SCIENTIA
Series A: Mathematical Sciences, Vol. 16 (2008), 51–59
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
(C) Universidad Técnica Federico Santa María 2008

ON QUOTIENT π -IMAGES OF LOCALLY SEPARABLE METRIC SPACES

NGUYEN VAN DUNG

ABSTRACT. We prove that a space is quotient π -image of a locally separable metric space if and only if it has a π - and double cs^* -cover. We also investigate quotient π -s-images of locally separable metric spaces.

1. INTRODUCTION

Characterizations of images of metric spaces under certain coveringmappings have attracted many authors. In the past, various results have been obtained by means of certain networks [13]. Recently, π images of metric spaces have caught the attention once again [5, 6, 8, 14]. It is known that quotient π -images of metric spaces (resp. separable metric spaces) have been obtained, see [9, Theorem 3.1.6] (resp. [5, Theorem 3.4]), for example. In a private communication the first author of [14] informed that, in general, it is difficult to get "nice" characterizations of π -images of locally separable metric spaces (instead of metric domains). These lead us to investigate quotient π images of locally separable metric spaces. That is, we are interested in the following question.

Question 1.1. How are quotient π -images of locally separable metric spaces characterized?

Taking this question into account, we give an internal characterization on subsequence-covering (sequentially-quotient) π -images of locally separable metric spaces. As an application of this result, we

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C10, 54D55, 54E40, 54E99.

Key words and phrases. π -cover, double cs^* -cover, π -mapping, s-mapping, quotient mapping, subsequence-covering mapping, sequentially-quotient mapping.

NGUYEN VAN DUNG

get a characterization on quotient π -images of locally separable metric spaces. We also investigate subsequence-covering (sequentiallyquotient) π -s-images of locally separable metric spaces.

Throughout this paper, all spaces are assumed to be Hausdorff, all mappings are continuous and onto, a convergent sequence includes its limit point, and \mathbb{N} denotes the set of all natural numbers. Let f : $X \longrightarrow Y$ be a mapping, $x \in X$, and \mathcal{P} be a collection of subsets of X, we denote by $st(x, \mathcal{P}) = \bigcup \{P \in \mathcal{P} : x \in P\}, (\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}, \bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \text{ and } f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$ We say that a convergent sequence $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ converging to x is frequently in A if $\{x_{n_k} : k \in \mathbb{N}\} \cup \{x\} \subset A$ for some subsequence $\{x_{n_k} : k \in \mathbb{N}\}$ of $\{x_n : n \in \mathbb{N}\}$. For terms which are not defined here, please refer to [2, 13].

2. Main results

Definition 2.1. Let \mathcal{P} be a collection of subsets of a space X, and K be a subset of X.

- (1) \mathcal{P} is a cover for K in X, if $K \subset \bigcup \mathcal{P}$.
- (2) For each $x \in X$, \mathcal{P} is a *network at* x in X, if $x \in P$ for every $P \in \mathcal{P}$, and if $x \in U$ with U open in X, there exists $P \in \mathcal{P}$ such that $x \in P \subset U$.
- (3) \mathcal{P} is a cs^* -cover for K in X, if for each convergent sequence S in K, S is frequently in some $P \in \mathcal{P}$.
- (4) \mathcal{P} is a cs^* -network for X [13], if for each convergent sequence S converging to $x \in U$ with U open in X, S is frequently in $P \subset U$ with some $P \in \mathcal{P}$.

Remark 2.2. Let X be a space.

- (1) When K = X, a cover (resp. cs^* -cover) for K in X is a cover of X (resp. cs^* -cover for X) in the sense of [2] (resp. [14]).
- (2) If \mathcal{P} is a cover (resp. cs^* -cover) for X, then \mathcal{P} is a cover (resp. cs^* -cover) for K in X, for every subset K of X.
- (3) A cover (resp. cs^* -cover) for X is abbreviated to a cover (resp. cs^* -cover).

52

Definition 2.3. Let \mathcal{P} be a collection of subsets of a space X. We say that \mathcal{P} is *point-countable* [2], if every point of X is in at most countably many members of \mathcal{P} .

Definition 2.4. Let \mathcal{P}_n be a cover for X for each $n \in \mathbb{N}$.

- (1) $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a *refinement* [4] for X, if \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n for each $n \in \mathbb{N}$.
- (2) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -strong network [14] for X, if $\{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a refinement for X, and for each $x \in X$, $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}\$ is a network at x.

