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Boundedness for multilinear commutator of multiplier
operator on Hardy Spaces

Wang Kewei and Liu Lanzhe

ABSTRACT. In this paper, the (Hbf, LP) and (H',L') type boundedness for the

multilinear commutator associated with the Multiplier operator and BMO(R™)
functions are obtained.

1. Introduction.

Let b € BMO(R") and T be the Calderén-Zygmund operator. The commutator [b, T
generated by b and T is defined by

[0, T]f(x) = b(z)T f(x) = T(bf)(x).
A classical result of Coifman, Rochberg and Weiss (see [1, 2]) proved that the com-
mutator [b, T] is bounded on LP(R") (1 < p < o0). However, it was observed that the
[b,T] is not bounded, in general, from HP(R™) to LP(R"™)(p > 1). But if HP(R") is
replaced by a suitable atomic space HglD (R™), then [b,T] maps continuously Héj (R™)
into LP(R™). In addition we easily known that Hg(R") C HP(R™). The main purpose
of this paper is to consider the continuity of the multilinear commutators related to the
multiplier operators and BMO(R"™) functions on certain Hardy spaces. Besides this
paper also proves the multilinear commutators’ boundedness from H!(R") to L'(R™).

2. Definitions and Lemmas.

Let us first introduce some definitions. Given a positive integer m and 1 < j < m,
we denote by C7" the family of all finite subsets 0 = {o(1),- - -,0(j)} of {1,- -, m}
of j different elements. For o € C7", set 0¢ = {1,---,m} \ 0. For b= (b1, -+, bm)
and o = {0(1)7~ . ,O’(])} € ij, set b, = (bg(l),- . ~,bg(j))7 b, = ba(l) cee bg(j) and
16 || Baro = ||bo()l|BMO - - - [|bo()| | BMIO-

A bounded measurable function k defined on R™ ~\ {0} is called a multiplier. The
multiplier operator T} associated with k is defined by

(Txf)(x) = k(x) f(z),for f € S(R"),
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where f denotes the Fourier transform of f and S(R™) is the Schwarz test function
class.

Let o = (a1, @2, - , @) be a multi-index of non-negative integers a;(j = 1,2,--- ,n)
with |a| = a1 + @z + - - -+ ay,. Denote by D* the partial differential operators of order
« as follows:

6(1
- 0z 0xy? - O

Now, we recall the definition of the class M(s,). Denote by |z| ~ t the fact that
the value of z lies in the annulus {x € R™ : at < |z| < bt}, where 0 <a <1 <b< 0
are values specified in each instance.

Definition 1.([17])

Let [ > 0 be a real number and 1 < s < 2. we say that the multiplier £ satisfies the
condition M (s,1), if

DCK

(/ |D“k(§)|5d§> S < CR™/5~lel
le|~R

for all R > 0 and multi-indices o with |o| < I, when [ is a positive integer, and in
addition, if

1

a a s ’ ? 2|

(/ IDk(E) —~ Dk(E )| d§> <o@ypee
|€l~R
for all |z| < R/2 and all multi-indices @ with |a| = [I], the integer part of [, i.e., [I] is
the greatest integer less than or equal to I, and [ = [I] + v when [ is not an integer.
Definition 2. )
Let b = (b1,bo, - ,bpm)(m > 1), Tpf(x) = (K * f)(x) for K(x) = k(z), we define the
multilinear commutator of multiplier operator
7 > 5
T (W) =16 Tl @) = | T1bsw) = b )K (Y — 2)f(2)dz,

n j=1

and T(£)(y) = To(H)(y) = [e F)K(y — 2)dz.

Definition 3.([9,17])
Let 0 < p <1, ais called a (1,q) — atom, if a satisfies:

(1)suppa C B(zg,r);

(2)l|allzs < |B(xo, )M

(3) [ a(z)zVdz = 0, for any 0 < |y] < [s](s = 0).

A temperate distribution f is said to belong to H!(R"), if, in the Schwartz dis-
tribution sense, it can be written as

f@) =" Aja;(a),
j=1

where a; are (1,¢) atoms, \; € C and 3272, [A;|? < oo. Moreover, [|f||m1(rn) =~

Z;i1 |>‘j|-
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Definition 4.([9,17])
Let b; (1 = 1,---,m) be a locally integrable function and 0 < p < 1. A bounded
measurable function a on R™ is said a (p, 5) atom, if

(1) suppa C B = B(xg,r)

(2) MlallL= < [B]”VP

(3) Jpalwdy = [5a(y) [, bi(y)dy =0 for any 0 € CJ* ;1< j<m .

