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c© Universidad Técnica Federico Santa Maŕıa 2009

Spaces with compact-countable weak-bases

Zhaowen Li1,a and Qingguo Li1

Abstract. In this paper, we establish the relationships between spaces with a
compact-countable weak-base and spaces with various compact-countable net-

works, and give two mapping theorems on spaces with compact-countable weak-

bases.

Weak-bases and g-first countable spaces were introduced by A.V.Arhangel’skii [1].
Spaces with a point-countable weak-base were discussed in [5,6], and spaces with a lo-
cally countable weak-base were discussed in [7,8,9]. In this paper, we shall investigate
spaces with a compact-countable weak-base, establish the relationships between spaces
with a compact-countable weak-base and spaces with various compact-countable net-
works, and give two mapping theorems on spaces with compact-countable weak-bases.

We assume that spaces are regular and T1, and mapping are continuous and onto.

Definition 1. Let P be a family of subsets of a space X, put

P<ω = {P ′ ⊂ P : |P ′| < ω}.

(1) P is compact-countable in X if for each compact subset K of X, only
countably many members of P intersect K.

(2) P is a k-network[11] for X if for each compact subset K of X and its open
neighborhood V , there exists P ′ ∈ P<ω such that K ⊂ ∪P ′ ⊂ V .

(3) P is a cs-network[12] for X if for each x ∈ X, its open neighborhood V and
a sequence {xn} converging to x, there exists P ∈ P such that {xn : n > m} ∪ {x} ⊂
P ⊂ V for some m ∈ N .

Definition 2.[13] For a space X and x ∈ P ⊂ X, P is a sequential neighborhood
of x in X if, whenever {xn} is a sequence converging to x in X, then xn ∈ P for all
but finitely many n ∈ N . P is a sequential open set of X if for each x ∈ P , P is a
sequential neighborhood of x in X.

A space X is a sequential space if each sequential open set of X is open in X.
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Definition 3. Let P = ∪{Px : x ∈ X} be a family of subsets of a space X
satisfying that for each x ∈ X,

(1) Px is a network of x in X,
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
P is a weak-base for X [1] if G ⊂ X is open in X if and only if for each x ∈ G,

there exists P ∈ Px such that P ⊂ G. P is an sn-network[5] (i.e., an sequential
neighborhood network) for X if each element of Px is a sequential neighborhood of x
in X, here Px is an sn-network of x in X.

A space X is a g-first countable space[1] (resp. an sn-first countable space[10]) if
X has a weak-base (resp. an sn-network) P such that each Px is countable.

For a space, weak-base ⇒ sn-network ⇒ cs-network. An sn-network for a sequen-
tial space is a weak-base [5].

Definition 4. Call a subspace of a space a fan (at a point x) if it consists of a
point x, and a countably infinite family of disjoint sequences converging to x. Call a
subset of a fan a diagonal if it is a convergent sequence meeting infinitely many of the
sequences converging to x and converges to some point in the fan.

(1) A space X is an α1-space[2,3] if T = {x} ∪ (∪{Tn : n ∈ N}) is a fan at x of
X, where each sequence Tn converges to x, then there exists a sequence S converging
to x such that Tn r S is finite for each n ∈ N .

(2) A space X is an α4-space[2,3] if every fan at x of X has a diagonal converging
to x.
It is clear that [10] k-space ⇐ sequential space ⇐ g-first countable space ⇒ sn-first
countable space ⇒ α1-space ⇒ α4-space.

