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The integrals in Gradshteyn and Ryzhik.
Part 6: The beta function

Victor H. Moll

ABSTRACT. We present a systematic derivation of some definite integrals in the
classical table of Gradshteyn and Ryzhik that can be reduced to the beta function.

1. Introduction

The table of integrals [2] contains some evaluations that can be derived by ele-
mentary means from the beta function, defined by

(L.1) B(a,b) = /01 2271 — z) da.

The convergence of the integral in (1.1) requires a, b > 0. This definition appears as
3.191.3 in [2].

Our goal is to present in a systematic manner, the evaluations appearing in the
classical table of Gradshteyn and Ryzhik [2], that involve this function. In this part, we
restrict to algebraic integrands leaving the trigonometric forms for a future publication.
This paper complements [3] that dealt with the gamma function defined by

(1.2) I'(a) := / 2 e da.
0

These functions are related by the functional equation

[(a) I'(b)

I'(a+0b)

A proof of this identity can be found in [1].

(1.3) B(a,b) =

The special values T'(n) = (n — 1)! and
T (2n)!

¥
N
N

(1.4) I'(n+3)= —
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10 VICTOR H. MOLL

for n € N, will be used to simplify the values of the integrals presented here. Proofs
of these formulas can be found in [3] as well as in Proposition 2.1 below.
The other property that will be employed frequently is

(1.5) I(a)T(1—a)= "

sin a

The reader will find in [1] a proof based on the product representation of these func-
tions. A challenging problem is to produce a proof that only employs changes of
variables.

The table [2] contains some direct values:

(1.6) /Ol(xpdx _ b7

1—2z)?  sinprw

is 3.192.1 and is evaluated by identifying it as B(p + 1,1 — p). Formula 3.192.2 is

1 P
P dx 7r
1.7 = —
(L7) /0 (1 —z)ptl sin pm
has the value B(p+1,—p) =T'(p+ 1)I'(—p). Next, 3.192.3 is
1
(1—x)? i
1. Y de = —
(18) /0 gprt ¢ sin pm

and the change of variables t = 1/x in 3.192.4 produces

[e%s} 1
(1.9) / (z — 1)?*1/2@ = / tTPY2(1 — )2 gt
1

x 0
and this is
T
(1.10) B(z-ra+tp)=TG-2)TG+r)= 0
as stated in [2].
Let b= 1 in (1.1) to obtain

1 a—1 T
(1.11) / A pa,1) = DOV

0o Vi—=z r (a + 5)

The special values a = n+1 and a = n—i—% appear as 3.226.1 and 3.226.2, respectively.

2. Elementary properties

Many of the properties of the beta function can be established by simple changes
of variables. For example, letting y = 1 — 2 in (1.1) yields the symmetry

(2.1) B(a,b) = B(b,a).
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It should not be surprising that a clever change of variables might lead to a
beautiful result. This is illustrated following Serret [4]. Start with

B(a,a) = /01(36 —2?)* dx
2/01/2 [i — (% — x)z} ! dx.

The natural change of variables v = % — x yields

1/2
(2.2) Bl(a,a) = 2/0 (- v2)a_1 dv.
The next step is now clear: let s = 4v? to produce
(2.3) B(a,a) =2'"%*B (a,3).

The functional equation (1.3) converts this identity into Legendre’s original form:
Proposition 2.1. The gamma function satisfies

I'(2a)T(3)

F(a) 922a—1"

In particular, for a = n € N, this yields (1.4).

(2.4) [(a+3)=

3. Elementary changes of variables
The integral (1.1) defining the beta function can be transformed by changes of
variables. For example, the new variable x = ¢/u, reduces (1.1) to

(3.1) / t2  u — )L dt = w1 B(a,b),
0

that appears as 3.191.1 in [2]. The effect of this change of variables is to express the
beta function as an integral over a finite interval. Observe that the integrand vanishes
at both end points. Similarly, the change ¢ = (v — u)x + v maps the interval [0, 1] to
[, v]. Tt yields

(3.2) /U(t —u) o —t)""dt = (v —w)* "1 B(a, b).