A temperate distribution f is said to belong to Hg (R™), if, in the Schwartz dis-
tribution sense, it can be written as

f(x) = Z Ajaj (),

where a; are (p, b) atoms, Aj € Cand 3777 |NP < oco. Moreover, ||f||H§(R,,L) ~
(52 AP

Lemma 1.([17])
Let k € M(s,l),1 < s<2,and! > 2; then the associated mapping T}, defined a priory
for f € Do(R"™), T f(x) = (f+K)(x), extends to a bounded mapping fromL? (R") into
itself for 1 < p < oo, K(x) = k(z), for D(R") = {¢ € S(R") : supp(¢) is compact}
and Do(R") = {¢ € S(R™) : ¢ € D(R™) and ¢ vanishes in a neighbourhood of the
origin}.

Lemma 2.([18],[19])
Let 1 € s < 2,1 < § < oo, suppose that [ is a real number with I > n/r, 1/r =
maz{l/s,1 —1/5}, and k € M(s,l), K(z) = k(z). If one of the following three
conditions is verified

D} < {7} 0<mB<14+{l} {1}

fl ={2} 0<mB<1-{2}

3N > {2} 0<mpB < {1} — {3}

Then there is a positive constant ¢, such that
(/ K (z — 2) — K(zg — 2)|%d2)"/5 < 27 % (2kp)—/%
2k+1Q\2kQ

Lemma 3.([4])
Let 1 < s < 2, is an integer, with n/s <1 < n, and k € M(s,l), then |{z € R™ :
IT(f)(x)| > A} < CA7Y|f|lr, for any constant C' > 0 and A > 0.

3.Theorems and Proofs

Theorem 1.
Let b; € BMO(R™), 1<i<m, b= (b1, ,bm), n/(n+1t) <p<1, t>0, then the
multilinear commutator 7% is bounded from H§ (R™) to LP(R"™).

Proof.
It suffices to show that there exists a constant C' > 0, such that for every (p,b) atom
a in Definition 4,

1% (a)llze < C.



22 WANG KEWEI AND LIU LANZHE

-,

Let a be a (p,b) atom supported on a ball B = B(xg, ).
Write

Jan

For I, taking ¢ > 1, by Holder’s inequality and the L?— boundedness of Tg, we
see that

I'< (f|m—m|<2r |Tg(a)($)|p'%d$)p/q | B(wo, 2r)|1 P/
< O|TH(a)(@)|1%, - |B(xo, 2r)| 17/

< Ol arollally, | Bl —#/1

< OBl pr0-

T (a)(z)[Pdz = | IT%(a)(z)[Pdx = I + I1.

|z—z0|<27

7% (a)(@)[Pda + |

x—x0|>2r

For I1, denoting A = (A, -+, Ap) with \; = (b)), 1 < i < m, where (b;)p =
m i) Blzo,r) bi(z)dz, by Lemma 2, Holder’s inequality and the vanishing moment
of a, we get

= / T (a) (@) Pda
,; 2k e >z —xg|>2kr
%) . P
< O |B(wg, 28 )P / T (a)(z)|dz
k=1 2k+lr>|z—xo|>2kr
< O |Blag, 26
k=1
m p
a [ 11050 = b K = iy | do
2k+1r>|z—xo|>2kr B
< O |Blwo, 25117
k=1
m p
x / | / T[] (b5(2) — b; () (K & — ) — K (= — z0))aly)dy] | du
2kt lr>|z—xo|>2Fr Bj:l
< C’Z|B(mo,2k+1r)|1_p
k=1
m p
|/ L TL15@) = A = 6500 = AIIE (e ~ ) ~ Ko~ o) aly)ldy | da
2kt1p2hB \JB
< O |B(wo, 28 )P

k=1
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x [/zk+lB\2kB (/B Z Z [(b(z) = Ao (b(y) = A)oe

1=0 c€Ecm
i

Kz —y) — K(z - wo)lla(y)ldy> dw]

