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Primitive Central Idempotents of Nilpotent Group Algebras

Luciane Quoos and Paula M. Veloso

Abstract. We exhibit the primitive central idempotents of a semisimple group
algebra of a finite nilpotent group over an arbitrary field (without using group

characters), examining the abelian case separately. Our result extends and im-

proves the main result in [1].

Introduction

Let G be a finite abelian group of order n, and K be a field such that char(K)
does not divide n. It is a well know result (see [5]), that the abelian group algebra
KG is isomorphic to the direct sum

⊕
i K(ζi), where ζi are primitive roots of unity

which orders divide n. Thus, clearly, the primitive idempotents of KG are the inverse
images of each tuple of the form (0, . . . , 0, 1, 0, . . . , 0) under the isomorphism above
mentioned. We shall exhibit the primitive idempotents of KG and, in particular, we
obtain the cyclic codes over finite fields.

Now, let G be an arbitrary finite group. A well known result is that the primitive
central idempotents of the complex group algebra CG are all elements of the form
χ(1)
|G|

∑
g∈G χ(g−1)g, where χ is an irreducible complex character of G and 1 is the

identity of G (see [6]). With the known methods, computing the character table of
a finite group is a task having complexity of exponential growth with respect to the
order of the group. Therefore, alternative methods for computing the primitive central
idempotents of CG are always of interest.

Consider now G a finite nilpotent group. The primitive central idempotents in
a rational group algebra of a nilpotent group have been determined in [1], without
making use of the character table of G. These were extended and simplified in [4],
providing an algorithm using only elementary methods for calculating the primitive
central idempotents of QG, when G is a finite nilpotent group, among other cases,
but not of KG for an arbitrary field K. These improvements were implemented in
a package [2] of programs for GAP System, version 4. An experimental comparison
of the speed of the algorithm in [2] and the character method (computing primitive
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central idempotents from the character table of the group) was presented in [3] and
showed that the first is usually faster. These improvements, however, do not carry on
automatically to the case of KG.

We are going to use a method similar to the one presented in [1] and the abelian
case in order to find out the primitive central idempotents in the group algebra of
a finite nilpotent group over an arbitrary field K, provided that char(K) does not
divide |G|. Thus, we extend the result in [1] and improve it a little (since one of the
conditions in our main theorem is slightly simpler than the one in [1]). Our description
also allows the construction of the character table of a finite nilpotent group G using a
lattice of subnormal subgroups of G, constructed in order to satisfy certain conditions.

1. The Abelian Case

We exhibit explicitly all the primitive idempotents in the semisimple group algebra
of a finite abelian group.

Let K be a field, for each (n1, . . . , ns) an s−tuple of positive integers let m =
lcm(n1, . . . , ns). Suppose that char(K) does not divide m. Consider ζi a primitive
root of unity of order ni , for i = 1, . . . , s. Given l = (l1, . . . , ls) an s-tuple of integers,
with 0 6 li 6 ni − 1, define the polynomial:

(1.1) Pl =
s∏

i=1

ni−1∏
ki=0,ki 6=li

(Xi − ζki
i ) ∈ K(ζm)[X1, . . . , Xs]

Notice that Pl(ζ
k1
1 , . . . , ζks

s ) 6= 0 iff k = l.
Let G ' C1×. . .×Cs be a finite abelian group of order n, with Ci a cyclic group of

order ni generated by gi, and let K be an algebraically closed field such that char(K)
does not divide n. The group algebra KG is isomorphic to the direct sum K⊕ . . .⊕K
of n copies of K, this isomorphism maps (1, . . . , 1, gki

i , 1, . . . , 1) to

(1, . . . , 1, ζki
ni

, . . . , ζki
ni

, ζki2
ni

, . . . , ζki2
ni

, . . . , ζki(ni−1)
ni

, . . . , ζki(ni−1)
ni

),

and in general:

(1.2) (gk1
1 , . . . , gks

s ) 7→ (. . . , ζk1l1
1 . . . ζksls

s , . . .)06li6ni−1,

where ζi ∈ K is a primitive root of unity of order ni for each i = 1, . . . , s.

Theorem 1.1. Let G ' C1 × . . . × Cs be a finite abelian group of order n, with
Ci a cyclic group of order ni generated by gi, and let K be an algebraically closed field
such that char(K) does not divide n. Then the primitive idempotents of the abelian
group algebra KG are the elements:

(1.3) el :=
Pl(g1, . . . , gs)
Pl(ζ

l1
1 , . . . , ζls

s )
, where 0 6 li 6 ni − 1 for i = 1, . . . , s.
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Proof. The image of el under the isomorfism KG ' ⊕n
i=1K is:

(1.4)
(. . . , Pl(ζ

k1
1 ,...,ζks

s )

Pl(ζ
l1
1 ,...,ζls

s )
, . . . )06ki6ni−1 = (0, . . . , 0,

Pl(ζ
l1
1 ,...,ζls

s )

Pl(ζ
l1
1 ,...,ζls

s ))
, 0, . . . , 0) =

(0, . . . , 0, 1, 0, . . . , 0), with 1 in the position (l1, . . . , ls).

