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Upper Basic and Congruent Submodules of QT AG-Modules
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ABSTRACT. The cardinality of the minimal generating set of a module M i.e g(M)
plays a very important role in the study of QT'AG-Modules. Fuchs [1] mentioned
the importance of upper and lower basic subgroups of primary groups. A need
was felt to generalize these concepts for modules. An upper basic submodule B
of a QT AG-Module M reveals much more information about the structure of M.
We find that each basic submodule of M is contained in an upper basic submodule
and contains a lower basic submodule.

Two submodules N, K C M are congruent if there exists an automorphism of
M which maps N onto K. In this case M/N = M/K and N = K, but these
conditions are not sufficient for the congruence. This motivates us to find the
sufficiency conditions in terms of Ulm invariants and the extensions of height pre-
serving isomorphism of submodules.

1. Introduction

A module M is a QT AG-Module if every submodule of a finitely generated homomor-
phic image of M is a direct sum of uniserial modules. All the rings considered here
are associative with unity and the modules are unital QT AG-Module. For a uniform
element = € M, height of z in M i.e Hy(x) or H(x) = Sup{d(U/xR)} where U runs
through all the uniserial modules containing x. Hy (M) denotes the submodule of M

generated by the elements of height at least k and H,(M) = (| Hx(M).
0

k=
A submodule N C M is h-pure if H,(N) = NNH, (M), k =0,1,...,00 and N is isotype
if for every ordinal ¢ ,H,(N) = N N H,(M) where H,(N) = (| H,(N).

p<o

A module M is h-divisible if Hq(M) = M and a submodule B of M is basic in M if
B is a direct sum of uniserial modules, B is h-pure in M and M/B is h-divisible.
For M , g(M) denotes the cardinality of the minimal generating subset of M,
fing(M) = Inf g(Hr(M)) and oth Ulm invariant of M ;| fys(o) is the cardinal
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number g(Soc(H,(M))/Soc(Hy+1(M))). M is o-projective if H,(Ext(M,C)) = 0 for
all QT AG-modules C.

M is totally projective if M/H,(M) is o-projective, for every ordinal o.

In other words H,(Exzt(M/H,(M),C)) = 0 for every module C and ordinal o.

A submodule N of M is said to be balanced if it is an isotype and H,(M/N) =
(Ho(M)+ N)/N for all ordinals « and it is almost balanced if H,(M)NN = H,(N)
and Hy(M/N) = (Ho(M) + N)/N for all ordinals o« < 3 where 3 is the length of M.

2. Upper and Lower Basic Submodules

To generalize some results of [1] and [2] we proceed as follows :

Definition 2.1. A basic submodule B" of a QT AG-module M is said to be an
upper basic subodule if g(M/B*) = min{g(M/B) | B is a basic submodule of M}.

Remark 2.2. If B and B’ are upper basic submodules of QT AG-modules M and M’
respectively then B + B’ is an upper basic submodule of M + M’. Furthermore if B
is an upper basic submodule of a high submodule of M then B is also an upper basic
submodule of M.
Definition 2.3. A basic submodule B’ is said to be a lower basic submodule of M if
g(M/B') = fing(M) = min{Hx(M)},
The existence of a lower basic submodule can be established by the following

result:

Theorem 2.4. Every basic submodule B of a QT AG-module M contains a lower
basic submodule.

Proof. If M is a QT AG-module such that fin g(M) is finite, then fin g(B) < fin g(M),
for every basic submodule B of M. Since B is a direct sum of uniserial modules
fing(B) =0,

= B is bounded,
= every basic submodule of M is bounded,
= every basic submodule is a lower basic submodule.

If fing(M) is not finite and the basic submodule B of M is not lower then
g(M/B) < fing(M) and for every integer k

M/B = (B+ Hi(M))/B = Hp(M)/(BNHx(M)) = Hy(M)/Hy(B)

N (Hk(M)
g Hy(B)
= g(Hy(B)) = g(Hg(M)),

)<ﬁng(M) < g(He(M)),
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then the cardinality of the minimal generating set of uniserial direct summands of
length > k in B is at least fin g(M) for all k.