Definition 2.5. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -strong network for a space X. For every $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$, and A_n is endowed with discrete topology. Put

$$M = \left\{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \right\}$$

forms a network at some point x_a in X.

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} A_n$, is a metric space with metric d described as follows. For $a = (\alpha_n), b = (\beta_n) \in M$, if a = b, then d(a, b) = 0, and if $a \neq b$, then $d(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\})$.

Define $f: M \longrightarrow X$ by choosing $f(a) = x_a$, then f is a mapping, and $(f, M, X, \{\mathcal{P}_n\})$ is a *Ponomarev's system* [14].

Definition 2.6. Let $f : X \longrightarrow Y$ be a mapping.

- (1) f is a subsequence-covering mapping [4], if for every convergent sequence S of Y, there is a compact subset K of X such that f(K) is a subsequence of S.
- (2) f is a sequentially-quotient mapping [4], if for every convergent sequence S of Y, there is a convergent sequence L of X such that f(L) is a subsequence of S.
- (3) f is a quotient mapping [12], if U is open in Y whenever $f^{-1}(U)$ is open in X.
- (4) f is a pseudo-open mapping [7], if $y \in int f(U)$ whenever $f^{-1}(y) \subset U$ with U open in X.
- (5) f is a π -mapping [14], if for every $y \in Y$ and for every neighborhood U of y in Y, $d(f^{-1}(y), X f^{-1}(U)) > 0$, where X is a metric space with a metric d.

NGUYEN VAN DUNG

- (6) f is an *s*-mapping [8], if for each $y \in Y$, $f^{-1}(y)$ is a separable subset of X.
- (7) f is a π -s-mapping [8], if f is both π -mapping and s-mapping.

Definition 2.7 ([2]). Let X be a space, then

- (1) X is a sequential space, if a subset of X is closed if and only if together with any sequence it contains all its limits.
- (2) X is a *Fréchet space*, if for each $A \subset X$ and each $x \in \overline{A}$ there exists a sequence in A converging to x.

Definition 2.8. Let $\{X_{\lambda} : \lambda \in \Lambda\}$ be a cover for a space X, where each X_{λ} has a refinement $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ consisting of countable covers for X_{λ} .

(1) $\{X_{\lambda} : \lambda \in \Lambda\}$ is a π -cover for X if for each $x \in U$, with U open in X, there exists $n \in \mathbb{N}$ such that

 $\bigcup \{ st(x, \mathcal{P}_{\lambda, n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda} \} \subset U.$

(2) $\{X_{\lambda} : \lambda \in \Lambda\}$ is a *double cs*^{*}-*cover* for X if for each convergent sequence S of X, there exists a $\lambda \in \Lambda$ such that S is frequently in X_{λ} and $\mathcal{P}_{\lambda,n}$ is a *cs*^{*}-cover for a subsequence S_{λ} of S in X_{λ} for each $n \in \mathbb{N}$.

Remark 2.9. (1) If $\{X_{\lambda} : \lambda \in \Lambda\}$ is a π -cover for X, then $\bigcup \{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a σ -strong network for X_{λ} for each $\lambda \in \Lambda$.

(2) If $\{X_{\lambda} : \lambda \in \Lambda\}$ is a double cs^* -cover for X, then it is a cs^* -cover for X and $\bigcup \{\mathcal{P}_{\lambda,n} : \lambda \in \Lambda, n \in \mathbb{N}\}$ is a cs^* -network for X.

Lemma 2.10. Let $f : X \longrightarrow Y$ be a mapping and S be a convergent sequence in X. If \mathcal{P} is a cs^{*}-cover for S in X, then $f(\mathcal{P})$ is a cs^{*}-cover for f(S) in Y.

Proof. Let H be a convergent sequence in f(S). Then $G = f^{-1}(H) \cap S$ is a convergent sequence in S and f(G) = H. Since \mathcal{P} is a cs^* -cover for S in X, G is frequently in some $P \in \mathcal{P}$. Then H is frequently in some $f(P) \in f(\mathcal{P})$. It implies that $f(\mathcal{P})$ is a cs^* -cover for f(S) in Y. \Box

Lemma 2.11. Let (f, M, X, \mathcal{P}_n) be a Ponomarev's system and S be a convergent sequence in X. If \mathcal{P}_n is point-countable for each $n \in \mathbb{N}$, then the following are equivalent.

- (1) For each $n \in \mathbb{N}$, \mathcal{P}_n is a cs^* -network for S in X,
- (2) There exists a compact subset K of M such that S = f(K).

54

Proof. (1) \implies (2). As in the proof of [14, Lemma 2.2 (iv)].

