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The integrals in Gradshteyn and Ryzhik.
Part 6: The beta function

Victor H. Moll

Abstract. We present a systematic derivation of some definite integrals in the

classical table of Gradshteyn and Ryzhik that can be reduced to the beta function.

1. Introduction

The table of integrals [2] contains some evaluations that can be derived by ele-
mentary means from the beta function, defined by

(1.1) B(a, b) =
∫ 1

0

xa−1(1− x)b−1 dx.

The convergence of the integral in (1.1) requires a, b > 0. This definition appears as
3.191.3 in [2].

Our goal is to present in a systematic manner, the evaluations appearing in the
classical table of Gradshteyn and Ryzhik [2], that involve this function. In this part, we
restrict to algebraic integrands leaving the trigonometric forms for a future publication.
This paper complements [3] that dealt with the gamma function defined by

(1.2) Γ(a) :=
∫ ∞

0

xa−1e−x dx.

These functions are related by the functional equation

(1.3) B(a, b) =
Γ(a) Γ(b)
Γ(a + b)

.

A proof of this identity can be found in [1].

The special values Γ(n) = (n− 1)! and

(1.4) Γ
(
n + 1

2

)
=
√

π

22n

(2n)!
n!
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10 VICTOR H. MOLL

for n ∈ N, will be used to simplify the values of the integrals presented here. Proofs
of these formulas can be found in [3] as well as in Proposition 2.1 below.

The other property that will be employed frequently is

(1.5) Γ(a) Γ(1− a) =
π

sinπa
.

The reader will find in [1] a proof based on the product representation of these func-
tions. A challenging problem is to produce a proof that only employs changes of
variables.

The table [2] contains some direct values:

(1.6)
∫ 1

0

xp dx

(1− x)p
=

pπ

sin pπ

is 3.192.1 and is evaluated by identifying it as B(p + 1, 1− p). Formula 3.192.2 is

(1.7)
∫ 1

0

xp dx

(1− x)p+1
= − π

sin pπ

has the value B(p + 1,−p) = Γ(p + 1)Γ(−p). Next, 3.192.3 is

(1.8)
∫ 1

0

(1− x)p

xp+1
dx = − π

sin pπ

and the change of variables t = 1/x in 3.192.4 produces

(1.9)
∫ ∞

1

(x− 1)p−1/2 dx

x
=

∫ 1

0

t−p−1/2(1− t)p−1/2 dt

and this is

(1.10) B
(

1
2 − p, 1

2 + p
)

= Γ
(

1
2 − p

)
Γ

(
1
2 + p

)
=

π

cos pπ
,

as stated in [2].
Let b = 1

2 in (1.1) to obtain

(1.11)
∫ 1

0

xa−1 dx√
1− x

= B
(
a, 1

2

)
=

Γ(a)
√

π

Γ
(
a + 1

2

) .

The special values a = n+1 and a = n+ 1
2 appear as 3.226.1 and 3.226.2, respectively.

2. Elementary properties

Many of the properties of the beta function can be established by simple changes
of variables. For example, letting y = 1− x in (1.1) yields the symmetry

(2.1) B(a, b) = B(b, a).
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It should not be surprising that a clever change of variables might lead to a
beautiful result. This is illustrated following Serret [4]. Start with

B(a, a) =
∫ 1

0

(x− x2)a−1 dx

= 2
∫ 1/2

0

[
1
4 −

(
1
2 − x

)2
]a−1

dx.

The natural change of variables v = 1
2 − x yields

(2.2) B(a, a) = 2
∫ 1/2

0

(
1
4 − v2

)a−1
dv.

The next step is now clear: let s = 4v2 to produce

(2.3) B(a, a) = 21−2aB
(
a, 1

2

)
.

The functional equation (1.3) converts this identity into Legendre’s original form:

Proposition 2.1. The gamma function satisfies

(2.4) Γ
(
a + 1

2

)
=

Γ(2a) Γ(1
2 )

Γ(a) 22a−1
.