This is 3.196.3 in [2]. The special case u =0, v =n and a = v, b =n + 1 appears as
3.193 in [2] as

(3.3) /O " = ) d =

n’*" n!
viv+1)(v+2)---(v+n)

Several integrals in [2] can be obtained by a small variation of the definition. For
example, the integral

(3.4) /0 (1— 291 dg = %B (1/a,b)
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can be obtained by the change of variables ¢ = z®. This appears as 3.249.7 in [2] and

illustrates the fact that it not necessary for the integrand to vanish at both end points.
The special case a = 2 appears as 3.249.5:

1
(3.5) / (1—2?)"Vdz = 1B (3,b) =2"2B(b,b),
0
where the second identity follows from Legendre’s duplication formula (2.4).

The change of variables t = cx produces a scaled version:

€ 1
(3.6) /O (c® =t~ tdt = gca<b*1>+1B (1/a,b).
The special case a = 2 yields
c 2b—1
(3.7) / (c® — t2)b=1dt = CTB (1/2,b).
0

The choice b = n + 5 appears as 3.249.2 in [2]:
c 2n
2 yo\n-1/2 4, _ TC 2n
(3.8) /0 (&~ 2y = T <n .
Similarly 3.251.1 in [2] is

(3.9) /01 21— %)l dy = 1B (£0).

a

The change of variables t = 1/x converts (1.1) into
(3.10) /Oo t=47%(t —1)*"1dt = B(a, b).
Letting t = aP yields 1
(3.11) /100 gP=a=b)=1 (gp _ )71 gg = %B(a, b).
The special case v = b and p = p(l —a —b) is 3.251.3:

(3.12) / 2 (2P — 1) de = %B (1—v—pu/p,v).
1

4. Integrals over a half-line
The beta function can also be expressed as an integral over a half-line. The change
of variables ¢t = z/(1 — ) maps [0, 1] onto [0, 00) and it produces from (1.1)
< el
4.1 B(a,b) = —_—.
(41) @ = | e

In particular, if a + b = 1, using (1.3) and (1.5), we obtain

o0 ga—1
(4.2) / t 4 dt _ T
0

1+t sinma’
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This can be scaled to produce, for a > 0 and ¢ > 0,

© .a—1 d
(4.3) / L - 1 fore>0
0 T +c s 7wa
that appears as 3.222.2 in [2]. In the case ¢ < 0 we have a singular integral. Define
b= —c> 0 and s = z/b, so now we have to evaluate
© .a—1 d

(4.4) I= —bafl/ S

o L1-—s
The integral is considered as a Cauchy principal value

1 a—1 0o a—1
s ds s ds

4.5 I=1i —_— —_—
(45) ), s +/ T sy«

Let y = 1/s in the second integral and evaluate them in terms of the beta function to
produce

. 1 I'(a I'l—a—c¢
(4.6) I'=lmel(e) x 2 (F(a(—l—)e) - (m —a) )> '
Use L’Hopital’s rule to evaluate and obtain
IM(a) T'(1-a)
I'(a) I(a) ~
Using the relation I'(a)T'(1 — a) = wcosec ma, this reduces to 7 cot wa. Therefore we
have

(4.7) I=

oo a—1 d

(4.8) / z S (—c)*t fore<0

0 T+c tanma
The change of variables z = e~¢ produces, for ¢ < 0,

o eHtdt
4.9 = —mcot —c)r L.
(49) | = —meottum (=0
The special case ¢ = —1 appears as 3.313.1:
o emHt dt

(4.10) /_Oo 2 = m ot ()

We now consider several examples in [2] that are direct consequences of (4.3) and
(4.8). In the first example, we combine (4.3) with the partial fraction decomposition

4.11 _ ~
(4.11) (z+a)(z+Db) b—a<x+a x—l—b)
leads to 3.223.1:

* ozt lde T
4.12 _ b1 |
( ) /0 (z+b)(z+ a) b—a (a )cosec(mp)
Similarly,

1 1

t4+4b z—a (a—xz)(b+x)
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leads to 3.223.2:

gk ldy T _ _
(4.14) /0 b+z)a—z) a+b (b7 cosee(um) + a*' ! cot(p)) ,

using (4.3) and (4.8). The result 3.223.3:

©  gprldg at—1 —pr1
4.15 —— = t _
(4.15) /0 (a —2)(b—1x) m cot(pim) b—a
follows from
1 1 1 1
416 _ _ .
(4.16) (a—2z)(b—x) ab(bx az)
Finally, 3.224:
-1
417 /oo (x 4+ b)atda __ T a— bau—l n c— bcu—l ’
o (z+a)(x+c¢) sin(ur) \a—-c c—a
follows from
x+b _b—a 1 b—c 1

