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c© Universidad Técnica Federico Santa Maŕıa 2008

ON QUOTIENT π-IMAGES OF LOCALLY SEPARABLE
METRIC SPACES

NGUYEN VAN DUNG

Abstract. We prove that a space is quotient π-image of a locally
separable metric space if and only if it has a π- and double cs∗-
cover. We also investigate quotient π-s-images of locally separable
metric spaces.

1. Introduction

Characterizations of images of metric spaces under certain covering-
mappings have attracted many authors. In the past, various results
have been obtained by means of certain networks [13]. Recently, π-
images of metric spaces have caught the attention once again [5, 6,
8, 14]. It is known that quotient π-images of metric spaces (resp.
separable metric spaces) have been obtained, see [9, Theorem 3.1.6]
(resp. [5, Theorem 3.4]), for example. In a private communication
the first author of [14] informed that, in general, it is difficult to get
“nice” characterizations of π-images of locally separable metric spaces
(instead of metric domains). These lead us to investigate quotient π-
images of locally separable metric spaces. That is, we are interested in
the following question.

Question 1.1. How are quotient π-images of locally separable metric
spaces characterized?

Taking this question into account, we give an internal characteri-
zation on subsequence-covering (sequentially-quotient) π-images of lo-
cally separable metric spaces. As an application of this result, we
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get a characterization on quotient π-images of locally separable met-
ric spaces. We also investigate subsequence-covering (sequentially-
quotient) π-s-images of locally separable metric spaces.

Throughout this paper, all spaces are assumed to be Hausdorff, all
mappings are continuous and onto, a convergent sequence includes its
limit point, and N denotes the set of all natural numbers. Let f :
X −→ Y be a mapping, x ∈ X, and P be a collection of subsets of X,
we denote by st(x,P) =

⋃
{P ∈ P : x ∈ P}, (P)x = {P ∈ P : x ∈ P},⋃

P =
⋃
{P : P ∈ P}, and f(P) = {f(P ) : P ∈ P}. We say that a

convergent sequence {xn : n ∈ N} ∪ {x} converging to x is frequently
in A if {xnk

: k ∈ N} ∪ {x} ⊂ A for some subsequence {xnk
: k ∈ N}

of {xn : n ∈ N}. For terms which are not defined here, please refer to
[2, 13].

2. Main results

Definition 2.1. Let P be a collection of subsets of a space X, and K
be a subset of X.

(1) P is a cover for K in X, if K ⊂
⋃
P .

(2) For each x ∈ X, P is a network at x in X, if x ∈ P for every
P ∈ P , and if x ∈ U with U open in X, there exists P ∈ P
such that x ∈ P ⊂ U .

(3) P is a cs∗-cover for K in X, if for each convergent sequence S
in K, S is frequently in some P ∈ P .

(4) P is a cs∗-network for X [13], if for each convergent sequence
S converging to x ∈ U with U open in X, S is frequently in
P ⊂ U with some P ∈ P .

Remark 2.2. Let X be a space.

(1) When K = X, a cover (resp. cs∗-cover) for K in X is a cover
of X (resp. cs∗-cover for X) in the sense of [2] (resp. [14]).

(2) If P is a cover (resp. cs∗-cover) for X, then P is a cover (resp.
cs∗-cover) for K in X, for every subset K of X.

(3) A cover (resp. cs∗-cover) for X is abbreviated to a cover (resp.
cs∗-cover).
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Definition 2.3. Let P be a collection of subsets of a space X. We say
that P is point-countable [2], if every point of X is in at most countably
many members of P .

Definition 2.4. Let Pn be a cover for X for each n ∈ N.

(1) {Pn : n ∈ N} is a refinement [4] for X, if Pn+1 is a refinement
of Pn for each n ∈ N.

(2)
⋃
{Pn : n ∈ N} is a σ-strong network [14] for X, if {Pn : n ∈ N}

is a refinement for X, and for each x ∈ X, {st(x,Pn) : n ∈ N}
is a network at x.

Definition 2.5. Let
⋃
{Pn : n ∈ N} be a σ-strong network for a space

X. For every n ∈ N, put Pn = {Pα : α ∈ An}, and An is endowed with
discrete topology. Put

M =
{
a = (αn) ∈

∏
n∈N

An : {Pαn : n ∈ N}

forms a network at some point xa in X
}
.