In particular, for a = n ∈ N, this yields (1.4).

3. Elementary changes of variables

The integral (1.1) defining the beta function can be transformed by changes of
variables. For example, the new variable x = t/u, reduces (1.1) to

(3.1)
∫ u

0

ta−1(u− t)b−1 dt = ua+b−1B(a, b),

that appears as 3.191.1 in [2]. The effect of this change of variables is to express the
beta function as an integral over a finite interval. Observe that the integrand vanishes
at both end points. Similarly, the change t = (v − u)x + u maps the interval [0, 1] to
[u, v]. It yields

(3.2)
∫ v

u

(t− u)a−1(v − t)b−1 dt = (v − u)a+b−1B(a, b).

This is 3.196.3 in [2]. The special case u = 0, v = n and a = ν, b = n + 1 appears as
3.193 in [2] as

(3.3)
∫ n

0

xν−1(n− x)n dx =
nν+n n!

ν(ν + 1)(ν + 2) · · · (ν + n)
.

Several integrals in [2] can be obtained by a small variation of the definition. For
example, the integral

(3.4)
∫ 1

0

(1− xa)b−1 dx =
1
a
B (1/a, b)
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can be obtained by the change of variables t = xa. This appears as 3.249.7 in [2] and
illustrates the fact that it not necessary for the integrand to vanish at both end points.
The special case a = 2 appears as 3.249.5:

(3.5)
∫ 1

0

(1− x2)b−1 dx = 1
2B

(
1
2 , b

)
= 22b−2B(b, b),

where the second identity follows from Legendre’s duplication formula (2.4).

The change of variables t = cx produces a scaled version:

(3.6)
∫ c

0

(ca − ta)b−1 dt =
1
a
ca(b−1)+1B (1/a, b) .

The special case a = 2 yields

(3.7)
∫ c

0

(c2 − t2)b−1 dt =
c2b−1

2
B (1/2, b) .

The choice b = n + 1
2 appears as 3.249.2 in [2]:

(3.8)
∫ c

0

(c2 − t2)n−1/2 dt =
πc2n

22n+1

(
2n

n

)
.

Similarly 3.251.1 in [2] is

(3.9)
∫ 1

0

xc−1(1− xa)b−1 dx =
1
a
B

( c

a
, b

)
.

The change of variables t = 1/x converts (1.1) into

(3.10)
∫ ∞

1

t−a−b(t− 1)b−1 dt = B(a, b).

Letting t = xp yields

(3.11)
∫ ∞

1

xp(1−a−b)−1 (xp − 1)b−1
dx =

1
p
B(a, b).

The special case ν = b and µ = p(1− a− b) is 3.251.3:

(3.12)
∫ ∞

1

xµ−1 (xp − 1)ν−1
dx =

1
p
B (1− ν − µ/p, ν) .

4. Integrals over a half-line

The beta function can also be expressed as an integral over a half-line. The change
of variables t = x/(1− x) maps [0, 1] onto [0,∞) and it produces from (1.1)

(4.1) B(a, b) =
∫ ∞

0

ta−1 dt

(1 + t)a+b
.

In particular, if a + b = 1, using (1.3) and (1.5), we obtain

(4.2)
∫ ∞

0

ta−1 dt

1 + t
=

π

sinπa
.
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This can be scaled to produce, for a > 0 and c > 0,

(4.3)
∫ ∞

0

xa−1 dx

x + c
=

π

sinπa
ca−1 for c > 0

that appears as 3.222.2 in [2]. In the case c < 0 we have a singular integral. Define
b = −c > 0 and s = x/b, so now we have to evaluate

(4.4) I = −ba−1

∫ ∞

0

sa−1 ds

1− s
.

The integral is considered as a Cauchy principal value

(4.5) I = lim
ε→0

∫ 1

0

sa−1 ds

(1− s)1−ε
+

∫ ∞

1

sa−1 ds

(1− s)1−ε
.

