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Upper Basic and Congruent Submodules of QTAG-Modules

A. Mehdi1 and M.Y. Abbasi2

Abstract. The cardinality of the minimal generating set of a module M i.e g(M)
plays a very important role in the study of QTAG-Modules. Fuchs [1] mentioned

the importance of upper and lower basic subgroups of primary groups. A need
was felt to generalize these concepts for modules. An upper basic submodule B

of a QTAG-Module M reveals much more information about the structure of M .

We find that each basic submodule of M is contained in an upper basic submodule
and contains a lower basic submodule.

Two submodules N, K ⊂ M are congruent if there exists an automorphism of

M which maps N onto K. In this case M/N ∼= M/K and N ∼= K, but these
conditions are not sufficient for the congruence. This motivates us to find the

sufficiency conditions in terms of Ulm invariants and the extensions of height pre-

serving isomorphism of submodules.

1. Introduction

A module M is a QTAG-Module if every submodule of a finitely generated homomor-
phic image of M is a direct sum of uniserial modules. All the rings considered here
are associative with unity and the modules are unital QTAG-Module. For a uniform
element x ∈M , height of x in M i.e HM (x) or H(x) = Sup{d(U/xR)} where U runs
through all the uniserial modules containing x. Hk(M) denotes the submodule of M

generated by the elements of height at least k and Hω(M) =
∞⋂

k=0

Hk(M).

A submodule N ⊂M is h-pure if Hk(N) = N ∩Hk(M), k = 0,1,...,∞ and N is isotype
if for every ordinal σ ,Hσ(N) = N ∩Hσ(M) where Hσ(N) =

⋂
ρ<σ

Hρ(N).

A module M is h-divisible if H1(M) = M and a submodule B of M is basic in M if
B is a direct sum of uniserial modules, B is h-pure in M and M/B is h-divisible.
For M , g(M) denotes the cardinality of the minimal generating subset of M ,
fing(M) = Inf g(Hk(M)) and σth Ulm invariant of M , fM (σ) is the cardinal
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number g(Soc(Hσ(M))/Soc(Hσ+1(M))). M is σ-projective if Hσ(Ext(M,C)) = 0 for
all QTAG-modules C.
M is totally projective if M/Hσ(M) is σ-projective, for every ordinal σ.
In other words Hσ(Ext(M/Hσ(M), C)) = 0 for every module C and ordinal σ.

A submodule N of M is said to be balanced if it is an isotype and Hα(M/N) =
(Hα(M) +N)/N for all ordinals α and it is almost balanced if Hα(M)∩N = Hα(N)
and Hα(M/N) = (Hα(M) +N)/N for all ordinals α < β where β is the length of M .

2. Upper and Lower Basic Submodules
To generalize some results of [1] and [2] we proceed as follows :

Definition 2.1. A basic submodule Bu of a QTAG-module M is said to be an

upper basic subodule if g(M/Bu) = min{g(M/B) | B is a basic submodule of M}.

Remark 2.2. If B and B′ are upper basic submodules of QTAG-modules M and M ′

respectively then B + B′ is an upper basic submodule of M +M ′. Furthermore if B
is an upper basic submodule of a high submodule of M then B is also an upper basic
submodule of M .

Definition 2.3. A basic submodule Bl is said to be a lower basic submodule of M if

g(M/Bl) = fin g(M) = min{Hk(M)}.
The existence of a lower basic submodule can be established by the following

result:

Theorem 2.4. Every basic submodule B of a QTAG-module M contains a lower
basic submodule.

Proof. If M is a QTAG-module such that fin g(M) is finite, then fin g(B) 6 fin g(M),
for every basic submodule B of M . Since B is a direct sum of uniserial modules
fin g(B) = 0,

⇒ B is bounded,

⇒ every basic submodule of M is bounded,

⇒ every basic submodule is a lower basic submodule.