Now B may be expressed as the direct sum of uniserial modules of unbounded
length i.e.
B = @C; where #(J) = fing(M)
jeJ
By Theorem 3. of [3] each C; contains a basic submodule B}. Now B’, the direct
sum of these B;’s is a basic submodule of B, therefore it is a basic submodule of M.

By construction
g(%) > g(g) = ];g(gj) > fing(M)

then B’ is a lower basic submodule of M.

The upper basic submodule of QT AG-module M tells much more about its struc-
ture than an ordinary basic submodule. For a basic submodule B of M, M/B is not
an invariant. We investigate as follows:

Theorem 2.5. Let M be a QT AG-module and M = M + U where U is a direct
sum of uniserial modules. For a basic submodule B° of M?, suppose B = B+ A and
B’ = B% + A’ be two basic submodules of M. Then there exists an automorphism f
of M which is identity on M° and maps B onto B’ if and only if

M/(M°+B) = M/(M°+ B')

Proof. Since U is a direct sum of uniserial modules both A and A’ are isomorphic to
basic submodules of U and A =2 U = A’

Let U = Z.IZR7 A= ZyiRa A= ZZzR

Since M/B is h-divisible, M/(M° + B) is h-divisible, we may write
M/(M° + B) = > Dj and M/(M° + B') = >~ D} where D;’s and Dj ’s are h-
divisible. < <

Since MY 4+ B and M° 4+ B’ are pure submodules of M we set,

I = {a| « is an ordinal of cardinality less then ¢g(U)},

J = {a | ais an ordinal of cardinality less then g(M/(M° + B))}.

If J is empty then M° + A = M = M°+4 A’ and the required automorphism of M
may be obtained by mapping A isomorphically onto A’. On comparing U = M /M°
and M/(M° + B), we may say that J C I. Since a bounded module cannot have a
proper basic submodule, the finiteness of I implies that M° + A = M° + A’, therefore
we assume that [ is infinite.

Let fo denote the identity map of M. Suppose that for every v € I and a < 7
there exists a submodule M, of M and a height preserving automorphism f, of M,
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such that M, C Mg and fg|M, = fo whenever a < 8 < v and fo(M,NB) = M,NB".
With these assumptions the following conditions would be satisfied for suitable subsets
I, c I and J, C J. Here M, etc. are not the at® Ulm factors of M.

M, = M0+ZziR, M,NB = BMZ%R, M,NB = BMZ%R,
I, I Ia

(Mo + B)/(M°+B) = Y Djand (My+B)/(M°+B') = ) Dj.
Jo Ja

For any limit ordinal v, M, = |J M, and f, denotes the automorphism of M,
a<y
with fy|M, = f, for all a < .

Again I, = |J I, and J, = {J Ja.
a<y a<y
If v — 1 exists then put 8 = v — 1 and consider the extensions K and L of Mg
such that g(K/Mpg) and g(L/Mpg) are finite and ¢ : K — L is a height preserving
isomorphism such that (K N B) = LN B’.

We have to extend 1 to a height preserving automorphism f, of a submodule M,
containing K and L such that the above conditions hold for o < v and f,(M,NB) =
M, N B'. Moreover if @ +1 < 7 then o € I41. Consider an element z ¢ K. Now we
may extend v to a height preserving isomorphism %’ from K’ = K + xR into M such
that ¢/'(K' N B) =y (K')N B'.

We may consider an element « ¢ K for which 3 y € K such that d(%) =1
Y

and z is a proper element with respect to K. To verify this suppose H(z) = n. If
H(y+k) > n+1 for some k € KNH,, (M), we assume that H(y) > n+1. If H(y) = n+1
and z 4+ k € B for some k € K we may choose u € H,, (M) such that 1(y) = v where

R
d(%) = 1. If u+ (k) € B’ we may set ¢'(x) = u, otherwise consider u’,z’ such

that d(w) — 1 and d(w) — 1. Now o/ = ¢(2) € Hi(B'). Let

u x

u+ (k) = b + a where b’ € B’ and e(a’) = 1. Since B’ is a basic submodule of
M, we may express a’ = ¢/ + w where ¢’ € Soc(B’) and w € Soc(Hp4+1(M)). Now
u—w—+ (k) € B'. We extend 1) by mapping z onto v — w.