Then M , which is a subspace of the product space
∏

n∈N An, is a metric
space with metric d described as follows. For a = (αn), b = (βn) ∈ M ,
if a = b, then d(a, b) = 0, and if a 6= b, then d(a, b) = 1/(min{n ∈ N :
αn 6= βn}).

Define f : M −→ X by choosing f(a) = xa, then f is a mapping,
and (f, M, X, {Pn}) is a Ponomarev’s system [14].

Definition 2.6. Let f : X −→ Y be a mapping.

(1) f is a subsequence-covering mapping [4], if for every convergent
sequence S of Y , there is a compact subset K of X such that
f(K) is a subsequence of S.

(2) f is a sequentially-quotient mapping [4], if for every convergent
sequence S of Y , there is a convergent sequence L of X such
that f(L) is a subsequence of S.

(3) f is a quotient mapping [12], if U is open in Y whenever f−1(U)
is open in X.

(4) f is a pseudo-open mapping [7], if y ∈ intf(U) whenever f−1(y) ⊂
U with U open in X.

(5) f is a π-mapping [14], if for every y ∈ Y and for every neigh-
borhood U of y in Y , d(f−1(y), X − f−1(U)) > 0, where X is a
metric space with a metric d.
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(6) f is an s-mapping [8], if for each y ∈ Y , f−1(y) is a separable
subset of X.

(7) f is a π-s-mapping [8], if f is both π-mapping and s-mapping.

Definition 2.7 ([2]). Let X be a space, then

(1) X is a sequential space, if a subset of X is closed if and only if
together with any sequence it contains all its limits.

(2) X is a Fréchet space, if for each A ⊂ X and each x ∈ A there
exists a sequence in A converging to x.

Definition 2.8. Let {Xλ : λ ∈ Λ} be a cover for a space X, where
each Xλ has a refinement {Pλ,n : n ∈ N} consisting of countable covers
for Xλ.

(1) {Xλ : λ ∈ Λ} is a π-cover for X if for each x ∈ U , with U open
in X, there exists n ∈ N such that⋃

{st(x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U.

(2) {Xλ : λ ∈ Λ} is a double cs∗-cover for X if for each convergent
sequence S of X, there exists a λ ∈ Λ such that S is frequently
in Xλ and Pλ,n is a cs∗-cover for a subsequence Sλ of S in Xλ

for each n ∈ N.

Remark 2.9. (1) If {Xλ : λ ∈ Λ} is a π-cover for X, then
⋃
{Pλ,n :

n ∈ N} is a σ-strong network for Xλ for each λ ∈ Λ.
(2) If {Xλ : λ ∈ Λ} is a double cs∗-cover for X, then it is a cs∗-cover

for X and
⋃
{Pλ,n : λ ∈ Λ, n ∈ N} is a cs∗-network for X.

Lemma 2.10. Let f : X −→ Y be a mapping and S be a convergent
sequence in X. If P is a cs∗-cover for S in X, then f(P) is a cs∗-cover
for f(S) in Y .

Proof. Let H be a convergent sequence in f(S). Then G = f−1(H)∩S
is a convergent sequence in S and f(G) = H. Since P is a cs∗-cover for
S in X, G is frequently in some P ∈ P . Then H is frequently in some
f(P ) ∈ f(P). It implies that f(P) is a cs∗-cover for f(S) in Y . �

Lemma 2.11. Let (f, M, X,Pn) be a Ponomarev’s system and S be
a convergent sequence in X. If Pn is point-countable for each n ∈ N,
then the following are equivalent.

(1) For each n ∈ N, Pn is a cs∗-network for S in X,
(2) There exists a compact subset K of M such that S = f(K).
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Proof. (1) =⇒ (2). As in the proof of [14, Lemma 2.2 (iv)].

(2) =⇒ (1). Recall that, as in the proof of [15, General Theorem],
the following hold,

(a) for each a = (αn) ∈ M , B(a) = {U(α1, . . . , αk) : k ∈ N} is a
basis at a in M , where

U(α1, . . . , αk) = {b = (βn) ∈ M : βi = αi for all i ≤ k},
for each k ∈ N.

(b) f(U(α1, . . . , αk)) =
⋂k

i=1 Pαi
.

For each n ∈ N, we get {U(α1, . . . , αn) : a ∈ M} is an open cover
for M . Since K is compact, K ⊂

⋃
F with some finite subfamily F of

{U(α1, . . . , αn) : a ∈ M}. Note that M is metric, K =
⋃
{KF : F ∈ F}

where KF ⊂ F and KF is compact for each F ∈ F . It implies that
S =

⋃
{f(KF ) : F ∈ F}. Since each f(KF ) is closed (in fact, each

f(KF ) is compact), S is frequently in some f(KF ) ⊂ f(F ). From (b)
in the above, f(F ) ⊂ Pαn for some Pαn ∈ Pn. It implies that Pn is a
cs∗-cover for S in X. �

Theorem 2.12. The following are equivalent for a space X.