If fin g(M) is not finite and the basic submodule B of M is not lower then
g(M/B) < fin g(M) and for every integer k

M/B = (B +Hk(M))/B ∼= Hk(M)/(B ∩Hk(M)) = Hk(M)/Hk(B)

⇒ g
(Hk(M)
Hk(B)

)
< fin g(M) 6 g(Hk(M)),

⇒ g(Hk(B)) = g(Hk(M)),
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then the cardinality of the minimal generating set of uniserial direct summands of
length > k in B is at least fin g(M) for all k.

Now B may be expressed as the direct sum of uniserial modules of unbounded
length i.e.

B =
⊕
j∈J

Cj where #(J) = fin g(M)

By Theorem 3. of [3] each Cj contains a basic submodule B′j . Now B′, the direct
sum of these Bj ’s is a basic submodule of B, therefore it is a basic submodule of M .
By construction

g
(M
B′

)
> g

( B
B′

)
=

∑
j∈J

g
(Cj

Bj

)
> fin g(M)

then B′ is a lower basic submodule of M .

The upper basic submodule of QTAG-module M tells much more about its struc-
ture than an ordinary basic submodule. For a basic submodule B of M , M/B is not
an invariant. We investigate as follows:

Theorem 2.5. Let M be a QTAG-module and M = M0 + U where U is a direct
sum of uniserial modules. For a basic submodule B0 of M0, suppose B = B0 +A and
B′ = B0 + A′ be two basic submodules of M . Then there exists an automorphism f
of M which is identity on M0 and maps B onto B′ if and only if

M/(M0 +B) = M/(M0 +B′)

Proof. Since U is a direct sum of uniserial modules both A and A′ are isomorphic to
basic submodules of U and A ∼= U ∼= A′.

Let U =
∑
xiR, A =

∑
yiR, A′ =

∑
ziR.

Since M/B is h-divisible, M/(M0 + B) is h-divisible, we may write
M/(M0 + B) =

∑
j∈J

Dj and M/(M0 + B′) =
∑
j∈J

D′j where Dj ’s and D′j ’s are h-

divisible.

Since M0 +B and M0 +B′ are pure submodules of M we set,

I = {α | α is an ordinal of cardinality less then g(U)},

J = {α | α is an ordinal of cardinality less then g(M/(M0 +B))}.
If J is empty then M0 +A = M = M0 +A′ and the required automorphism of M

may be obtained by mapping A isomorphically onto A′. On comparing U ∼= M/M0

and M/(M0 + B), we may say that J ⊆ I. Since a bounded module cannot have a
proper basic submodule, the finiteness of I implies that M0 +A = M0 +A′, therefore
we assume that I is infinite.

Let f0 denote the identity map of M0. Suppose that for every γ ∈ I and α < γ
there exists a submodule Mα of M and a height preserving automorphism fα of Mα
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such that Mα ⊂Mβ and fβ |Mα = fα whenever α < β < γ and fα(Mα∩B) = Mα∩B′.
With these assumptions the following conditions would be satisfied for suitable subsets
Iα ⊂ I and Jα ⊂ J . Here Mα etc. are not the αth Ulm factors of M .

Mα = M0 +
∑
Iα

xiR , Mα ∩B = B0 +
∑
Iα

yiR , Mα ∩B′ = B0 +
∑
Iα

ziR,

(Mα +B)/(M0 +B) =
∑
Jα

Dj and (Mα +B′)/(M0 +B′) =
∑
Jα

D′j .

For any limit ordinal γ, Mγ =
⋃

α<γ
Mα and fγ denotes the automorphism of Mγ

with fγ |Mα = fα for all α < γ.

Again Iγ =
⋃

α<γ
Iα and Jγ =

⋃
α<γ

Jα.

If γ − 1 exists then put β = γ − 1 and consider the extensions K and L of Mβ

such that g(K/Mβ) and g(L/Mβ) are finite and ψ : K → L is a height preserving
isomorphism such that ψ(K ∩B) = L ∩B′.