 $(2) \implies (1)$. Recall that, as in the proof of [15, General Theorem], the following hold,

(a) for each $a = (\alpha_n) \in M$, $\mathcal{B}(a) = \{U(\alpha_1, \ldots, \alpha_k) : k \in \mathbb{N}\}$ is a basis at a in M, where

$$U(\alpha_1, \ldots, \alpha_k) = \{ b = (\beta_n) \in M : \beta_i = \alpha_i \text{ for all } i \le k \},\$$

for each $k \in \mathbb{N}$.

(b) $f(U(\alpha_1,\ldots,\alpha_k)) = \bigcap_{i=1}^k P_{\alpha_i}$.

For each $n \in \mathbb{N}$, we get $\{U(\alpha_1, \ldots, \alpha_n) : a \in M\}$ is an open cover for M. Since K is compact, $K \subset \bigcup \mathcal{F}$ with some finite subfamily \mathcal{F} of $\{U(\alpha_1, \ldots, \alpha_n) : a \in M\}$. Note that M is metric, $K = \bigcup \{K_F : F \in \mathcal{F}\}$ where $K_F \subset F$ and K_F is compact for each $F \in \mathcal{F}$. It implies that $S = \bigcup \{f(K_F) : F \in \mathcal{F}\}$. Since each $f(K_F)$ is closed (in fact, each $f(K_F)$ is compact), S is frequently in some $f(K_F) \subset f(F)$. From (b) in the above, $f(F) \subset P_{\alpha_n}$ for some $P_{\alpha_n} \in \mathcal{P}_n$. It implies that \mathcal{P}_n is a cs^* -cover for S in X.

Theorem 2.12. The following are equivalent for a space X.

- (1) X is a subsequence-covering π -image of a locally separable metric space,
- (2) X is a sequentially-quotient π -image of a locally separable metric space,
- (3) X has a double cs^* and π -cover.

Proof. $(1) \Longrightarrow (2)$. By [4, Proposition 2.1].

(2) \Longrightarrow (3). Let $f: M \longrightarrow X$ be a sequentially-quotient π -mapping from a locally separable metric space M with metric d onto X. Since M is a locally separable metric space $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ where each M_{λ} is a separable metric space by [2, 4.4.F]. For each $\lambda \in \Lambda$, denote D_{λ} is a countable dense subset of M_{λ} , and put $f_{\lambda} = f|_{M_{\lambda}}$ and $X_{\lambda} = f_{\lambda}(M_{\lambda})$. For each $a \in M_{\lambda}$ and $n \in \mathbb{N}$, put $B(a, 1/n) = \{b \in M_{\lambda} : d(a, b) < 1/n\},$ $\mathcal{B}_{\lambda,n} = \{B(a, 1/n) : a \in D_{\lambda}\}, \text{ and } \mathcal{P}_{\lambda,n} = f_{\lambda}(\mathcal{B}_{\lambda,n}).$ It is clear that $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a refinement consisting of countable covers for X_{λ} . (a) $\{X_{\lambda} : \lambda \in \Lambda\}$ is a π -cover.

Consider $x \in U$ with U open in X. Since f is a π -mapping, $d(f^{-1}(x), M - f^{-1}(U)) > 2/n$ for some $n \in \mathbb{N}$. Then, for each $\lambda \in \Lambda$ with $x \in X_{\lambda}$, we get $d(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) > 2/n$ where $U_{\lambda} = U \cap X_{\lambda}$. Let $a \in D_{\lambda}$ and

NGUYEN VAN DUNG

 $x \in f_{\lambda}(B(a, 1/n)) \in \mathcal{P}_{\lambda,n}$. We shall prove that $B(a, 1/n) \subset f_{\lambda}^{-1}(U_{\lambda})$. In fact, if $B(a, 1/n) \not\subset f_{\lambda}^{-1}(U_{\lambda})$, then pick $b \in B(a, 1/n) - f_{\lambda}^{-1}(U_{\lambda})$. Note that $f_{\lambda}^{-1}(x) \cap B(a, 1/n) \neq \emptyset$, pick $c \in f_{\lambda}^{-1}(x) \cap B(a, 1/n)$, then $d(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) \leq d(c, b) \leq d(c, a) + d(a, b) < 2/n$. It is a contradiction. So $B(a, 1/n) \subset f_{\lambda}^{-1}(U_{\lambda})$, thus $f_{\lambda}(B(a, 1/n)) \subset U_{\lambda}$. Then $st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$. It implies that $\bigcup \{st(x, \mathcal{P}_{\lambda,n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda}\} \subset U$.