Let y = 1/s in the second integral and evaluate them in terms of the beta function to
produce

(4.6) I = lim
ε→0

εΓ(ε)× 1
ε

(
Γ(a)

Γ(a + ε)
− Γ(1− a− ε)

Γ(1− a)

)
.

Use L’Hopital’s rule to evaluate and obtain

(4.7) I = −Γ′(a)
Γ(a)

+
Γ′(1− a)

Γ(a)
.

Using the relation Γ(a)Γ(1 − a) = πcosec πa, this reduces to π cot πa. Therefore we
have

(4.8)
∫ ∞

0

xa−1 dx

x + c
= − π

tanπa
(−c)a−1 for c < 0

The change of variables x = e−t produces, for c < 0,

(4.9)
∫ ∞

−∞

e−µt dt

e−t + c
= −π cot(µπ) (−c)µ−1.

The special case c = −1 appears as 3.313.1:

(4.10)
∫ ∞

−∞

e−µt dt

1− e−t
= π cot(µπ).

We now consider several examples in [2] that are direct consequences of (4.3) and
(4.8). In the first example, we combine (4.3) with the partial fraction decomposition

(4.11)
1

(x + a)(x + b)
=

1
b− a

(
1

x + a
− 1

x + b

)
leads to 3.223.1:

(4.12)
∫ ∞

0

xµ−1 dx

(x + b)(x + a)
=

π

b− a
(aµ−1 − bµ−1)cosec(πµ).

Similarly,

(4.13)
1

x + b
− 1

x− a
=

a + b

(a− x)(b + x)
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leads to 3.223.2:

(4.14)
∫ ∞

0

xµ−1 dx

(b + x)(a− x)
=

π

a + b

(
bµ−1 cosec(µπ) + aµ−1 cot(µπ)

)
,

using (4.3) and (4.8). The result 3.223.3:

(4.15)
∫ ∞

0

xµ−1 dx

(a− x)(b− x)
= π cot(µπ)

aµ−1 − bµ−1

b− a
,

follows from

(4.16)
1

(a− x)(b− x)
=

1
a− b

(
1

b− x
− 1

a− x

)
.

Finally, 3.224:

(4.17)
∫ ∞

0

(x + b)xµ−1 dx

(x + a)(x + c)
=

π

sin(µπ)

(
a− b

a− c
aµ−1 +

c− b

c− a
cµ−1

)
,

follows from

(4.18)
x + b

(x + a)(x + c)
=

b− a

c− a

1
x + a

− b− c

c− a

1
x + c

.

We can now transform (4.1) to the interval [0, 1] by splitting [0,∞) as [0, 1] followed
by [1,∞). In the second integral, we let t = 1/s. The final result is

(4.19) B(a, b) =
∫ 1

0

ta−1 + tb−1

(1 + t)a+b
dt.

This formula, that appears as 3.216.1, makes it apparent that the beta function is
symmetric: B(a, b) = B(b, a). The change of variables s = 1/t converts (4.19) into
3.216.2:

(4.20) B(a, b) =
∫ ∞

1

sa−1 + sb−1

(1 + s)a+b
ds.

It is easy to introduce a parameter: let c > 0 and consider the change of variables
t = cx in (4.1) to obtain

(4.21)
∫ ∞

0

xa−1 dx

(1 + cx)a+b
= c−aB(a, b),

that appears as 3.194.3. We can now shift the lower limit of integration via t = x+u
to produce

(4.22)
∫ ∞

u

(t− u)a−1(t + v)−a−b dt = (u + v)−bB(a, b),

where v = 1/c − u. This is 3.196.2, where v is denoted by β. Now let b = c − a in
the special case v = 0 to obtain

(4.23)
∫ ∞

u

(t− u)a−1t−c dt = ua−cB(a, c− a).