We have to extend ψ to a height preserving automorphism fγ of a submodule Mγ

containing K and L such that the above conditions hold for α 6 γ and fγ(Mγ ∩B) =
Mγ ∩B′. Moreover if α+ 1 < γ then α ∈ Iα+1. Consider an element x 6∈ K. Now we
may extend ψ to a height preserving isomorphism ψ′ from K ′ = K + xR into M such
that ψ′(K ′ ∩B) = ψ′(K ′) ∩B′.

We may consider an element x 6∈ K for which ∃ y ∈ K such that d
(xR
yR

)
= 1

and x is a proper element with respect to K. To verify this suppose H(x) = n. If
H(y+k) > n+1 for some k ∈ K∩Hn(M), we assume thatH(y) > n+1. IfH(y) = n+1
and x+ k ∈ B for some k ∈ K we may choose u ∈ Hn(M) such that ψ(y) = v where

d
(uR
vR

)
= 1. If u + ψ(k) ∈ B′ we may set ψ′(x) = u, otherwise consider u′, x′ such

that d
( (u+ ψ(k))R

u′R

)
= 1 and d

( (x+ k)R
x′R

)
= 1. Now u′ = ψ(x′) ∈ H1(B′). Let

u + ψ(k) = b′ + a′ where b′ ∈ B′ and e(a′) = 1. Since B′ is a basic submodule of
M , we may express a′ = c′ + w where c′ ∈ Soc(B′) and w ∈ Soc(Hn+1(M)). Now
u− w + ψ(k) ∈ B′. We extend ψ by mapping x onto u− w.

If x + k 6∈ B for any k ∈ K we choose u ∈ Hn(M) such that ψ(y) = v where

d
(uR
vR

)
= 1. If u+ψ(k) 6∈ B′ for all k ∈ K we put ψ′(x) = u, othewrwise u+ψ(k) ∈ B′

for some k ∈ K. Consider x′ such that d
( (x+ k)R

x′R

)
= 1. Now ψ(x′) = u′ ∈ H1(B′),

where d
( (u+ ψ(k))R

u′R

)
= 1. Hence x′ ∈ H1(B).

We may express x′ as b+ a where b ∈ B and e(a) = 1. Now a 6∈ B +K otherwise
x+k ∈ B. Now we show that Soc(M) is not contained in B′+L. If K = Mβ = L then
by induction hypothesis M/(B +Mβ) ∼= M/(B′ +Mβ). Since B +Mβ and B′ +Mβ
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are h-pure submodules of M , it follows that

(Soc(M) +B +Mβ)/(B +Mβ) ∼= (Soc(M) +B′ +Mβ)/(B′ +Mβ)

and the isomorphism ψ : K → L induces an isomorphism

(B +K)/(B +Mβ) → (B′ + L)/(B′ +Mβ).

Thus

(Soc(M) +B +Mβ)/(B +Mβ + Soc(B +K))

∼= (Soc(M) +B′ +Mβ)/(B′ +Mβ + Soc(B′ + L)).

Since the left hand side is nonzero

(Soc(M) +B′ +Mβ) 6= (Soc(B′ + L) +B′ +Mβ),

⇒ ∃ z ∈ Soc(M) such that z 6∈ B′ + L. We may select b1 ∈ Soc(B′) so that z − b1 ∈
Hn+1(M). We now define ψ′(x) = u+ z − b1 6∈ B′ + L. Thus u+ z − b1 + ψ(k) 6∈ B′
for every k ∈ K and ψ′ is the extension of ψ.

If H(y) > n + 1 and x + k ∈ B for some k ∈ K. We select w ∈ Hn+1(M) such

that w′ = ψ(y) where d
( wR
w′R

)
= 1. This implies that ∃ z ∈ Soc(M) which is proper

with respect to L and H(z) = n. Put u = w + z. If u + ψ(k) ∈ B′ we may define
ψ′(x) = u. If u+ ψ(k) 6∈ B′ then ψ′(x) is defined as in the previous case.