418 _ _ ‘
(4.18) (t4+a)(x+¢c) c—ax+a c—ax+c

We can now transform (4.1) to the interval [0, 1] by splitting [0, c0) as [0, 1] followed
by [1,00). In the second integral, we let ¢ = 1/s. The final result is

1 4a—-1 b—1
t +t
4.1 B(a,b) = ———dt
(419) R

This formula, that appears as 3.216.1, makes it apparent that the beta function is
symmetric: B(a,b) = B(b,a). The change of variables s = 1/t converts (4.19) into
3.216.2:

oo Sa—l +Sb—1
4.20 B(a,b) = ———ds.
(4.20) @b = [ T ds

It is easy to introduce a parameter: let ¢ > 0 and consider the change of variables
t = cx in (4.1) to obtain

< xoldx a
(421) /0 W =C B(CL, b)7

that appears as 3.194.3. We can now shift the lower limit of integration via ¢t = x +u
to produce

(4.22) /Oo(t —u)* Nt + )" dt = (u+v)""B(a,b),

where v = 1/¢ — u. This is 3.196.2, where v is denoted by 3. Now let b = ¢ —a in
the special case v = 0 to obtain

(4.23) / (t—u)* 't ¢dt = u""°B(a,c — a).

This appears as 3.191.2.
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We now write (4.1) using the change of variables ¢t = x¢. It produces

< gac—ldy 1
4.24 ———— = —B(a,b).
(4.24) /0 (14 zc)atl ¢ (2,0)
The special case c =2 and a =1+ /2, b =1 — p/2 produces 3.251.6 in the form
o0 M+1 d
(4.25) / =
o (1+2?) 4 sin /2
Now let b =1 — a and choose a = p/c to obtain
©grlder 1 pc—p T
(4.26) /0 T lp (C, : ) = 7 cosce(mp/).

This appears as 3.241.2 in [2].

Similar arguments establish 3.196.4:

(4.27) /100 (CLb;)lZ;l)’/ = —% cosec(vr) (b f a)y.

Indeed, the change of variables t = x — 1 yields

oo dx > dt
(4.28) /1 (@a—b)z -1 /O [(a—b)—bt] t”

and scaling via the new variable z = bt/ (b — a) gives

(4:29) [ emwemy =3 (b—ba)u/om (Eers

The result follows from (4.1) and the value
(4.30) Brv,1-v)=T@)I'(l—-v)=

™

sinTy’
The same argument gives 3.196.5:

(4.31) /100 (a—bajﬁ = % cosec(v) <a E b)"’

5. Some direct evaluations

There are many more integrals in [2] that can be evaluated in terms of the beta
function. For example, 3.221.1 states that

z—b
To establish these identities, we assume that a > b to avoid the singularities. The
change of variables t = (z — a)/(a — b) yields

®(z—a)Pldx 1 /co tP=1dt
2 A St b)P
(52) /a z—Db (a—b) o 1+t’

e’ _ p—]
(5.1) / [z=a)f” du = m(a — b)P~* cosec mp.

and this integral appears in (4.2).
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Similarly, 3.221.2 states that

a _ p—l
(5.3) / % = —n(b—a)?"* cosec mp.

This is evaluated by the change of variables y = (a — z)/(b — a).
The table contains several evaluations that are elementary corollaries of (4.1).
Starting with
Na+1)T'(b—a—1)
I(b) ’

(5.4) /Ooo(lx:dj)b:B(aH,b—a—U:

we find the case a = p and b = 3 in 3.225.3:
/°° abde  T(p+1)I2-—p) pl-p) =
o (

(5.5)

L+az)3 r(3) 2 sin(pn)’

using elementary properties of the gamma function.