(b) $\{X_{\lambda} : \lambda \in \Lambda\}$ is a double cs^* -cover.

For each convergent sequence S of X, since f is sequentially-quotient, there exists a convergent sequence L in M such that f(L) is a subsequence of S. Note that L is eventually in some M_{λ} . Then S is frequently in X_{λ} . Put $S_{\lambda} = f(L \cap M_{\lambda})$, then S_{λ} is a subsequence of S. For each $n \in \mathbb{N}$, since $\mathcal{B}_{\lambda,n}$ is an open cover for M_{λ} , $\mathcal{B}_{\lambda,n}$ is a cs^* -cover for the convergent sequence $L \cap M_{\lambda}$ in M_{λ} . It follows from Lemma 2.10 that $\mathcal{P}_{\lambda,n}$ is a cs^* -cover for S_{λ} in X_{λ} .

(3) \implies (1). it follows from Remark 2.9.(1) that the Ponomarev's system $(f_{\lambda}, M_{\lambda}, X_{\lambda}, \mathcal{P}_{\lambda,n})$ exists for each $\lambda \in \Lambda$. Since each $\mathcal{P}_{\lambda,n}$ is countable, M_{λ} is a separable metric space with metric d_{λ} described as follows. For $a = (\alpha_n), b = (\beta_n) \in M_{\lambda}$, if a = b, then $d_{\lambda}(a, b) = 0$, and if $a \neq b$, then $d_{\lambda}(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\})$.

Put $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ and define $f : M \longrightarrow X$ by choosing $f(a) = f_{\lambda}(a)$ for every $a \in M_{\lambda}$ with some $\lambda \in \Lambda$. Then f is a mapping and M is a locally separable metric space with metric d defined as follows. For $a, b \in M$, if $a, b \in M_{\lambda}$ for some $\lambda \in \Lambda$, then $d(a, b) = d_{\lambda}(a, b)$, and otherwise, d(a, b) = 1. We shall prove that f is a subsequence-covering π -mapping.

(a) f is a π -mapping.

Let $x \in U$ with U open in X, then $\bigcup \{st(x, \mathcal{P}_{\lambda,n}) : \lambda \in \Lambda \text{ with } x \in X_{\lambda}\} \subset U$ for some $n \in \mathbb{N}$. So, for each $\lambda \in \Lambda$ with $x \in X_{\lambda}$, we get $st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$ where $U_{\lambda} = U \cap X_{\lambda}$. It implies that $d_{\lambda}(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})) \geq 1/n$. In fact, if $a = (\alpha_k) \in M_{\lambda}$ such that $d_{\lambda}(f_{\lambda}^{-1}(x), a) < 1/n$, then there is $b = (\beta_k) \in f_{\lambda}^{-1}(x)$ such that $d_{\lambda}(a, b) < 1/n$. So $\alpha_k = \beta_k$ if $k \leq n$. Note that $x \in P_{\beta_n} \subset st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$. Then $f_{\lambda}(a) \in P_{\alpha_n} = P_{\beta_n} \subset st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$. Hence $a \in f_{\lambda}^{-1}(U_{\lambda})$. It implies that $d_{\lambda}(f_{\lambda}^{-1}(x), a) \geq 1/n$ if $a \in M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda})$. So $d_{\lambda}(f_{\lambda}^{-1}(x), M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda}))$.

56

$$f_{\lambda}^{-1}(U_{\lambda})) \geq 1/n. \text{ Therefore}$$

$$d(f^{-1}(x), M - f^{-1}(U)) = \inf\{d(a, b) : a \in f^{-1}(x), b \in M - f^{-1}(U)\}$$

$$= \min\{1, \inf\{d_{\lambda}(a, b) : a \in f_{\lambda}^{-1}(x), b \in M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda}), \lambda \in \Lambda\}\}$$

$$> 1/n > 0.$$

It implies that f is a π -mapping.

(b) f is subsequence-covering.

For each convergent sequence S of X, there exists $\lambda \in \Lambda$ such that S is frequently in X_{λ} and $\mathcal{P}_{\lambda,n}$ is a cs^* -cover for a subsequence S_{λ} of S in X_{λ} for each $n \in \mathbb{N}$. It follows from Lemma 2.11 that $S_{\lambda} = f_{\lambda}(K_{\lambda})$ for some compact subset K_{λ} of M_{λ} . Note that K_{λ} is also a compact subset of M. It implies that f is subsequence-covering.

