserving base of subspace U. By Lemma 3.2, U is first countable, so There is a countable neighborhood base \mathcal{B}_x at x in U. Note that U is a neighborhood of x, so \mathcal{B}_x is a countable neighborhood base at x in X.

Lemma 3.5. Let $\mathcal{P} = \{P_{\alpha} : \alpha \in \Lambda\}$ be a weakly hereditarily closure-preserving family of subsets of a first countable space X. Then \mathcal{P} is hereditarily closure-preserving.

Proof. If \mathcal{P} is not hereditarily closure-preserving, then there are $\Lambda' \subset \Lambda$ and $x \in \overline{\bigcup\{H_{\alpha}: \alpha \in \Lambda'\}} - \bigcup\{\overline{H_{\alpha}}: \alpha \in \Lambda'\}$, where $H_{\alpha} \in P_{\alpha}$ for each $\alpha \in \Lambda'$. Because X is first countable, there is a sequence $\{x_n\}$ in $\bigcup\{H_{\alpha}: \alpha \in \Lambda'\}$ such that $\{x_n\}$ converges to x. Without loss of generality, we can assume that $x_n \neq x_m$ for all $n \neq m$ and $x \neq x_n$ for each $n \in \mathbb{N}$. Put $K = \{x_n : n \in \mathbb{N}\} \bigcup\{x\}$. If there is $\alpha \in \Lambda'$ such that $K \cap H_{\alpha}$ is infinite, then x is a closure point of $K \cap H_{\alpha}$, so $x \in \overline{H_{\alpha}}$, a contraction. If for each $\alpha \in \Lambda', K \cap H_{\alpha}$ is finite, there is $n_2 > n_1$ such that $x_{n_2} \in H_{\alpha_2}$ for some $\alpha_2 \in \Lambda' - \{\alpha_1\}$. By the induction method, we obtained a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \in H_{\alpha_k}$ for each $k \in \mathbb{N}$, where $\{\alpha_k : k \in \mathbb{N}\}$ is mutually inequivalent. Thus $x \in \overline{\{x_{n_k}: k \in \mathbb{N}\}}$ and $x \notin \{x_{n_k}: k \in \mathbb{N}\}$. This contradicts that \mathcal{P} is a weakly hereditarily closure-preserving.

The following theorem is obtained immediately from Corollary 3.4, Lemma 3.5 and [3, Theorem 5].

Theorem 3.6. A locally Lindelöf (or locally hereditarily separable) space X is metrizable iff X has a σ -weakly hereditarily closure-preserving base.

Corollary 3.7. A space X is a separable metrizable space iff X is a Lindelöf space with a σ -weakly hereditarily closure-preserving base.

Related to Theorem 3.6, we have the following question.

Question 3.8. Is a locally separable space X with a σ -weakly hereditarily closurepreserving base metrizable?

References

- P.Alexandroff, Uber die matrisation der in kleinen kompakten topologischen, Raume Math. Ann., 92(1924), 294-301.
- D.K.Burke, Covering properties, In: Kumen K and Vaughan J E. eds, Handbook of Set-Theoretic Topology, Amsterdan: North-Holland, 347-422, 1984.
- D.K.Burke, R.Engelking and D.Lutzer, Hereditarily closure-preserving and metrizability, Proc. Amer. Math. Soc., 51(1975), 483-488.
- 4. R.Engelking, General Topology (revised and completed edition), Berlin: Heldermann, 1989.
- G.Gruenhage, E.Michael and Y.Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
- 6. S.Lin, Metric Spaces and Topologies on Function Spaces, Chinese Science Press, Beijing, 2004.
- J.Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polyt. Osaka City Univ., 1(1950), 93-100.
- 8. Ju.Smirnov, On metrization of topological spaces, Uspechi Mat. Nauk., 6(1951), 100-111.

Received 20 03 2007, revised 05 07 2007

Department of Mathematics, College of Zhangjiagang, Jiangsu University of Science and Technology, Zhangjiagang, Jiangsu, 215600, P.R.China *E-mail address*: zhugexun@163.com