Lemma 5. The following are equivalent for a space X:
(1) X has a compact-countable sn-network.
(2) X is an sn-first countable space with a compact-countable cs-network.
(3) X is a α1-space with a compact-countable cs-network.
(4) X is a α4-space with a compact-countable cs-network.
Proof. (1)⇒(2)⇒(3)⇒(4) are clear. We show that (4)⇒(1). Suppose X is

a α4-space with a compact-countable cs-network P. Let P1 = {∩P ′ : P ′ ∈ P<ω}.
Since P ⊂ P, then P1 is a cs-network for X. For each compact K ⊂ X, since P is
compact-countable in X, then there exists {Pn : n ∈ N} ⊂ P such that K ∩ P = ∅
for each P ∈ P r {Pn : n ∈ N}. For each P ′ ∈ P<ω, if P ′ ∩ (P r {Pn : n ∈ N}) 6= ∅,
then K ∩ (∩P ′) = ∅; if P ′ ∩ (P r {Pn : n ∈ N}) = ∅, then P ′ ⊂ {Pn : n ∈ N}, so
P ′ ∈ {Pn : n ∈ N}<ω. Because |{Pn : n ∈ N}<ω| < ω and {P ′ ∈ P<ω : K ∩ (∩P ′) 6=
∅} ⊂ {Pn : n ∈ N}<ω, then P1 is compact-countable in X. Hence P1 is a compact-
countable cs-network for X which is closed under finite intersections. So we may
assume that X has a compact-countable cs-network P which is closed under finite
intersections. By Theorem 3.13 in [7], X is sn-first countable. For each x ∈ X, let
{B(n, x) : n ∈ N} be a decreasing sn-network of x in X. Put

Fx = {P ∈ P : B(n, x) ⊂ P for some n ∈ N}.
F = ∪{Fx : x ∈ X}



SPACES WITH COMPACT-COUNTABLE WEAK-BASES 3

Obviously, x ∈ ∩Fx and Fx is closed under finite intersections. Then F satisfies Def-
inition 3 (1),(2). We claim that each element of Fx is a sequential neighborhood at x
in X. Otherwise, there exists P ∈ Fx such that P is not a sequential neighborhood of
x in X. Then there exists a sequence {xn} converging to x such that for each k ∈ N ,
{xn : n > k} 6⊂ P . Take xn1 ∈ {xn : n > 1} r P , then there exists a subsequence
{xnk

} of {xn} such that each xnk+1 ∈ {xn : n > nk}r P . Obviously, xnk
converges to

x. Since P ∈ Fx, then B(m,x) ⊂ P for some m ∈ N . Because B(m,x) is a sequential
neighborhood of x in X, then {x} ∪ {xnk

: k > j} ⊂ B(m,x) for some j ∈ N , and
so {xnk

: k > j} ⊂ P , a contradiction. Hence F is an sn-network for X. Obviously,
F ⊂ P. Therefore F is a compact-countable sn-network for X.

Lemma 6. Every compact-countable cs-network for a space X is a k-network for
X.

Proof. Let P be a compact-countable cs-network for X. We will show that P
is a k-network for X. Suppose K ⊂ V with K non-empty compact and V open in X.
Put

A = {P ∈ P : P ∩K 6= ∅ and P ⊂ V },

then A = ∪{An : n ∈ N} is countable. Denote A = {Pi : i ∈ N}, then K ⊂
⋃

i6n

Pi

for some n ∈ N . Otherwise, K 6⊂
⋃

i6n

Pi for each n ∈ N , so choose xn ∈ K r
⋃

i6n

Pi.

Because {P ∩K : P ∈ P} is a countable cs-network for a subspace K and a compact
space with a countable network is metrizable, then K is a compact metrizable space.
Thus {xn} has a convergent subsequence {xnk

}, where xnk
→ x. Obviously, x ∈ K,

so V is an open neighborhood of x in X. Since P is a cs-network for X, then there
exist m ∈ N and P ∈ P such that {xnk

: k > m} ∪ {x} ⊂ P ⊂ V . Now, P = Pj for
some j ∈ N . Take l > m such that nl > j, then xnl

∈ Pj . This is a contradiction.

Remark 7. By Lemma 6, X has a compact-countable cs-network ⇒ X has a
compact-countable k-network. But X has a point-countable cs-network 6⇒ X has a
compact-countable k-network because X has a point-countable sn-network 6⇒ X has
a point-countable k-network, for example, the Stone-C̆ech compactification βN .