(1) X is a subsequence-covering π-image of a locally separable met-
ric space,

(2) X is a sequentially-quotient π-image of a locally separable met-
ric space,

(3) X has a double cs∗- and π-cover.

Proof. (1) =⇒ (2). By [4, Proposition 2.1].

(2) =⇒ (3). Let f : M −→ X be a sequentially-quotient π-mapping
from a locally separable metric space M with metric d onto X. Since
M is a locally separable metric space, M =

⊕
λ∈Λ Mλ where each Mλ

is a separable metric space by [2, 4.4.F]. For each λ ∈ Λ, denote Dλ is
a countable dense subset of Mλ, and put fλ = f |Mλ

and Xλ = fλ(Mλ).
For each a ∈ Mλ and n ∈ N, put B(a, 1/n) = {b ∈ Mλ : d(a, b) < 1/n},
Bλ,n = {B(a, 1/n) : a ∈ Dλ}, and Pλ,n = fλ(Bλ,n). It is clear that
{Pλ,n : n ∈ N} is a refinement consisting of countable covers for Xλ.

(a) {Xλ : λ ∈ Λ} is a π-cover.
Consider x ∈ U with U open in X. Since f is a π-mapping, d(f−1(x), M−

f−1(U)) > 2/n for some n ∈ N. Then, for each λ ∈ Λ with x ∈ Xλ, we
get d(f−1

λ (x), Mλ−f−1
λ (Uλ)) > 2/n where Uλ = U∩Xλ. Let a ∈ Dλ and
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x ∈ fλ(B(a, 1/n)) ∈ Pλ,n. We shall prove that B(a, 1/n) ⊂ f−1
λ (Uλ).

In fact, if B(a, 1/n) 6⊂ f−1
λ (Uλ), then pick b ∈ B(a, 1/n) − f−1

λ (Uλ).
Note that f−1

λ (x) ∩ B(a, 1/n) 6= ∅, pick c ∈ f−1
λ (x) ∩ B(a, 1/n), then

d(f−1
λ (x), Mλ−f−1

λ (Uλ)) ≤ d(c, b) ≤ d(c, a)+d(a, b) < 2/n. It is a con-
tradiction. So B(a, 1/n) ⊂ f−1

λ (Uλ), thus fλ(B(a, 1/n)) ⊂ Uλ. Then
st(x,Pλ,n) ⊂ Uλ. It implies that

⋃
{st(x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂

U .
(b) {Xλ : λ ∈ Λ} is a double cs∗-cover.
For each convergent sequence S of X, since f is sequentially-quotient,

there exists a convergent sequence L in M such that f(L) is a subse-
quence of S. Note that L is eventually in some Mλ. Then S is fre-
quently in Xλ. Put Sλ = f(L ∩ Mλ), then Sλ is a subsequence of S.
For each n ∈ N, since Bλ,n is an open cover for Mλ, Bλ,n is a cs∗-cover
for the convergent sequence L∩Mλ in Mλ. It follows from Lemma 2.10
that Pλ,n is a cs∗-cover for Sλ in Xλ.

(3) =⇒ (1). it follows from Remark 2.9.(1) that the Ponomarev’s
system (fλ, Mλ, Xλ,Pλ,n) exists for each λ ∈ Λ. Since each Pλ,n is
countable, Mλ is a separable metric space with metric dλ described as
follows. For a = (αn), b = (βn) ∈ Mλ, if a = b, then dλ(a, b) = 0, and
if a 6= b, then dλ(a, b) = 1/(min{n ∈ N : αn 6= βn}).

Put M = ⊕λ∈ΛMλ and define f : M −→ X by choosing f(a) = fλ(a)
for every a ∈ Mλ with some λ ∈ Λ. Then f is a mapping and M is
a locally separable metric space with metric d defined as follows. For
a, b ∈ M , if a, b ∈ Mλ for some λ ∈ Λ, then d(a, b) = dλ(a, b), and
otherwise, d(a, b) = 1. We shall prove that f is a subsequence-covering
π-mapping.