On the other hand if x+ k 6∈ B for all k ∈ K, then we define u = w + z as in the
preceeding case. If u + ψ(k) 6∈ B′ for any k ∈ K, we put ψ′(x) = u. If u + ψ(k) ∈ B

for some k, ψ(x′) ∈ H1(B′) where d
( (x+ k)R

x′R

)
= 1. Therefore x′ ∈ H1(B). Now

x + k = b + c where b ∈ B, e(c) = 1. Since c 6∈ K + B, ∃ d ∈ Soc(M) such that
d 6∈ L+B′. We put ψ′(x) = u+d−b′, where b′ ∈ Soc(B′) and d−b′ ∈ Soc(Hn+1(M)).

In all the above four cases ψ′ is an extension of ψ to K + xR which is a height
preserving isomorphism from K + xR into M such that ψ′((K + xR) ∩B) = ψ′(K +
xR) ∩B′.

Since B is a basic submodule, g(B) is not uncountable. Moreover I(α)’s and J(α)’s
are also finite or countable.

We may consider the ascending sequences

Mβ = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ · · ·

Mβ = L0 ⊆ L1 ⊆ · · · ⊆ Ln ⊆ · · ·

such that g
( Ki

Mβ

)
and g

( Li

Mβ

)
are finite for all i, ∪Kn = ∪Ln and there exists

a sequence ψn : Kn → Ln of height preserving isomorphisms such that ψn is the
extension of ψn−1 and ψn(Kn ∩ B) = Ln ∩ B′. If we put Mγ = UKn = ULn,
then we may choose the modules Kn and Ln so that the previously mentioned five
conditions hold for α = γ. Here Iγ and Jγ are the countable extensions of Iβ and Jβ



UPPER BASIC AND CONGRUENT SUBMODULES OF QTAG-MODULES 101

respectively. Now β ∈ Jγ . Let fγ be the maximum extension of ψn i.e. fγ = sup{ψn},
fγ(Mγ ∩B) = Mγ ∩B′ and we obtain an automorphism of M that maps B onto B′.

Corollary 2.6. Let M be a QTAG-module such that M = M0+U where U is a direct
sum of uniserial modules. Suppose B is a basic submodule of M such that B ∩M0 is
a basic submodule of M0. Then M = M0 +K such that B = (B ∩M0) + (B ∩K).

Proof. Let B0 = B ∩M0. Now B/B0 is isomorphic to a submodule of U therefore
B/B0 is also a direct sum of uniserial modules. Since B0 is h-pure B = B0 + A
for some submodule A of B. Again B/B0 ⊆ M/B0 ∼= (M0/B0) + U , i.e. B/B0

is isomorphic to a basic submodule U0 of U such that M/(B0 + U0) ∼= M/B. By
Theorem 2.5 some automorphism f of M maps B0 + U0 onto B = B0 + A and f is
idnetity on M0. If K = f(U) then we have M = M0 + K. If N = f(U0) we have
B = B0 +N . Since N ⊆ K the result follows.

Theorem 2.7. If M is a QTAG-module and B a basic submodule of M , then
M = M0 + K and B = (B ∩ M0) + (B ∩ K) where B ∩ M0 is an upper basic
submodule of M0 and K is a direct sum of uniserial modules.

Proof. Let g(B/Bu) = m, where Bu is an upper basic submodule of M and B is an
arbitrary basic submodule ofM . NowM = M0+U where U is a direct sum of uniserial
modules, g(M0) 6 max(ℵ0,m) and B∩M0 is a basic submodule of M0. By Corollary
2.6 there exists a decomposition M = M0 +K such that B = (B ∩M0) + (B ∩K).
If g(M0) = m, then each basic submodule of M0, (hence B ∩M0) is an upper basic
submodule because g(M/Bu) = m and K is a direct sum of uniserial modules. If m is
finite g(M0) is countable. Suppose g(M0/(B ∩M0)) = n > m. Then M0 = N0 + L,
where B ∩M0 = (B ∩ N0) + (B ∩ L), L is a direct sum of uniserial modules and
g(N0/(B ∩N0)) = m. We may express M = N0 +(L+K). Then B ∩N0 is an upper
basic submodule of N0. Since B = (B ∩N0) + (B ∩ (L+K)), the result follows.