If x+k ¢ B for any k € K we choose u € H,(M) such that ¢¥(y) = v where

d(g) = 1. futy(k) ¢ B’ forall k € K we put ¢’ () = u, othewrwise u+¢(k) € B’

(x+ k)R
'R
) = 1. Hence 2’ € H1(B).

for some k € K. Consider 2’ such that d(

where d (%

We may express =’ as b+ a where b € B and e(a) = 1. Now a ¢ B + K otherwise
z+k € B. Now we show that Soc(M) is not contained in B+ L. If K = Mg = L then
by induction hypothesis M/(B + Mg) = M/(B' + Mg). Since B + Mz and B’ + Mg

) = 1. Now ¢(«/) = v’ € Hy(B'),
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are h-pure submodules of M, it follows that
(Soc(M) + B+ Mg)/(B + Mg) = (Soc(M)+ B'+ Mg)/(B' + Mg)
and the isomorphism ¢ : K — L induces an isomorphism
(B+K)/(B+ Mg) — (B'+ L)/(B' + Mjg).
Thus
(Soc(M) 4+ B+ Mpg)/(B + Mg + Soc(B + K))
& (Soc(M) + B+ Mpg)/(B" + Mg + Soc(B' + L)).
Since the left hand side is nonzero
(Soc(M) + B+ Mg) # (Soc(B'+ L)+ B' + Mp),

= 3z € Soc(M) such that z ¢ B’ + L. We may select by € Soc(B’) so that z — by €
Hp11(M). We now define ¢'(z) =u+2z—b1 € B+ L. Thus u+ z— by + (k) & B’
for every k € K and v’ is the extension of .

If Hy) >n+1and 2 + k € B for some k € K. We select w € Hy41(M) such
R
that w' = ¢ (y) where d(%) = 1. This implies that 3z € Soc(M) which is proper
w
with respect to L and H(z) = n. Put u = w+ z. If u+ ¢(k) € B’ we may define
Y'(x) =u. If u+ (k) € B’ then ¢'(x) is defined as in the previous case.

On the other hand if x + k ¢€ B for all k € K, then we define u = w + z as in the
preceeding case. If u + (k) € B’ for any k € K, we put ¢'(z) = u. If u+ (k) € B

k

for some k, (z’) € Hy(B’) where d(u) = 1. Therefore 2’ € Hy(B). Now
x

x+k =0b+cwhere b € B, e(c) = 1. Since ¢ ¢ K + B, 3 d € Soc(M) such that
d¢ L+B'. Weput ¢'(z) = u+d—"0b', where b’ € Soc(B’) and d—b" € Soc(H,+1(M)).

In all the above four cases v’ is an extension of 1) to K + xR which is a height
preserving isomorphism from K + xR into M such that ¢'((K + 2R) N B) = ¢/ (K +
xR)N B’

Since B is a basic submodule, g(B) is not uncountable. Moreover I(,)’s and J(4)’s
are also finite or countable.

We may consider the ascending sequences

Mg = KgCK;C---CK,
CL,

N

Mg = LyCL; C--- cC...

K; L; . . .
such that g(—) and g(—) are finite for all i, UK,, = UL, and there exists
M Mg

a sequence v, : K, — L, of height preserving isomorphisms such that ,, is the
extension of 4,1 and ¢,(K, N B) = L, N B'. If we put M, = UK,, = UL,,
then we may choose the modules K,, and L, so that the previously mentioned five
conditions hold for o = . Here I, and J, are the countable extensions of Iz and Jg
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respectively. Now 3 € J,. Let f, be the maximum extension of ¢, i.e. f, = sup{¢y},
fy(M, N B) = M, N B’ and we obtain an automorphism of M that maps B onto B'.

Corollary 2.6. Let M be a QT AG-module such that M = M°+U where U is a direct
sum of uniserial modules. Suppose B is a basic submodule of M such that BN MY is
a basic submodule of M°. Then M = M° + K such that B = (BN M%) + (BN K).

Proof. Let B' = BN M°. Now B/BY is isomorphic to a submodule of U therefore
B/B° is also a direct sum of uniserial modules. Since B° is h-pure B = B? + A
for some submodule A of B. Again B/B° C M/B° =~ (M°/B%) + U, ie. B/B°
is isomorphic to a basic submodule U® of U such that M/(BY + U®) = M/B. By
Theorem 2.5 some automorphism f of M maps B? + U° onto B = BY + A and f is
idnetity on M°. If K = f(U) then we have M = M° + K. If N = f(U°) we have
B =BY+ N. Since N C K the result follows.