�

Corollary 1.2. With the same notation as in Theorem 1.1 suppose that G is a
cyclic group of order n generated by g. For ζ a primitive root of unity of order n, the
primitive idempotents in KG are:

(1.5) el :=
ζn−l

n

n−1∏
i=0,i 6=l

(g − ζi), where 0 6 l 6 n− 1.

Proof. From Theorem 1.1, it follows that:

(1.6) el =
n−1∏

i=0,i 6=l

(g − ζi)
(ζl − ζi)

=
ζl

n

n−1∏
i=0,i 6=l

(g − ζi).

�

When the field is not algebraically closed, we have the following situation:

Theorem 1.3. Let G ' C1 × · · · × Cs be a finite abelian group of order n, with
Ci = 〈gi; gni

i = 1〉 the cyclic group of order ni generated by gi, and let K be a field
such that char(K) does not divide n. Define m := lcm(n1, . . . , ns). Consider A :=
Aut(K(ζm)|K), the Galois group of the field extension K(ζm)|K. Then, for a fixed
s-tuple of integers l = (l1, . . . , ls), with 0 6 li 6 ni − 1, the element el defined below is
a primitive idempotent of the abelian group algebra KG:

el :=
∑
σ∈A

Pσ
l

(g1, . . . , gs)

σ(Pl(ζ
l1
n1 , . . . , ζ

ls
ns))

,

the sum of all galois conjugates of Pl(g1, . . . , gs)/Pl(ζ
l1
n1

, . . . , ζls
ns

), where Pσ
l

denotes
the polynomial in K[X1, . . . , Xs] obtained by applying σ to the coefficients of Pl. Fur-
thermore, these are all the primitive idempotents of KG.

Proof. From the Theorem 1.1, it follows that

(1.7) fl :=
Pl(g1, . . . , gs)
Pl(ζ

l1
1 , . . . , ζls

s )

is a primitive idempotent of KG, where K is an algebraic closure of K. Therefore,
fl is also a primitive idempotent in K(ζm)G. Notice that K(ζm) is the minimal field
extension of K such that fl belongs to K(ζm)G. Each σ ∈ A induces a unique auto-
morphism σ∗ of K(ζm)G, and thus, σ∗(fl) is still a primitive idempotent of K(ζm)G
and of KG. The elements σ∗1(fl) and σ∗2(fl) are distinct if σ∗1 6= σ∗2 and, since they are
both primitive idempotents, they are orthogonal. Thus, el, being a sum of orthogonal
idempotents, is an idempotent. Clearly, el ∈ KG, since el is the trace in the field
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extension K(ζm)|K of fl. We have yet to see that el is primitive; we will do so in the
end of the proof.

Let e be a primitive idempotent in KG, then we may write e = f1 + · · · + ft

where fi are primitive idempotents in KG. Let K2 be the minimal field such that fi

belongs to K2G for each i = 1, . . . , t. Take τ ∈ Aut(K2|K). Applying τ∗ to e, we get
e = τ∗(e) = τ∗(f1) + · · ·+ τ∗(ft) and, by the unique representation in K2G, we have
that e is exactly the sum of the distinct galois conjugates of a primitive idempotent
in K2G. Therefore, the el defined as above are all the primitive idempotents of KG.

Now, let us see that el is primitive in KG. Suppose that we may write el =
e1 + . . . + et, with ei nonzero primitive orthogonal idempotents in KG. The first
part of the proof implies that, for all i, ei =

∑
σ∈A σ(fi), with fi distinct primitive

idempotents in KG. So we have that el =
∑

σ∈A σ(fl) =
∑t

i=1

∑
σ∈A σ(fi). By the

unique representation in KG, it follows that all the fi’s are Galois-conjugates of one
another. But then we would have that the ei’s are all equal, contradiction. �

Corollary 1.4. With the same notation as in Theorem 1.3, suppose that G =
〈g; gn = 1〉 is the cyclic group of order n generated by g. Let ζ be a primitive root
of unity of order n. Fix 0 6 l 6 n − 1. Consider A := Aut(K(ζ)|K), the Galois
group of the field extension K(ζl)|K. Then the element el defined below is a primitive
idempotent of the abelian group algebra KG:

el :=
∑
σ∈A

σ

(
ζn−l

n

) n−1∏
i=0,i 6=l

(g − σ(ζi)),

the sum of all distinct galois conjugates of ζn−l/n
∏n−1

i=0,i 6=l (g − ζi). Furthermore,
these are all the primitive idempotents of KG.