Corollary 2.13. The following are equivalent for a space X.

- (1) X is a quotient π -image of a locally separable metric space,
- (2) X is a sequential space having a double cs^* and π -cover.

Proof. (1) \implies (2). Let $f : M \longrightarrow X$ be a quotient π -mapping from a locally separable metric M onto X. It follows from [11, Lemma 3.5] that X is a sequential space and f is sequentially-quotient. Then X is a sequential space with a double cs^* - and π -cover by Theorem 2.12.

 $(2) \Longrightarrow (1)$. It follows from Theorem 2.12 that X is a sequential space and a sequentially-quotient π -image of a locally separable metric space. By [11, Lemma 3.5], X is a quotient π -image of a locally separable metric space.

Theorem 2.14. The following are equivalent for a space X.

- (1) X is a subsequence-covering π -s-image of a locally separable metric space,
- (2) X is a sequentially-quotient π -s-image of a locally separable metric space,
- (3) X has a double cs^* and point-countable π -cover.

Proof. $(1) \Longrightarrow (2)$. By [4, Proposition 2.1].

(2) \implies (3). By using notations and arguments in the proof (1) \implies (2) of Theorem 2.12, we only need to prove that $\{X_{\lambda} : \lambda \in \Lambda\}$ is pointcountable. For each $x \in X$, since the mapping f is an *s*-mapping, $f^{-1}(x)$ is separable. Then $f^{-1}(x)$ meets only countably many M_{λ} 's, i.e., x meets only countably many X_{λ} 's. It implies that $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-countable.

(3) \Longrightarrow (1). By using notations and arguments in the proof (3) \Longrightarrow (1) of Theorem 2.12, we only need to prove that the mapping f is an s-mapping. For each $x \in X$, since $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-countable, $\Lambda_x = \{\lambda \in \Lambda : x \in X_{\lambda}\}$ is countable. For each $\lambda \in \Lambda_x$, since M_{λ} is separable metric, $f_{\lambda}^{-1}(x)$ is separable. Then $f^{-1}(x) = \bigcup \{f_{\lambda}^{-1}(x) : \lambda \in \Lambda_x\}$ is separable. It implies that f is an s-mapping. \Box

Corollary 2.15. The following are equivalent for a space X.

- (1) X is a quotient π -s-image of a locally separable metric space,
- (2) X is a sequential space with a double cs^* and point-countable π -cover.

Remark 2.16. It follows from [3, Proposition 2.3] that "quotient" and "sequential" in Corollary 2.13 and Corollary 2.15 can be replaced by "pseudo-open" and "Fréchet", respectively.

Acknowledgement. The author would like to thank the referees for their valuable amendments.

References

- A. V. Arhangel'skii, *Mappings and spaces*, Russian Math. Surveys, **21** (1966), 115 – 162.
- [2] R. Engelking, *General topology*, PWN-Polish Scientific Publishers, Warszawa 1977.
- [3] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107 - 115.
- [4] Y. Ge, On compact images of locally separable metric spaces, Topology Proc., 27 (1) (2003), 351 - 360.
- [5] Y. Ge, On π-images of metric spaces, Acta Math. APN, **22** (2006), 209 215.
- [6] Y. Ge and J. S. Gu, On π-images of separable metricspaces, Math. Sci., 10 (2004), 65 – 71.
- [7] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by pointcountable covers, Pacific J. Math., 113 (2) (1984), 303 – 332.
- [8] Z. Li, On π -s-images of metric spaces, Int. J. Math. & Math. Sci., 7 (2005), 1101 1107.
- [9] S. Lin, *Point-countable covers and sequence-covering mappings*, Chinese Science Press., Beijing 2002.
- [10] S. Lin and P. Yan, *Notes on cfp-covers*, Comment. Math. Univ. Carolinae, 44 (2) (2003), 295 306.

- [11] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl., 109 (2001), 301 – 314.
- [12] E. Michael, ℵ₀-spaces, J. Math. Mech., **15** (1966), 983 1002.
- [13] Y. Tanaka, Theory of k-networks II, Q & A in General Top., 19 (2001), 27 46.
- [14] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 32 (1) (2006), 99 – 117.
- [15] Y. Tanaka and Z. Li, Certain covering-maps and k-networks, and related matters, Topology Proc., 27 (2003), 317 – 334.

Received 04 07 2007, revised 04 03 2008

DEPARTMENT OF MATHEMATICS,

Pedagogical University of Dong thap, Viet nam

E-mail address: nguyendungtc@gmail.com