The change of variables ¢t = 1 + x converts (5.4) into

(- 1)edt T+ DTG —a—1)
(5.6) /1 = Blatib—a-1)= o0 .
The special case a =p — 1 and b = 2 gives

®(t—1)PLdt (1l —
en [ —rere-p = a-prera-p =Tt

This appears as 3.225.1. Similarly, the case a =1 — p and b = 3 produces 3.225.2:

F(-1tPdt _TE-pI(l+p) 1 mp(l —p)
5.8 - = =—-p(1—-p)T'PI1-p) =—"—"7—.
o) [ 0 (=TI —p) = 2L
6. Introducing parameters
It is often convenient to introduce free parameters in a definite integral. Starting

with (4.1), the change of variables t = Zx¢ yields

%o ettt
1 B = cu®’ -
(61) (@) =euwns? [

This formula appears as 3.241.4 in [2] with the parameters
(6.2) a:H,b:n—i—l—ﬁ,c:u,u:q,andU:p,
v v

in the form
/°° e Vdr 1 <p)“/” T(u/v)T(n+1—p/v)
o ( q I'(n+1) '

P + qxu)nJrl - Vanrl
This is a messy notation and it leaves the wrong impression that n should be an integer.




THE BETA FUNCTION 17

e The special case v =c=1 and b = p+ 1 — a produces

oo a1t 1
6.3 - - _B 1—a).

This appears as 3.194.4 in [2], except that it is written in terms of binomial coefficients
as

< tarlgt m (a—1
6.4 L —— .
(64) /0 (1 + ut)ptt (=1) ua( P )COSGC(?TCL)
We prefer the notation in (6.3).

e The special case v =c=1 and b = 2 — a produces
* el 1

6.5 ——— = —DB(a,2 —a).
(6.5) /0 1 +ut)?  ue (2,2 = a)
Using (1.3) and (1.5) yields the form

< getdt 1-
(6.6) / _(d-ar

o (

1+wut)?2  w®sinma’

This appears as 3.194.6 in [2].

e The special case u = v = 1 and ¢ = ¢, and choosing a = p/q and b = 2 — p/q yields
3.241.5 in the form

> p=1g _
(6.7) / T x2 _4q 210 ' s .
o (1+z9) q*> sin(np/q)

e The special casec=1anda=m+ 1, b=n—m — % produces

(6.8) /oo m g _ 1 Bt m )
0 ('U + ut)"*i ymtlgyn—m—3y

Using (1.3) and (1.4) this reduces to

(6.9) /00 e di = min! (2n —2m —2)! , ., vm—n+1/27
0 (v+ut)"*2 (n—m —1)!(2n)! L

for m, n € N, with n > m. This appears as 3.194.7 in [2].
e The special case u =v =1 and b= % — a yields

00 rac—1
(6.10) / A _lp (a,5 —a).
0

Writing a = p/c we recover 3.248.1:

o p=lgt 1
6.11 —-B(2 1 _p)
( ) /0 /1+tc c (c 2 c)
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e Now replace v by v? in (6.1). Then, with u =1, a = %, ¢ =2, s0 that ac =1
1

and b=n — 5 we obtain

> dt 1 1 1
(6.12) /0 (02 + £2)n = 2v2n—1B (3:m—3)-
This can be written as
> dt I'(n—-1/2
o (W24t 2I'(n)v2n—1

that appears as 3.249.1 in [2].

e The special case v =1, c=2and b= 5 —a in (6.1) yields

el 1
.14 — = _Bf(a,2—a).
(614 /0 (1 +wt?)n/2 - 2ue (a3 —a)

Now a = 1/2 gives

n—1

It is curious that the table [2] contains 3.249.8 as the special case u = 1/(n — 1) of
this evaluation.

e We now put u =v =1and ¢ =21in (6.1). Then, withb=1—v—a and a = u/2,
we obtain 3.251.2:

o r=ldt 1 _/p I
1 B Y e
(6.16) /0 1+e)—v 2 (2’ Y 2)

e We now consider the case ¢ =2 in (6.1):

2l 1
6.17 = B(a,b).
(6.17) | e = Bl

The special case a = m + % andb=n—m+ % yields

/°° t2m dt I'(m+1/2)T(n—m+1/2)
o (

v+ ut2)ntl o ymAl/2yn—m+1/2T(n 4 1)’
and using (1.4) we obtain 3.251.4:
/°° t2m dt m(2m)!(2n — 2m)!

o (

(6.18)

(6.19)

v+ ut2)rtl 22t lil(n — m)lnl ymEl/2gn-m+1/2°

for n,m € N with n > m.
On the other hand, if we choose a = m + 1 and b = n — m we obtain 3.251.5:
/°° t2m+L dt Im+1)I(n—m)  mli(n—m—1)
o (