On the other hand, let X be Sω1 , by Proposition 2.7.21 in [14], X is a Las̆nev
space and has no point-countable cs∗-networks. Then X has a σ-hereditarily closure-
preserving k-network, so X has a σ-compact-finite k-network (see [19, Proposition 2]).
This implies that X has a compact-countable k-network. Hence X has a compact-
countable k-network 6⇒ X has a compact-countable cs-network.

Theorem 8. The following are equivalent for a space X:
(1) X has a compact-countable weak-base.
(2) X is a k-space with a compact-countable sn-network.
(3) X is a k-and sn-first countable space with a compact countable cs-network.
(4) X is a k-and α1-space with a compact-countable cs-network.
(5) X is a k-and α4-space with a compact-countable cs-network.
Proof. (1)⇒(2) is obvious.
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(2)⇒(1). Suppose X is a k-space with a compact countable sn-network P, then P
is a compact countable cs-network for X. By Lemma 6, X has a compact countable k-
network. Since a k-space with a point countable k-network is sequential ([15, Corollary
3.4]), then X is a sequential space. Thus P is a weak-base for X. Hence X has a
compact-countable weak-base.

(2) ⇔ (3) ⇔ (4) ⇔ (5) hold by Lemma 5.

By Lemma 6 and Theorem 8, we have
Theorem 9 For a space X, (1) ⇔ (2) ⇒ (3) hold.
(1) X has a compact-countable weak-base.
(2) X is g-first countable space with a compact-countable cs-network.
(3) X is g-first countable space with a compact-countable k-network.

In the following, we recall some definitions,
For a subset family F of a space X and A ⊂ X, F is a minimal cover of A if

A ⊂ ∪F and A 6⊂ ∪F ′ for each proper subset F ′ of F .
Let f : X → Y be a mapping. f is a k-mapping if for each compact subset K of

Y , f−1(K) is compact in X. f is a cs-mapping[17] if for each compact subset C of
Y , f−1(C) is separable in X. f is a 1-sequence-covering mapping[5] if for each y ∈ Y ,
there exists x ∈ f−1(y) satisfying the following condition: whenever {yn} is a sequence
of Y converging to a point y in Y , there exists a sequence {xn} of X converging to a
point x in X such that each xn ∈ f−1(yn).

Obviously, perfect mappings ⇒ k-mappings.

Lemma 10. Spaces with a compact-countable k-network are preserved under k-
mappings.

Proof. Let f : X → Y be a k-mapping such that X has a compact-countable
k-network P. For each F ∈ P<ω, put

M(F) = {y ∈ Y : F is a mininal cover of f−1(y)}.

Let R = {M(F) : F ∈ P<ω}. For each compact K ⊂ Y , since f is a k-mapping,
then f−1(K) is compact in X. Since P is compact-countable in X, then there exists
{Pn : n ∈ N} ⊂ P such that f−1(K) ∩ P = ∅ for each P ∈ P r {Pn : n ∈ N}.
Denote P1 = {Pn : n ∈ N}. For each P ∈ P r P1 and each F ∈ P<ω with P ∈ F ,
we claim that K ∩ M(F) = ∅. Otherwise. There exist P ∈ P r P1 and F ∈ P<ω

such that P ∈ F and K ∩ M(F) 6= ∅. Take y ∈ K ∩ M(F). Then f−1(y) ⊂
f−1(K). Since f−1(K) ∩ P = ∅, thus f−1(y) ∩ P = ∅. Because y ∈ M(F), then
f−1(y) ⊂ ∪F . Hence f−1(y) ⊂ ∪(F r {P}), a contradiction. Because |P<ω

1 | < ω
and {F ∈ P<ω : K ∩M(F) 6= ∅} ⊂ P<ω

1 , thus R is compact-countable in Y . So it
suffices to show that R is a k-network for Y . For K ⊂ V with K compact and V open
in Y , f−1(K) ⊂ f−1(V ) with f−1(K) compact and f−1(V ) open in X, since P is a
k-network for X, then f−1(K) ⊂ ∪P ′ ⊂ f−1(V ) for some P ′ ∈ P<ω. Put

R′ = {M(F) : F ⊂ P ′}.