From the above discussion and results we immediately conclude that each basic
submodule of a QTAG-module M is contained in an upper basic submodule of M .

3. Congruence submodules of totally projective QTAG-Modules

Two submodules N,K ⊂M are congruent modulo M if there exists an automorphism
of M which maps N onto K i.e N ∼= K and M/N ∼= M/K. These conditions are
not sufficient for N,K being congruent modulo M . To find sufficiency conditions we
proceed as follows:

Theorem 3.1. Let N and K be almost balanced submodules of the totally projective
QTAG–module M of limit length. If N and K have same Ulm invariants and M/N ∼=
M/K then N and K are congruent modulo M .
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Proof. Consider the isomorphism f : M/N → M/K and direct decompositions
Soc(Hα(N)) = Soc(Hα+1(N)) ⊕ Sα, Soc(Hα(K)) = Soc(Hα+1(K)) ⊕ Tα for every
ordinal α < β, where β is the length of M . Since N and K have same Ulm invariants
for all α < β, there exists an isomorphism ψα : Sα → Tα. As N and K are nice
submodules [4] of M we consider triples (φ,C,D) such that C, D are nice submodules
of M and φ : C → D is an isomorphism with the following conditions:

(a) φ preserves heights in M ,
(b) φ(x) +K = f(x+N) for all x ∈ C.
(c) If xλ ∈ Sλ and x ∈ C then HM (x + xλ) > λ if and only if HM (ψλ(xλ) +

φ(x)) > λ.
Let F denote the class of all such triples satisfying (a) (b) and (c). Now we shall
prove that if (φ,C,D) ∈ F and if x ∈M , then there is a triple (φ′, C ′, D′) ∈ F where
C ′ = C + xR and φ′|C = φ. Since C is nice in M and x is the element of maximum
height in the coset x+C (x is proper with respect to C) we may consider z ∈ C such
that d(xR/zR) = 1. Let HM (x) = α. We have to find y ∈M such that,

(i) HM (y) = α,
(ii) φ(z) = y′ where d(yR/y′R) = 1,
(iii) y is proper with respect to D and
(iv) f(x+N) = y +K.
Then we obtain an isomorphism φ′ : C ′ = (C + xR) → D′ = (D + yR) which is

an extension of φ and satisfies (a) and (b). Again C ′, D′ are finite extensions of nice
submodules hence they are nice submodules. If we can find such y, we have to verify
(v), i.e. HM (sα + x + c) > α if and only if HM (ψ(sα) + y + φ(c)) > α for all c ∈ C,
sα ∈ Sα.

Case (i). When HM (z) > α + 1 and HM/N (x + N) > α. Since Hα+1(M/K) =
(Hα+1(M) + K)/K and HM/K(f(x + N)) = HM/N (x + N) > α, we may select
u ∈ Hα+1(M) such that u+K = f(x+N) and f(x+N) = φ(x)+K. Consider u′ such
that d(uR/u′R) = 1, then by condition (b) u′−φ(z) ∈ K∩Hα+2(M) = Hα+2(K) and

therefore we have v ∈ Hα+1(K) such that φ(z) = u′ + w′ where d
( (u+ v)R

(u′ + v′)R

)
= 1.

Again replacing u′ by u′ + w′ we have u′ = φ(z). Since HM/N (x + N) > α and
Hα+1(M/N) = (Hα+1(M)+N)/N we haveHM (x+x1) > α+1 for some x1 ∈ N . Then

HM (x1) = HM (x) = α and HM (x′1) > α+ 1 where d
(x1R

x′1R

)
= 1 and HM (z) > α+ 1.