(6.20)

v 4 ut2)ntl o umtlyn—mT(p 4 1) 2plymtlynom
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Several evaluation in [2] come from the form
(6.21) /1 191 — ¢l gt = éB(a, b),
0
obtained from (1.1) by the change of variables x = 9.

e The choice a =1+ p/q and b = 1 — p/q produces

1

1
(6.22) / tp+q_1(1 — tq)_p/q dt =-B <1 + B, 1- p) = % cosec (Pﬂ') .
0 q q q q q

This appears as 3.251.8.

e The choice a =1/p and b=1—1/p gives

1
1 1 1
(6.23) / 29P=Y (1 — 29" YPde = =B (, 1-— ) = g cosec (;) .

0 q p p
This appears as 3.251.9.

e The reader can now check that the choice a = p/q and b = 1 — p/q yields the
evaluation

1
1
(6.24) / aP~ (1 —29)"P/dr = - B (p, 1— p) — T cosec (W) _
0 a \¢ q q

q
This appears as 3.251.10.

e Puttingv=1and b=v —ain (6.1) we get

< teelat 1
(6.25) / ——— = —B(a,v —a).
o (L4wute)r  cue

Now let a = r/c to obtain

< r=tdt 1
(6.26) / - - B (f,u - f) .
o (4wt cur/c \¢ c

This appears as 3.251.11.

e We now choose b=1—1/q in (6.21) to obtain

1 yaq—1
te9= dt 1 1
6.27 —— =-Bla,1-—-].
(6.27) o V1—17 ¢ ( (J>
Finally, writing a = ¢ — (m — 1)/q gives the form
1 _
termde 1 1 m 1
6.28 ——=-B c+,1).
(6:28) o V1—-t1 g ( g q q
The special case ¢ = 2 produces
1 12c—m 1 m
t dt Ic+5—%
(6.29) ——— =1B(et+l-2 1) = (c+5 - )V
o V1—1t2 QF(C—I—l—%)
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In particular, if c =n + 1 and m = 1 we obtain 3.248.2:
Yentlgr ! 221 )2

o VI 20(n+3/2) (@n+1)l
Similarly, ¢ = n and m = 0 yield 3.248.3:

Log2n gy T 2n)! T 2n
6.31 = =
( . ) 0 /71 — 2 T 92n41 n!2 T 92n41 n /)’

In the case ¢ = 3 we get

(6.30)

Lyse—m gy 1 1 m 1
(6.32) i W3B(C+33’13)'
This includes 3.267.1 and 3.267.2 in [2]:
Vetndt 2 T(n+ )
o V1—88  3V/3T(3)T(n+1)
Lysn=1 gt (n—1)IT

(
o VI—t5  30(n+3
The latest edition of [2] has added our suggestion

Lpn 2 D= I

6.33 =
( ) o V1-—1t3 3T(n + %)

as 3.267.3.

7. The exponential scale

We now present examples of (1.1) written in terms of the exponential function.
The change of variables x = ¢~ in (1.1) yields

e 1
(7.1) / e (1 — et -lgt = - (9, b) :
0 C C
This appears as 3.312.1 in [2]. On the other hand, if we let z = e~ in (4.1) we get
o et g 1
7.2 —— X = - B(a,b).
(72) | e = (B

This appears as 3.313.2 in [2]. The reader can now use the techniques described
above to verify

(7.3) /_o;m:aexp [b(,u—g)} B(ap,v —au),

that appears as 3.314. The choice b = 0, ¥ = 1 and relabelling parameters by a = 1/q
and p = p yields 3.311.3:

< emprir 1
(7.4) / u =-B <p’ 1- p) = Tcosec (W) ,
o lte e g7\ q) g q
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using the identity B(z,1 — x) = wcosec(mx) in the last step. This is the form given in
the table.

The integral 3.311.9:

o —px d
(7.5) / Z—l— _f = 7b" ™! cosec(u)
oo e
can be evaluated via the change of variables t = e~* /b and (4.2) to produce
ot dt
(7.6) I=p1! / .
o 1+t

8. Some logarithmic examples

The beta function appears in the evaluation of definite integrals involving loga-
rithms. For example, 4.273 states that

(8.1) /u” (ln S)pil (ln %)qil d?x = B(p,q) (1n %)Hqil.