This appears as 3.191.2.
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We now write (4.1) using the change of variables t = xc. It produces

(4.24)
∫ ∞

0

xac−1 dx

(1 + xc)a+b
=

1
c
B(a, b).

The special case c = 2 and a = 1 + µ/2, b = 1− µ/2 produces 3.251.6 in the form

(4.25)
∫ ∞

0

xµ+1 dx

(1 + x2)2
=

µπ

4 sin µπ/2
.

Now let b = 1− a and choose a = p/c to obtain

(4.26)
∫ ∞

0

xp−1 dx

1 + xc
=

1
c
B

(
p

c
,
c− p

c

)
=

π

c
cosec(πp/c).

This appears as 3.241.2 in [2].

Similar arguments establish 3.196.4:

(4.27)
∫ ∞

1

dx

(a− bx)(x− 1)ν
= −π

b
cosec(νπ)

(
b

b− a

)ν

.

Indeed, the change of variables t = x− 1 yields

(4.28)
∫ ∞

1

dx

(a− bx)(x− 1)ν
=

∫ ∞

0

dt

[(a− b)− bt] tν
,

and scaling via the new variable z = bt/(b− a) gives

(4.29)
∫ ∞

1

dx

(a− bx)(x− 1)ν
= −1

b

(
b

b− a

)ν ∫ ∞

0

dz

(1 + z) zν
.

The result follows from (4.1) and the value

(4.30) B(ν, 1− ν) = Γ(ν)Γ(1− ν) =
π

sinπν
.

The same argument gives 3.196.5:

(4.31)
∫ 1

−∞

dx

(a− bx)(1− x)ν
=

π

b
cosec(νπ)

(
b

a− b

)ν

.

5. Some direct evaluations

There are many more integrals in [2] that can be evaluated in terms of the beta
function. For example, 3.221.1 states that

(5.1)
∫ ∞

a

(x− a)p−1 dx

x− b
= π(a− b)p−1 cosec πp.

To establish these identities, we assume that a > b to avoid the singularities. The
change of variables t = (x− a)/(a− b) yields

(5.2)
∫ ∞

a

(x− a)p−1 dx

x− b
= (a− b)p−1

∫ ∞

0

tp−1 dt

1 + t
,

and this integral appears in (4.2).
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Similarly, 3.221.2 states that

(5.3)
∫ a

−∞

(a− x)p−1 dx

x− b
= −π(b− a)p−1 cosec πp.

This is evaluated by the change of variables y = (a− x)/(b− a).

The table contains several evaluations that are elementary corollaries of (4.1).
Starting with

(5.4)
∫ ∞

0

xa dx

(1 + x)b
= B(a + 1, b− a− 1) =

Γ(a + 1) Γ(b− a− 1)
Γ(b)

,

we find the case a = p and b = 3 in 3.225.3:

(5.5)
∫ ∞

0

xp dx

(1 + x)3
=

Γ(p + 1)Γ(2− p)
Γ(3)

=
p(1− p)

2
π

sin(pπ)
,

using elementary properties of the gamma function.

The change of variables t = 1 + x converts (5.4) into

(5.6)
∫ ∞

1

(t− 1)a dt

tb
= B(a + 1, b− a− 1) =

Γ(a + 1)Γ(b− a− 1)
Γ(b)

.

The special case a = p− 1 and b = 2 gives

(5.7)
∫ ∞

1

(t− 1)p−1 dt

t2
= Γ(p)Γ(2− p) = (1− p)Γ(p)Γ(1− p) =

π(1− p)
sin(pπ)

.

This appears as 3.225.1. Similarly, the case a = 1− p and b = 3 produces 3.225.2:

(5.8)
∫ ∞

1

(t− 1)1−p dt

t3
=

Γ(2− p)Γ(1 + p)
Γ(3)

=
1
2
p(1− p)Γ(p)Γ(1− p) =

π p(1− p)
2 sin(pπ)

.