Remark 1.5. Determining a cyclic code over a finite field corresponds to deter-
mine an ideal of a group algebra KG, where G is a cyclic group. In this case, all
the ideals of KG are direct summands ⊕l6n

s=1KGeis
, where e1, . . . , en are the primitive

idempotents in KG determined in Corollary 1.4.

2. The nilpotent case

For a subset H of G such that char(K) does not divide |H|, we define the element
Ĥ of KG as:

(2.1) Ĥ =
1
|H|

∑
h∈H

h.

If H is a subgroup of G, then Ĥ is an idempotent of KG, and it is central in KG iff
H is a normal subgroup of G.

For e a primitive central idempotent of KG, let Ge = {g ∈ G; eg = e}. Clearly, Ge

is a normal subgroup of G and eĜe = e, thus e is also a primitive central idempotent
of (KG)Ĝe ' K(G/Ge), and the image e of e in K(G/Ge), is a primitive central
idempotent of K(G/Ge).

Also notice that, if N is a normal subgroup of G contained in Ge, then, clearly
(G/N)e = Ge/N , where e denotes the image of e in K(G/N).
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Remark 2.1. Let G be a metabelian group and A an abelian normal subgroup of
G such that G/A is abelian. Then the primitive central idempotents e of KG having
Ge = A are given by e = Âf , where f ∈ KG is such that f is a primitive idempotent in
K(G/A), having (G/A)f = 1. Recall that Theorem 1.3 yields all primitive idempotents
of K(G/A).

We denote by Z2(G) the second center of G, which is the unique subgroup of G

such that Z2(G)
Z(G) is the center of G

Z(G) .
We need a result from Jespers-Leal-Paques ([1], Prop. 2.1). This result is stated

in the reference for the group algebra QG, where G is a nilpotent group. We observe
that the proof given is still valid for the case KG, when K is a field such that char(K)
does not divide |G|. In this context, the result is:

Proposition 2.2. Let G be a finite nilpotent group, K be a field such that char(K)
does not divide |G|, e ∈ KG and G1 = CG(Z2(G)), the centralizer in G of the second
center of G. Then e is a primitive central idempotent of KG with Ge trivial if and
only if e is the sum of all G-conjugates of e1, a primitive central idempotent of KG1

satisfying
⋂

g∈G ((G1)e1)
g = {1}.

Proof. Suppose e ∈ KG is a primitive central idempotent with Ge = {1}. Write
e =

∑
g∈G αgĈg, with each αg ∈ K. Because of [1, Lemma 2.3], for any g ∈ G with

g 6∈ CG(Z2) there exists a non-trivial central element wg ∈ G of prime order such that
Ĉg = Ĉg 〈̂wg〉. Hence

e =
∑

g∈CG(Z2)

αgĈg +
∑

g 6∈CG(Z2)

αgĈg 〈̂wg〉.

Because Ge = {1}, [1, Lemma 2.1], yields that e = e ε(G). As ε(G)〈̂wg〉 = 0 we thus
get that

e = eε(G) =
∑

g∈CG(Z2)

αgĈg · ε(G).

So we have shown that supp (e) ⊆ G1 = CG(Z2(G)). Note that e is not necessarily
a primitive central idempotent of KG1. However, using standard arguments we get
that

e = eg1
1 + · · ·+ egn

1 ,

the sum of all G-conjugates of a primitive central idempotent e1 ∈ KG1. Clearly
((G1)e1)

gi = (G1)e
gi
1

. Hence it easily follows that ∩n
i=1((G1)e1)

gi = Ge = {1}. This
proves the necessity of the conditions.

Conversely, assume G is a finite nilpotent group and suppose e1 is a primitive
central idempotent of KG1 with G1 = CG(Z2(G)) and assume ∩g∈G ((G1)e1)

g = {1}.
Let e = eg1

1 + · · · + egn

1 be the sum of all G-conjugates of e1. Clearly e is a central
idempotent of KG and Ge = {1}. Write e = f1 + · · ·+ fk, a sum of primitive central
idempotents of KG. Note that for any non-trivial central subroup N of G, either
N̂e1 = 0 or N̂e1 = e1. However the latter is impossible as it implies N ⊆ (G1)e1

and thus N ⊆ ∩g∈G ((G1)e1)
g = {1}. So we get that N̂e1 = 0 and thus ε(G)e1 = e1.