The evaluation is simple: the change of variables © = ut produces, with ¢ = v/u,

(8.2) I:/1clr1p_1t(lrlc—lnt)q_1 @
The change of variables z = ﬁl‘—z give the result.
A second example is 4.275.1:
(8.3) /1 (=)™ =271 (1 - 2)" ] do = o T +q) —T/),
0 I'(p+aq)

that should be written as

1
(8.4) /0 [(f lnnlc)q*1 — xpfl(l — :c)qfl] dx =T(q) — B(p,q).

The evaluation is elementary, using Fuler form of the gamma function
1
(8.5) I'(q) = / (—Inz)? " da.
0

9. Examples with a fake parameter

The evaluation 3.217:
< [ pPaP! (1 + bx)P~1

9.1 - dx = mcot
(9.1) /0 <(1 + bx)P bp—lgp > reotmp
has the obvious parameter b. We say that this is a fake parameter in the sense that
a simple scaling shows that the integral is independent of it. Indeed, the change
of variables ¢t = bx shows this independence. Therefore the evaluation amounts to
showing that

9.2) /0 h ( (lt:)p _ & +t?p_1> dt = 7 cot 7p.
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To achieve this, we let y = 1/t in the second integral to produce

00 4p—1—e o] e—1
9.3) lim / rtde / 7 dt
=0y (1+¢)P o (I+t)t-r
The integrals above evaluate to B(p —¢,¢) — B(e,1 — p — ¢€). Using
I'(a)l'
(9.4) Bla,b) = SO ()T —a) = —T

T(a+b) sin(ma)

this reduces to
(9.5) I= lir% el(e) (
Now recall that
(9.6) lim el'(e) = 1

e—0

L(p— e)L(p+ e)sin(n(p + €)) — T*(p) Sin(ﬁp))
eL'(p)T(p + €)sin(m(p + ¢)) '

and reduce the previous limit to
1 1

lim — (D(p — €)T'(p + €) sin(7(p + €)) — I*(p) sin(7p)) .

SO I'2(p) sin(mp) e—0 €

Using L’Hopital’s rule we find that I = 7 cot(mp) as required.

The example 3.218

co 2p—1 _ 2p—1
(9.8) / ’ (a+ ) dx = 7 cot p
0 (a+ x)P P

also shows a fake parameter. The change of variable © = at reduces the integral above
to

0o t2p—1 —(1 t 2p—1
(9.9) / (1+1) dt = mcot p
0 (1+t)ptp

This can be written as

(9.10) j /O h ( Ji:;p _a +t?p_1) dt.

The result now follows from (9.2).

10. Another type of logarithmic integral
Entry 4.251.1 is

© pa—1] ba—l
(10.1) / ’ e =" (Inb — wcotma) .
0 x+0b sinma

To check this evaluation we first scale by x = bt and obtain

0 ga—l] o ta=L gt ©ta=lint
(10.2) / r_ar ”dx:ba—llnb/ +b“‘1/ L
o x+b o L4t o L+t
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The first integral is simply

oo o=l gt T
10.3 =B(a,1 —a)=T(a)T(1 —a) = .
(10.3) | G e pat-w=r@ra-o -
The second one is evaluated as
0 ya—1 1
(10.4) / P00 g = g2 CO8TO
0 1+1¢ sin®(wa)

by differentiating (4.1) with respect to a. The evaluation follows from here.

11. A hyperbolic looking integral
The evaluation of 3.457.3:

o T dz 1 o
11.1 —— =——B(=,=) 1
(11.1) /OO (a%e® + e~ @)K 2ak (2’ 2) na

is done as follows: write
1 [ zdz

at | (ae® +a-Te—)m

(11.2) I=

and let ¢ = ae” to produce

1 [t 1(Int—Ina)dt
T T

(11.3) I=

The change of variables s = t2 yields

1 /Oos”/z_llnsds 1na/°°s“/2_1ds
0 0

11.4 _ L [T Insds Ina [T ds
(114) 4ar (14 s)» 2a (14 s)#

The first integral vanishes. This follows directly from the change s — 1/s. The second
integral is the beta value indicated in the formula.
In particular, the value a = 1 yields

(11.5) /Oo _rdr

m
oo Cosh™ z

Differentiating with respect to p produces

(11.6) / zIncoshzdr =0,

— 0o

that appears as 4.321.1 in [2].
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