6. Introducing parameters

It is often convenient to introduce free parameters in a definite integral. Starting
with (4.1), the change of variables t = u

v xc yields

(6.1) B(a, b) = cuavb

∫ ∞

0

tac−1 dt

(v + utc)a+b
.

This formula appears as 3.241.4 in [2] with the parameters

(6.2) a =
µ

ν
, b = n + 1− µ

ν
, c = ν, u = q, and v = p,

in the form ∫ ∞

0

xµ−1 dx

(p + qxν)n+1
=

1
ν pn+1

(
p

q

)µ/ν Γ(µ/ν) Γ(n + 1− µ/ν)
Γ(n + 1)

.

This is a messy notation and it leaves the wrong impression that n should be an integer.
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• The special case v = c = 1 and b = p + 1− a produces

(6.3)
∫ ∞

0

ta−1 dt

(1 + ut)p+1
=

1
ua

B(a, p + 1− a).

This appears as 3.194.4 in [2], except that it is written in terms of binomial coefficients
as

(6.4)
∫ ∞

0

ta−1 dt

(1 + ut)p+1
= (−1)p π

ua

(
a− 1

p

)
cosec(πa).

We prefer the notation in (6.3).

• The special case v = c = 1 and b = 2− a produces

(6.5)
∫ ∞

0

ta−1 dt

(1 + ut)2
=

1
ua

B(a, 2− a).

Using (1.3) and (1.5) yields the form

(6.6)
∫ ∞

0

ta−1 dt

(1 + ut)2
=

(1− a)π

ua sinπa
.

This appears as 3.194.6 in [2].

• The special case u = v = 1 and c = q, and choosing a = p/q and b = 2− p/q yields
3.241.5 in the form

(6.7)
∫ ∞

0

xp−1 dx

(1 + xq)2
=

q − p

q2

π

sin(πp/q)
.

• The special case c = 1 and a = m + 1, b = n−m− 1
2 produces

(6.8)
∫ ∞

0

tm dt

(v + ut)n+
1
2

=
1

um+1 vn−m− 1
2

B
(
m + 1, n−m− 1

2

)
Using (1.3) and (1.4) this reduces to

(6.9)
∫ ∞

0

tm dt

(v + ut)n+
1
2

=
m!n! (2n− 2m− 2)!
(n−m− 1)! (2n)!

22m+2 vm−n+1/2

um+1
,

for m, n ∈ N, with n > m. This appears as 3.194.7 in [2].

• The special case u = v = 1 and b = 1
2 − a yields

(6.10)
∫ ∞

0

tac−1 dt√
1 + tc

=
1
c
B

(
a, 1

2 − a
)
.

Writing a = p/c we recover 3.248.1:

(6.11)
∫ ∞

0

tp−1 dt√
1 + tc

=
1
c
B

(
p
c , 1

2 −
p
c

)
.
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• Now replace v by v2 in (6.1). Then, with u = 1, a = 1
2 , c = 2, so that ac = 1

and b = n− 1
2 we obtain

(6.12)
∫ ∞

0

dt

(v2 + t2)n
=

1
2v2n−1

B
(

1
2 , n− 1

2

)
.

This can be written as

(6.13)
∫ ∞

0

dt

(v2 + t2)n
=
√

π Γ(n− 1/2)
2Γ(n)v2n−1

that appears as 3.249.1 in [2].

• The special case v = 1, c = 2 and b = n
2 − a in (6.1) yields

(6.14)
∫ ∞

0

t2a−1 dt

(1 + ut2)n/2
=

1
2ua

B
(
a, n

2 − a
)
.

Now a = 1/2 gives

(6.15)
∫ ∞

0

(1 + ut2)−n/2 dt =
1

2
√

u
B

(
1
2 , n−1

2

)
=
√

π

2
√

u

Γ(n−1
2 )

Γ(n/2)
.

It is curious that the table [2] contains 3.249.8 as the special case u = 1/(n − 1) of
this evaluation.