For each y ∈ K, f−1(y) ⊂ ∪P ′. Suppose F1 ⊂ P ′ is a minimal cover of f−1(y), then
y ∈ M(F1), and so y ∈ ∪R′. Hence K ⊂ ∪R′. For each F ⊂ P ′ and each y ∈ M(F),
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f−1(y) ⊂ ∪F ⊂ ∪P ′ ⊂ f−1(V ), then y ∈ V . So M(F) ⊂ V . Hence ∪R′ ⊂ V . This
shows that R is a compact-countable k-network for Y .

Corollary 11. Spaces with a compact-countable k-network are preserved under
perfect mappings.

By Lemma 6 and Lemma 10, we have following mapping theorem on spaces with
a compact-countable weak-base.

Theorem 12. Let f : X → Y be k-mapping such that X has a compact-countable
weak-base. Then Y has a compact-countable k-network.

Remark 13. The space of Example 2.14(1) in [16] has a countable weak-base,
but its image under a perfect mapping is not g-first countable. Thus spaces with a
compact-countable weak-base are not necessarily preserved under perfect mappings.

Further, from Alexandroff’s sorting idea of spaces by means of mappings, we give
second mapping theorem on spaces with a compact-countable weak-base, and establish
relationships between metric spaces and spaces with compact-countable weak-bases.

Proposition 14. A space X has a compact-countable sn–network if and only if
X is a 1-sequence-covering cs-image of a metric space.

Proof. Necessity. Suppose P is a sn–network for X. Denote P = {Pα : α ∈ A}.
For each i ∈ N , let Ai be a copy of A, and it is endowed with discrete topology. Put

M = {β = (αi) ∈
∏

i∈N

Ai : {Pαi
: i ∈ N} is a network of some point x(β) in X},

and give M the subspace topology induced from the product topology of the product
space

∏
i∈N

Ai. The point x(β) is unique in X because X is Hausdroff. We define

f : M → X by f(β) = x(β). Obviously, M is a metric space. By the proof of Theorem
1, we can prove that f is a cs-mapping. For each x ∈ X, let {Pαi

: i ∈ N} ⊂ P be a
sequential neighborhood network of x in X. Denote β = (αi), then β ∈ f−1(x). For
each n ∈ N , put Rn = {(γi) ∈ M : γi = αi for each i 6 n}. Then {Rn : n ∈ N}
is a decrease neighborhood base of β in M and f(Rn) =

⋂
i6n

Pαi for each n ∈ N . In

fact, assume γ = (γi) ∈ Rn, then f(γ) ∈
⋂

i∈N

Pγi
⊂

⋂
i6n

Pαi
. Hence f(Rn) ⊂

⋂
i6n

Pαi
.

And assume z ∈
⋂

i6n

Pαi
, then there exists {Pδi

: i ∈ N} ⊂ P such that δi = αi when

i 6 n and {Pδi : i ∈ N} is a network of z in X. Put δ = (δi), then δ ∈ Rn and f(δ)
= z ∈ f(Rn), and hence

⋂
i6n

Pαi ⊂ f(Rn). Therefore, f(Rn) =
⋂

i6n

Pαi . Now, assume

xj → x in X. For each n ∈ N , since f(Rn) is a sequential neighborhood of x, there
exists i(n) ∈ N such that xi ∈ f(Rn) when i > i(n). Hence f−1(xi) ∩ Rn 6= ∅. We
can assume 1 < i(n) < i(n + 1). For each j ∈ N , take βj ∈ f−1(xj) when j < i(n)
and take βj ∈ f−1(xj) ∩Rn when i(n) 6 j < i(n + 1), then βj → β in M . Therefore,
f is 1-sequence-covering mapping.