Theorem 2.7. If M is a QT AG-module and B a basic submodule of M, then
M =M+ K and B = (BN M° + (BN K) where BN M° is an upper basic
submodule of MY and K is a direct sum of uniserial modules.

Proof. Let g(B/B") = m, where B* is an upper basic submodule of M and B is an
arbitrary basic submodule of M. Now M = M°+U where U is a direct sum of uniserial
modules, g(M?) < max(Rg, m) and BN M? is a basic submodule of M°. By Corollary
2.6 there exists a decomposition M = M° + K such that B = (BN M%) + (BN K).
If g(MY) = m, then each basic submodule of M, (hence B N M?) is an upper basic
submodule because g(M/B*) = m and K is a direct sum of uniserial modules. If m is
finite g(MY) is countable. Suppose g(M°/(B N M°)) =n > m. Then M° = N° + L,
where BN M°? = (BN N°% + (BN L), Lis a direct sum of uniserial modules and
g(N°/(BNNY)) = m. We may express M = N°+ (L + K). Then BN N? is an upper
basic submodule of N°. Since B = (BN N°) + (BN (L + K)), the result follows.

From the above discussion and results we immediately conclude that each basic
submodule of a QT AG-module M is contained in an upper basic submodule of M.

3. Congruence submodules of totally projective QT AG-Modules

Two submodules N, K C M are congruent modulo M if there exists an automorphism
of M which maps N onto K i.e N =2 K and M/N = M/K. These conditions are
not sufficient for IV, K being congruent modulo M. To find sufficiency conditions we
proceed as follows:

Theorem 3.1. Let N and K be almost balanced submodules of the totally projective
QT AG-module M of limit length. If N and K have same Ulm invariants and M /N =
M/K then N and K are congruent modulo M.
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Proof. Consider the isomorphism f : M/N — M/K and direct decompositions
Soc(Hy(N)) = Soc(Hpt+1(N)) @ Sa, Soc(Hy(K)) = Soc(Hat1(K)) @ T, for every
ordinal o < (3, where [ is the length of M. Since N and K have same Ulm invariants
for all @ < (3, there exists an isomorphism v, : S, — T,. As N and K are nice
submodules [4] of M we consider triples (¢, C, D) such that C, D are nice submodules
of M and ¢ : C — D is an isomorphism with the following conditions:

(a) ¢ preserves heights in M,

(b) ¢(z)+ K = f(zr+N) foral z eC.

(¢c) fzy € Sy and = € C then Hpy(z + xx) > A if and only if Hps(x(zy) +

o(z)) > A.

Let F denote the class of all such triples satisfying (a) (b) and (¢). Now we shall
prove that if (¢, C, D) € F and if © € M, then there is a triple (¢',C’, D") € F where
C'=C+ xR and ¢'|C = ¢. Since C is nice in M and z is the element of maximum
height in the coset « + C' (z is proper with respect to C') we may consider z € C' such
that d(zR/zR) = 1. Let Hp(x) = a. We have to find y € M such that,

() Huy) =,

(ii) ¢(z) =y where d(yR/y'R) =1,

(iii) y is proper with respect to D and

(iv) flx+N)=y+ K.

Then we obtain an isomorphism ¢’ : C' = (C + zR) — D' = (D + yR) which is
an extension of ¢ and satisfies (a) and (b). Again C’, D’ are finite extensions of nice
submodules hence they are nice submodules. If we can find such y, we have to verify
(v), i.e. Hpy(Sq + 2+ ¢) > aif and only if Hy(¢¥(sq) +y + ¢(c)) > a for all ¢ € C,
Sa € Sa.