• We now put u = v = 1 and c = 2 in (6.1). Then, with b = 1−ν−a and a = µ/2,
we obtain 3.251.2:

(6.16)
∫ ∞

0

tµ−1 dt

(1 + t2)1−ν
=

1
2
B

(µ

2
, 1− ν − µ

2

)
.

• We now consider the case c = 2 in (6.1):

(6.17)
∫ ∞

0

t2a−1 dt

(v + ut2)a+b
=

1
2uavb

B(a, b).

The special case a = m + 1
2 and b = n−m + 1

2 yields

(6.18)
∫ ∞

0

t2m dt

(v + ut2)n+1
=

Γ(m + 1/2) Γ(n−m + 1/2)
2um+1/2vn−m+1/2Γ(n + 1)

,

and using (1.4) we obtain 3.251.4:

(6.19)
∫ ∞

0

t2m dt

(v + ut2)n+1
=

π(2m)!(2n− 2m)!
22n+1m!(n−m)!n!um+1/2vn−m+1/2

,

for n, m ∈ N with n > m.
On the other hand, if we choose a = m + 1 and b = n−m we obtain 3.251.5:

(6.20)
∫ ∞

0

t2m+1 dt

(v + ut2)n+1
=

Γ(m + 1) Γ(n−m)
2um+1vn−mΓ(n + 1)

=
m!(n−m− 1)!
2n!um+1vn−m

.
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Several evaluation in [2] come from the form

(6.21)
∫ 1

0

taq−1(1− tq)b−1 dt =
1
q
B(a, b),

obtained from (1.1) by the change of variables x = tq.

• The choice a = 1 + p/q and b = 1− p/q produces

(6.22)
∫ 1

0

tp+q−1(1− tq)−p/q dt =
1
q
B

(
1 +

p

q
, 1− p

q

)
=

pπ

q2
cosec

(
pπ

q

)
.

This appears as 3.251.8.

• The choice a = 1/p and b = 1− 1/p gives

(6.23)
∫ 1

0

xq/p−1(1− xq)−1/p dx =
1
q
B

(
1
p
, 1− 1

p

)
=

π

q
cosec

(
π

p

)
.

This appears as 3.251.9.

• The reader can now check that the choice a = p/q and b = 1 − p/q yields the
evaluation

(6.24)
∫ 1

0

xp−1(1− xq)−p/q dx =
1
q
B

(
p

q
, 1− p

q

)
=

π

q
cosec

(
pπ

q

)
.

This appears as 3.251.10.

• Putting v = 1 and b = ν − a in (6.1) we get

(6.25)
∫ ∞

0

tac−1 dt

(1 + utc)ν
=

1
cua

B(a, ν − a).

Now let a = r/c to obtain

(6.26)
∫ ∞

0

tr−1 dt

(1 + utc)ν
=

1
cur/c

B
(r

c
, ν − r

c

)
.

This appears as 3.251.11.

• We now choose b = 1− 1/q in (6.21) to obtain

(6.27)
∫ 1

0

taq−1 dt
q
√

1− tq
=

1
q
B

(
a, 1− 1

q

)
.

Finally, writing a = c− (m− 1)/q gives the form

(6.28)
∫ 1

0

tcq−m dt
q
√

1− tq
=

1
q
B

(
c +

1
q
− m

q
, 1− 1

q

)
.

The special case q = 2 produces

(6.29)
∫ 1

0

t2c−m dt√
1− t2

= 1
2B

(
c + 1

2 −
m
2 , 1

2

)
=

Γ(c + 1
2 −

m
2 )
√

π

2Γ(c + 1− m
2 )

.
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In particular, if c = n + 1 and m = 1 we obtain 3.248.2:

(6.30)
∫ 1

0

t2n+1 dt√
1− t2

=
√

π n!
2Γ(n + 3/2)

=
22n n!2

(2n + 1)!
.