Consequently, ε(G)e = e and thus ε(G)f1 = f1. Therefore Gf1 = {1} and thus by the
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first part of the proof, f1 ∈ KG1. Hence e = f1 is a primitive central idempotent of
KG. �

The following theorem yields an explicit formula for the primitive central idem-
potents in KG.

Theorem 2.3. Let G be a finite nilpotent group and K be a field such that char(K)
does not divide |G|. The primitive central idempotents of KG are precisely all elements
of the form

(2.2)
∑
g∈G

(eĤm)g,

the sum of all distinct G-conjugates of e, where e is an element of KGm and e (the
image of e in K(Gm/Hm)) is a primitive central idempotent in K(Gm/Hm), having
(Gm/Hm)e = {1}. The groups Hm and Gm are subgroups of G satisfying the following
properties:

(1) H0 ⊆ H1 ⊆ . . . ⊆ Hm ⊆ Gm ⊆ . . . ⊆ G1 ⊆ G0 = G,
(2) for 0 6 i 6 m, Hi is a normal subgroup of Gi, Gi/Hi is not abelian for

0 6 i < m, and Gm/Hm is abelian,
(3) for 0 6 i 6 m− 1, Gi+1/Hi = CGi/Hi

(Z2(Gi/Hi)),
(4) for 1 6 i 6 m,

⋂
x∈Gi−1/Hi−1

Hx
i = Hi−1.

Proof. Let us first show that the element defined above, satisfying the listed
conditions, is in fact a primitive central idempotent of KG. By condition 2, Gm/Hm

is an abelian group, let fm := e the primitive central idempotent in K(Gm/Hm),
having (Gm/Hm)e = {1}. Since K(Gm/Hm) ' (KGm)Ĥm, we have that fm :=
eĤm is a primitive central idempotent of (KGm)Ĥm and, thus, it is also a primitive
central idempotent of KGm. From (Gm/Hm)e = {1} we have that (Gm)fm

= Hm; so
(Gm/Hm−1)fm

= Hm/Hm−1. Define fm−1 :=
∑

g ∈Gm−1/Hm−1
fm

g
as the sum of all

Gm−1/Hm−1 conjugates of fm, then it is a central idempotent of K(Gm−1/Hm−1).
From condition 4,

(2.3)
⋂

g∈Gm−1/Hm−1

(
(Gm/Hm−1)fm

)g

=
⋂

g∈Gm−1/Hm−1

(Hm/Hm−1)
g = 1.

Conditions 3 and 4 provide the hypotheses for the Proposition 2.2, which yields that
fm−1 is primitive in K(Gm−1/Hm−1) ' (KGm−1)Ĥm−1 and thus, it is also primitive
central idempotent of KGm−1. We also have, by condition 2, that:

(2.4)
fm−1 = (

∑
g∈Gm−1

fg
m)Ĥm−1 =

∑
g∈Gm−1

(fmĤm−1)g =

∑
g∈Gm−1

(eĤmĤm−1)g =
∑

g∈Gm−1
(eĤm)g,

By induction, we obtain that f0 =
∑

g∈G(eĤm)g is a primitive central idempotent of
KG.

Now, let f0 := d be a primitive central idempotent of KG, where G is a finite
nilpotent group with nilpotency class c. Then H0 := Gd is a normal subgroup of
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G0 := G and, since f0Ĥ0 = f0, we have that f0 is a primitive central idempotent of
(KG)Ĥ0. From (KG0)Ĥ0 ' K(G0/H0), we get that f0, the image of f0 in K(G0/H0),
is a a primitive central idempotent of K(G0/H0). Clearly, (G0/H0)f0

= {1}.
If G0/H0 is an abelian group, we know f0 from Theorem 1.3 and d = f0 =∑

g∈G(f0Ĥ0)g, because f0Ĥ0 = f0 and f0 is central.
If G0/H0 is not an abelian group, let G1 be a subgroup of G0 so that G1/H0 =

CG0/H0(Z2(G0/H0)) 6= G0/H0. Then by Proposition 2.2,we get:

(2.5) f0 =
∑

g∈G0/H0

f1
g
,

where f1 is a primitive central idempotent of K(G1/H0),
⋂

x∈G0/H0
(H1/H0)x = {1},

H1 is the subgroup of G0 containing H0 so that H1/H0 = (G1/H0)f1
. So H1 is a

normal subgroup of G1. Notice that, from the definition of G1/H0, its nilpotency
class is at most c− 1. Since K(G1/H1) ' (K(G1/H0) ̂(H1/H0), we have that f1, the
image of f1 in K(G1/H1), is a primitive central idempotent of K(G1/H1), having
(G1/H1)f1

= {1}. If G1/H1 is an abelian group, then we know f1 from Theorem 1.3.
If G1/H1 is not an abelian group the result follows by induction on the nilpotency
class c of G. �
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