Case (i). When Hp(z) > a+ 1 and Hyyn(z + N) > a. Since Hop 1 (M/K) =
(Hor1(M) 4+ K)/K and Hyy(f(x + N)) = Hyyn(z + N) > a, we may select
w € Hyy1(M) such that u+ K = f(z+ N) and f(x+N) = ¢(x)+ K. Consider v’ such
that d(uR/u'R) = 1, then by condition (b) ' — ¢(z) € KNHyq2(M) = Hyy2(K) and

(u+v)R) _1
(W +v )R}
Again replacing v’ by u' 4+ w’ we have u’ = ¢(z). Since Hpyny(x + N) > o and
Hoi1(M/N) = (Ho41(M)+N)/N we have Hp(z+21) > a+1 for some x; € N. Then

therefore we have v € Hyy1(K) such that ¢(z) = v’ + w’ where d(

R
Hy(z1) = Hy(x) = o and Hpg(2)) > o+ 1 where d(i’lR) =1land Hp(2) > a+1.
1
Now Hyio(M)NN = Hyyo(N) implies that ) = xo for some x5 € H,y1(N),
= 1 — x5 € Soc(Hy(N)) where d(xé—R) =1
1 2 « IEQR )

= x1 — 2 € So ® Soc(Ha1(N)) = Soc(Hy(N)),
= Jw € Hyq1(M) such that z —w € S,.
Put y = u + ¥4 (x — w). Now y satisfies conditions (i),(ii) and (iv). Again x — w
is proper with respect to C as w € Hy41(M). But the condition (c) implies that
o (x —w) is proper with respect to D = ¢(C'), therefore y is proper with respect to D
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because u € Hyq1(M). Now Hps(sq+x+c¢) > aif and only if Hys(sq+z—w+c¢) > «
and Hy(Vo(z —w) +y + ¢(c)) > « if and only if Hys (o (sa +x —w) + ¢(c)) > a,

= condition (iv) holds because ¢ satisfies (c).

Case (ii). When Hy/(2) = a+1 or Hyyn(xz + N) = a we have to show that if y
satisfies (i),(ii) and (iv) and s, € S, and ¢ € C such that atleast one of the inequalities
in (v) holds then = + ¢ has height o, Hpy(2') > a4 1, Hyyy (2 + ¢+ N) > o where
(r+ )R
a(
x
that Hys(c) > « and Hp(2') > a+11i.e. z+ C satisfies the first two conditions. Now,

Since Ho(M/K) = (Ho(M) 4+ K)/K we may select w € H, (M) such that w +
K = f(x + N). Like case (i) there exists v € H,(K) such that w’ = ¢(z), here

= 1. The way ¢ and y are defined either of the inequalities in (v) implies

d(%) = 1. We select y = w + v so that (ii) and (iv) are satisfied. Since
R
)~ a0t = ). (4(25) = ) ) =

N)) = Hy/i(y+ K). Either of the conditions defining this case implies, Hy/(y) = a.
If y fails to be proper with respect to D then we may go to case (i). Because if
Hy(y + ¢(c)) > « for some ¢ € C we may replace x by x + ¢ and apply case (i) to
x + c. It can be deduced now that y satisfies (iii). Again if either of the inequalities
in (v) holds for some s, € S, and ¢ € C, then we replace x by x + ¢ and return to
case (i). This makes us assume that neither of these inequalities hold for any s, € S,
and ¢ € C. This implies y satisfies (v).

Let A be the subfamily of F consisting of triples (¢, C, D) such that C' and D are
equal and nice. Now A is partially ordered by the natural order. By Zorn’s lemma we
may select the maximal member (¢, C,C) € A. We have to show that C' = M, then
¢ would be desired automorphism. Applying the above arguments we may obtain a
sequence (¢;, Cy, D;) in F which are extensions of (¢, C,C) such that ¢;11|C; = ¢,
g(C;|C), g(D;/C) are finite and for every i,

A= UC,L: UDZ: UAZ where A; € B
i=1 i=1 i=1
where B is a family of nice submodules of M such that {0} € B, B is closed under the
union of chains and for every My € B and My C M; such that My /M, is countably
generated then 3 M3 € B with countably generated Ms/Ms.

If A € B then (¢, A, A) is a member of A (¢ being the extension of ¢;’s) contra-
dicting the maximality of (¢, C,C) as ©/A = ¢.

This implies that ¢ is the required automorphism.

Remark If N, K are almost balanced submodules of totally projective modules M
and M’ with M/N = M’/K, we may obtain an isomorphism ¢ : M — M’ with
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¢(N) = K. Thus by taking trivial quotients, it is evident that totally projective mod-
ules are determined upto isomorphism by their Ulm invariants.
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