Similarly, c = n and m = 0 yield 3.248.3:

(6.31)
∫ 1

0

t2n dt√
1− t2

=
π

22n+1

(2n)!
n!2

=
π

22n+1

(
2n

n

)
.

In the case q = 3 we get

(6.32)
∫ 1

0

t3c−m dt
3
√

1− t3
=

1
3
B

(
c +

1
3
− m

3
, 1− 1

3

)
.

This includes 3.267.1 and 3.267.2 in [2]:∫ 1

0

t3n dt
3
√

1− t3
=

2π

3
√

3

Γ(n + 1
3 )

Γ( 1
3 ) Γ(n + 1)∫ 1

0

t3n−1 dt
3
√

1− t3
=

(n− 1)!Γ( 2
3 )

3Γ(n + 2
3 )

The latest edition of [2] has added our suggestion

(6.33)
∫ 1

0

t3n−2 dt
3
√

1− t3
=

Γ(n− 1
3 ) Γ(2

3 )
3Γ(n + 1

3 )

as 3.267.3.

7. The exponential scale

We now present examples of (1.1) written in terms of the exponential function.
The change of variables x = e−ct in (1.1) yields

(7.1)
∫ ∞

0

e−at(1− e−ct)b−1 dt =
1
c
B

(a

c
, b

)
.

This appears as 3.312.1 in [2]. On the other hand, if we let x = e−ct in (4.1) we get

(7.2)
∫ ∞

−∞

e−act dt

(1 + e−ct)a+b
=

1
c
B(a, b).

This appears as 3.313.2 in [2]. The reader can now use the techniques described
above to verify

(7.3)
∫ ∞

−∞

e−µx dx

(eb/a + e−x/a)ν
= a exp

[
b
(
µ− ν

a

)]
B (aµ, ν − aµ) ,

that appears as 3.314. The choice b = 0, ν = 1 and relabelling parameters by a = 1/q
and µ = p yields 3.311.3:

(7.4)
∫ ∞

−∞

e−px dx

1 + e−qx
=

1
q
B

(
p

q
, 1− p

q

)
=

π

q
cosec

(
πp

q

)
,
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using the identity B(x, 1− x) = πcosec(πx) in the last step. This is the form given in
the table.

The integral 3.311.9:

(7.5)
∫ ∞

−∞

e−µx dx

b + e−x
= πbµ−1 cosec(µπ)

can be evaluated via the change of variables t = e−x/b and (4.2) to produce

(7.6) I = bµ−1

∫ ∞

0

tµ−1 dt

1 + t
.

8. Some logarithmic examples

The beta function appears in the evaluation of definite integrals involving loga-
rithms. For example, 4.273 states that

(8.1)
∫ v

u

(
ln

x

u

)p−1 (
ln

v

x

)q−1 dx

x
= B(p, q)

(
ln

v

u

)p+q−1

.

The evaluation is simple: the change of variables x = ut produces, with c = v/u,

(8.2) I =
∫ c

1

lnp−1 t (ln c− ln t)q−1 dt

t
.

The change of variables z = ln t
ln c give the result.

A second example is 4.275.1:

(8.3)
∫ 1

0

[
(− lnx)q−1 − xp−1(1− x)q−1

]
dx =

Γ(q)
Γ(p + q)

[Γ(p + q)− Γ(p)] ,

that should be written as

(8.4)
∫ 1

0

[
(− lnx)q−1 − xp−1(1− x)q−1

]
dx = Γ(q)−B(p, q).

The evaluation is elementary, using Euler form of the gamma function

(8.5) Γ(q) =
∫ 1

0

(− lnx)q−1
dx.