O3 |B(wo, 2 )7

<
k=1
m P
X b(z) — Ny / gy—)\Uch—y—Kx—x a(y dy)dz
{Z_:Z/BBI( () = A) |( | 1B) = Vel K (& = ) = K = o) a(y)
< O |B(wo, 28 )P
k=1
m p
X l;y—/\ocay (/ b(z —A||K(x—y)— K(x —x dm)dy
[;Z/BK )~ Nolla@)| ([ 1) = NolIK (e~ y) = K(z o)
oo m . . . 1/5'
< OY 1B < (Y Y [ 160 - e a<y>|<( / |<b<x>—A>U|de)
k=1 i=0 o€cm ¥ B 2k+1B
i 1/
x ( / |K<x—y>—K<x—xo>|de) Jdyl?
2k+1 B\ 2kB
< Y |Blag, 26 )
k=1
m . R , 1/8' ,, P
<> / 1(B(y) — N)oellaly)|dy < / <b<x>A>anx) 2kt (9k By 1/
i=0 c€cm ¥ B 2k+1B
o0 _m p
< O3 2B, 2P |0 S (k+ 175, aro / 1(B(y) — N)oellaly)|dy
=1 im0 occm B
o0 _7n p
< O 27 Bao, 2P |30 S (k+ 1)™(BI7Y - B - Bl saro
k=1 _i:O UGc;n
< OS2k + 1) Blao, 261 ) 7| BIOTH B
k=1
< O 2ROt B
k=1
< oo

This finishes the proof of Theorem 1.
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Theorem 2.Let 1 < s < 2,1 > n/sis an integer, k € M(s,1). If0 <mf <1—-{2},
b € BMO(R"), then T? is weak bounded from H'(R") to L*(R™), for {2y =2-1[%]
Proof. Let f € HY(R"), and f(z) = > i1 Aja; be the atomic decomposition for

f as in Definition 3, for a; is a (1,¢)-atom(q > 1), A\; € C, suppose suppa; C B; =
B(z;,7;), and denote b;; = ﬁ fB,_ bi(z)dz, then

T(f)(@) = ZJ 1 A T2 (0 (@) = bij)Taj (x)x2m, (2) + 30720 A TTi% (bi(2) — bij)Ta () x 2B, )e ()
T(30520 A T (bi = bij)ay)(x)

For Ji(z), noting that T is bounded from L(R™) to LI(R™)(q > 1)(Lemma 1).

| H;’ll(bi(x)*bi) (a;)(@)x28; ()| L1 (rm)

Jop, 1 T1Z (0i() = bs )T(a )(2)|d

Ol sarol B9 (ay)] o

CllBllaolB;| 13+

Cl8ll aro,

INCINCIN N

SO
[{z € R" : [Ji(z)| > A/3}]
< BT INITEL, (i) = i) T (a5) (@) X2, () L2 ()
< OlbllBaror™" 32572 Al

By the Holder inequality and the size condition of a in Definition 3, we have
| H —bij)ajl|lLr(rny < C|bllBrroOs

since T is a weak type of (1,1)(Lemma 3), we get
{z € R" : |Js(z) > A/3}|
< OATE INITTES, (i) = big)as ()| o rmy
< Olbllpaor" > e Al
Denote AK (z,y,7;) = K(z—y)—K(x—1;), Di(z;) = {z: 2Fr; < |z —z;| < 281},
by the Hélder inequality, Lemma 2, the size condition and the vanishing moment of a
in Definition 3, for Ja(x), we get

L (bi(x) = bi;)T ( )( )X(zB) ( )”Ll(R")

< f( |Hz 1(bi(x) — fB >|dx

< f(w AT (i) = biy) (U, Any,x»ag( )dy) |dz

<, o) S5 1(ka<x>|AK<x y.a) T 1<b~<x>— biy)ldz) dy |
< Ol s (oo |OK ) )" (g, 1T (o) — i) o) " dy
< CHbHBMO fB laj(y ‘dka 127 kt(k"‘l)

< Cllmol B B, S, 2/ (4 1y

< Clbllsao.



BOUNDEDNESS FOR MULTILINEAR COMMUTATOR OF MULTIPLIER OPERATOR 25

Thus, we get

{z € R™: |Ja(x)| > A/3} < ClbllBaor™ D [N,
j=1

and

[{a € R™: |TP(f)(2)] > A}
< O e e B )] > /3
< ClbllsmoA™t 2252, [N

This completes the proof of Theorem 2.
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