Now Hα+2(M) ∩N = Hα+2(N) implies that x′1 = x2 for some x2 ∈ Hα+1(N),

⇒ x1 − x′2 ∈ Soc(Hα(N)) where d
(x′2R
x2R

)
= 1,

⇒ x1 − x′2 ∈ Sα ⊕ Soc(Hα+1(N)) = Soc(Hα(N)),
⇒ ∃ w ∈ Hα+1(M) such that x− w ∈ Sα.

Put y = u+ ψα(x− w). Now y satisfies conditions (i),(ii) and (iv). Again x− w
is proper with respect to C as w ∈ Hα+1(M). But the condition (c) implies that
ψα(x−w) is proper with respect to D = φ(C), therefore y is proper with respect to D
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because u ∈ Hα+1(M). Now HM (sα +x+c) > α if and only if HM (sα +x−w+c) > α
and HM (ψα(x− w) + y + φ(c)) > α if and only if HM (ψα(sα + x− w) + φ(c)) > α,

⇒ condition (iv) holds because φ satisfies (c).

Case (ii). When HM (z) = α + 1 or HM/N (x + N) = α we have to show that if y
satisfies (i),(ii) and (iv) and sα ∈ Sα and c ∈ C such that atleast one of the inequalities
in (v) holds then x + c has height α, HM (x′) > α + 1, HM/N (x + c +N) > α where

d
( (x+ c)R

x′R

)
= 1. The way φ and y are defined either of the inequalities in (v) implies

that HM (c) > α and HM (x′) > α+1 i.e. x+C satisfies the first two conditions. Now,

α = HM/N (x+c+N) = HM/N (f(x+N)) = HM/N (y+φ(c)+K) > HM (ψα(sα)+y+φ(c)).

Since Hα(M/K) = (Hα(M) + K)/K we may select w ∈ Hα(M) such that w +
K = f(x + N). Like case (i) there exists v ∈ Hα(K) such that w′ = φ(z), here

d
( (w + v)R

w′R

)
= 1. We select y = w + v so that (ii) and (iv) are satisfied. Since

HM (z) = HM (φ(z)) = HM (y′),
(
d
( yR
y′R

)
= 1

)
and HM/N (x + N) = HM/K(f(x +

N)) = HM/K(y+K). Either of the conditions defining this case implies, HM (y) = α.
If y fails to be proper with respect to D then we may go to case (i). Because if
HM (y + φ(c)) > α for some c ∈ C we may replace x by x + c and apply case (i) to
x + c. It can be deduced now that y satisfies (iii). Again if either of the inequalities
in (v) holds for some sα ∈ Sα and c ∈ C, then we replace x by x + c and return to
case (i). This makes us assume that neither of these inequalities hold for any sα ∈ Sα

and c ∈ C. This implies y satisfies (v).

Let A be the subfamily of F consisting of triples (φ,C,D) such that C and D are
equal and nice. Now A is partially ordered by the natural order. By Zorn’s lemma we
may select the maximal member (φ,C,C) ∈ A. We have to show that C = M , then
φ would be desired automorphism. Applying the above arguments we may obtain a
sequence (φi, Ci, Di) in F which are extensions of (φ,C,C) such that φi+1|Ci = φi,
g(Ci|C), g(Di/C) are finite and for every i,

A =
∞⋃

i=1

Ci =
∞⋃

i=1

Di =
∞⋃

i=1

Ai where Ai ∈ B

where B is a family of nice submodules of M such that {0} ∈ B, B is closed under the
union of chains and for every M1 ∈ B and M2 ⊂ M1 such that M1/M2 is countably
generated then ∃ M3 ∈ B with countably generated M3/M2.

If A ∈ B then (ψ,A,A) is a member of A (ψ being the extension of φi’s) contra-
dicting the maximality of (φ,C,C) as ψ/A = φ.

This implies that φ is the required automorphism.

Remark If N, K are almost balanced submodules of totally projective modules M
and M ′ with M/N ∼= M ′/K, we may obtain an isomorphism φ : M → M ′ with
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φ(N) = K. Thus by taking trivial quotients, it is evident that totally projective mod-
ules are determined upto isomorphism by their Ulm invariants.
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