Sufficiency. Suppose f : M → X is a 1-sequence-covering cs-mapping, where M
is a metric space. Let B be a σ-locally finite base for M . For each x ∈ X, there exists
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βx ∈ f−1(x) satisfying definition1 (5). Put

Px = {f(B) : βx ∈ B ∈ B},
P = ∪{Px : x ∈ X},

it is easy to prove that P is a compact-countable sn–network for X.
Theorem 15. X has a compact-countable weak-base if and only if X is a 1-

sequence-covering and quotient cs-image of a metric space.
Proof. Necessity. Suppose X has a compact-countable weak-base, then X

is a sequential space with a compact-countable sequential neighborhood network by
proposition 1.6.15 and corollary 1.6.18 of [2]. Hence X is a 1-sequence-covering cs-
image of a metric space by Theorem 3. Thus this 1-sequence-covering mapping is a
quotient mapping by Lemma 2.1 of [5].

Sufficiency. Suppose X is a 1-sequence-covering and quotient cs-image of a metric
space, then X is a sequential space with a compact-countable sequential neighborhood
network P. It is easy to prove that P is a compact-countable weak-base for X.

Finally, we give two examples.
Example 16 A separable, regular space X has a point-countable weak-base but

no a compact-countable weak-base.
Let

S =
{

1
n

: n ∈ N

}
∪ {0}, X = [0, 1]× S,

and let
Y = [0, 1]× { 1

n
: n ∈ N}

have the usual Euclidean topology as a subspace of [0, 1]× S. Define a typical neigh-
borhood of (t, 0) in X to be of the form

{(t, 0)} ∪

 ⋃
k>n

V (t, 1/k)

 , n ∈ N,

where V (t, 1/k) is a neighborhood of (t, 1/k) in [0, 1]× {1/k}. Put

M = (⊕n∈N [0, 1]× {1/n})⊕ (⊕t∈[0,1]{t} × S),

and define f from M onto X such that f is an obvious mapping.
Then f is a compact-covering, quotient, two-to-one mapping from the compact

compact metric space M onto separable, regular, non-Lindelöf, k-space X (see Exam-
ple 2.8.16 of [14] or Example 9.3 of [15]). It is easy to check that f is a 1-sequence-
covering mapping. By Theorem 2.5 in [5], X has a point-countable weak-base.

X has no compact-countable k-network. In fact. Suppose P is a compact-
countable k-network for X. Put

F = {{(t, 0)} : t ∈ [0, 1]} ∪ {P ∩ Y : P ∈ P}.
Since [0, 1]×{0} is a closed discrete subspace of X, then F is a k-network for X. But
Y is a σ-compact subspace of X. Thus {P ∩Y : P ∈ P} is countable, and so F is star-
countable. Since a regular, k-space with a star-countable k-network is a ℵ0-space(see
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[18]), then X is a Lindelöf space, a contradiction. Thus X has no compact-countable
k-network. By Theorem 9, X has no compact-countable weak-base.

Example 17 A paracompact space X has a compact-countable weak-base but no
locally countable weak-base.

Let X be a paracompact space with a point-countable base, and not metrizable.
Then X has a compact-countable base, and so X has a compact-countable weak-base.
But X is not a 1-sequence-covering ss-image of a metric space because X is not a
metric space. Thus X has no a locally countable weak-base by Theorem 2.1 in [9].

Example 18 A g-first countable space X with a σ-compact finite k-network 6=⇒
X has a point-countable weak base.

Let the space X be example 9.8 in [15], it is easy to see that X is g-first countable
and has a σ-compact-finite k-network. So X has a compact-countable k-network. But
X does not have a point-countable weak base(see [6]).

This example illustrates: (3) 6=⇒ (1) in Theorem 9.
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