9. Examples with a fake parameter

The evaluation 3.217:

(9.1)
∫ ∞

0

(
bpxp−1

(1 + bx)p
− (1 + bx)p−1

bp−1xp

)
dx = π cot πp

has the obvious parameter b. We say that this is a fake parameter in the sense that
a simple scaling shows that the integral is independent of it. Indeed, the change
of variables t = bx shows this independence. Therefore the evaluation amounts to
showing that

(9.2)
∫ ∞

0

(
tp−1

(1 + t)p
− (1 + t)p−1

tp

)
dt = π cot πp.
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To achieve this, we let y = 1/t in the second integral to produce

(9.3) lim
ε→0

∫ ∞

0

tp−1−ε dt

(1 + t)p
−

∫ ∞

0

tε−1 dt

(1 + t)1−p
.

The integrals above evaluate to B(p− ε, ε)−B(ε, 1− p− ε). Using

(9.4) B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

and Γ(a)Γ(1− a) =
π

sin(πa)

this reduces to

(9.5) I = lim
ε→0

εΓ(ε)
(

Γ(p− ε)Γ(p + ε) sin(π(p + ε))− Γ2(p) sin(πp)
εΓ(p)Γ(p + ε) sin(π(p + ε))

)
.

Now recall that

(9.6) lim
ε→0

εΓ(ε) = 1

and reduce the previous limit to

(9.7) I =
1

Γ2(p) sin(πp)
lim
ε→0

1
ε

(
Γ(p− ε)Γ(p + ε) sin(π(p + ε))− Γ2(p) sin(πp)

)
.

Using L’Hopital’s rule we find that I = π cot(πp) as required.

The example 3.218

(9.8)
∫ ∞

0

x2p−1 − (a + x)2p−1

(a + x)p xp
dx = π cot πp

also shows a fake parameter. The change of variable x = at reduces the integral above
to

(9.9)
∫ ∞

0

t2p−1 − (1 + t)2p−1

(1 + t)p tp
dt = π cot πp

This can be written as

(9.10) I =
∫ ∞

0

(
tp−1

(1 + t)p
− (1 + t)p−1

tp

)
dt.

The result now follows from (9.2).

10. Another type of logarithmic integral

Entry 4.251.1 is

(10.1)
∫ ∞

0

xa−1 lnx

x + b
dx =

π ba−1

sinπa
(ln b− π cot πa) .

To check this evaluation we first scale by x = bt and obtain

(10.2)
∫ ∞

0

xa−1 lnx

x + b
dx = ba−1 ln b

∫ ∞

0

ta−1 dt

1 + t
+ ba−1

∫ ∞

0

ta−1 ln t

1 + t
dt.
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The first integral is simply

(10.3)
∫ ∞

0

ta−1 dt

1 + t
= B(a, 1− a) = Γ(a)Γ(1− a) =

π

sinπa
.

The second one is evaluated as

(10.4)
∫ ∞

0

ta−1 ln t

1 + t
dt = −π2 cos πa

sin2(πa)

by differentiating (4.1) with respect to a. The evaluation follows from here.

11. A hyperbolic looking integral

The evaluation of 3.457.3:

(11.1)
∫ ∞

−∞

x dx

(a2ex + e−x)µ
= − 1

2aµ
B

(µ

2
,
µ

2

)
ln a,

is done as follows: write

(11.2) I =
1
aµ

∫ ∞

−∞

x dx

(aex + a−1e−x)µ

and let t = aex to produce

(11.3) I =
1
aµ

∫ ∞

0

tµ−1 (ln t− ln a) dt

(1 + t2)µ
.

The change of variables s = t2 yields

(11.4) I =
1

4aµ

∫ ∞

0

sµ/2−1 ln s ds

(1 + s)µ
− ln a

2aµ

∫ ∞

0

sµ/2−1 ds

(1 + s)µ
.

The first integral vanishes. This follows directly from the change s 7→ 1/s. The second
integral is the beta value indicated in the formula.

In particular, the value a = 1 yields

(11.5)
∫ ∞

−∞

x dx

coshµ x
= 0.

Differentiating with respect to µ produces

(11.6)
∫ ∞

−∞
x ln coshx dx = 0,

that appears as 4.321.1 in [2].
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