(a) f is a π-mapping.
Let x ∈ U with U open in X, then

⋃
{st(x,Pλ,n) : λ ∈ Λ with x ∈

Xλ} ⊂ U for some n ∈ N. So, for each λ ∈ Λ with x ∈ Xλ, we get
st(x,Pλ,n) ⊂ Uλ where Uλ = U ∩Xλ. It implies that dλ(f

−1
λ (x), Mλ −

f−1
λ (Uλ)) ≥ 1/n. In fact, if a = (αk) ∈ Mλ such that dλ(f

−1
λ (x), a) <

1/n, then there is b = (βk) ∈ f−1
λ (x) such that dλ(a, b) < 1/n. So

αk = βk if k ≤ n. Note that x ∈ Pβn ⊂ st(x,Pλ,n) ⊂ Uλ. Then
fλ(a) ∈ Pαn = Pβn ⊂ st(x,Pλ,n) ⊂ Uλ. Hence a ∈ f−1

λ (Uλ). It implies
that dλ(f

−1
λ (x), a) ≥ 1/n if a ∈ Mλ − f−1

λ (Uλ). So dλ(f
−1
λ (x), Mλ −
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f−1
λ (Uλ)) ≥ 1/n. Therefore

d(f−1(x), M − f−1(U)) = inf{d(a, b) : a ∈ f−1(x), b ∈ M − f−1(U)}
= min

{
1, inf{dλ(a, b) : a ∈ f−1

λ (x), b ∈ Mλ − f−1
λ (Uλ), λ ∈ Λ}

}
≥ 1/n > 0.

It implies that f is a π-mapping.
(b) f is subsequence-covering.
For each convergent sequence S of X, there exists λ ∈ Λ such that

S is frequently in Xλ and Pλ,n is a cs∗-cover for a subsequence Sλ of S
in Xλ for each n ∈ N. It follows from Lemma 2.11 that Sλ = fλ(Kλ)
for some compact subset Kλ of Mλ. Note that Kλ is also a compact
subset of M . It implies that f is subsequence-covering. �

Corollary 2.13. The following are equivalent for a space X.

(1) X is a quotient π-image of a locally separable metric space,
(2) X is a sequential space having a double cs∗- and π-cover.

Proof. (1) =⇒ (2). Let f : M −→ X be a quotient π-mapping from
a locally separable metric M onto X. It follows from [11, Lemma 3.5]
that X is a sequential space and f is sequentially-quotient. Then X is
a sequential space with a double cs∗- and π-cover by Theorem 2.12.

(2) =⇒ (1). It follows from Theorem 2.12 that X is a sequential space
and a sequentially-quotient π-image of a locally separable metric space.
By [11, Lemma 3.5], X is a quotient π-image of a locally separable
metric space. �

Theorem 2.14. The following are equivalent for a space X.

(1) X is a subsequence-covering π-s-image of a locally separable
metric space,

(2) X is a sequentially-quotient π-s-image of a locally separable
metric space,

(3) X has a double cs∗- and point-countable π-cover.

Proof. (1) =⇒ (2). By [4, Proposition 2.1].

(2) =⇒ (3). By using notations and arguments in the proof (1) =⇒
(2) of Theorem 2.12, we only need to prove that {Xλ : λ ∈ Λ} is point-
countable. For each x ∈ X, since the mapping f is an s-mapping,
f−1(x) is separable. Then f−1(x) meets only countably many Mλ’s,



58 NGUYEN VAN DUNG

i.e., x meets only countably many Xλ’s. It implies that {Xλ : λ ∈ Λ}
is point-countable.

(3) =⇒ (1). By using notations and arguments in the proof (3) =⇒
(1) of Theorem 2.12, we only need to prove that the mapping f is an
s-mapping. For each x ∈ X, since {Xλ : λ ∈ Λ} is point-countable,
Λx = {λ ∈ Λ : x ∈ Xλ} is countable. For each λ ∈ Λx, since Mλ is
separable metric, f−1

λ (x) is separable. Then f−1(x) =
⋃
{f−1

λ (x) : λ ∈
Λx} is separable. It implies that f is an s-mapping. �

Corollary 2.15. The following are equivalent for a space X.

(1) X is a quotient π-s-image of a locally separable metric space,
(2) X is a sequential space with a double cs∗- and point-countable

π-cover.

Remark 2.16. It follows from [3, Proposition 2.3] that “quotient” and
“sequential” in Corollary 2.13 and Corollary 2.15 can be replaced by
“pseudo-open” and “Fréchet”, respectively.
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