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A note relating to Ramanujan’s Bessel index integral

M. L. Glasser

ABSTRACT. Ramanujan’s Bessel index integral
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and several extensions are evaluated by an alternative method.

1. Introduction

In 1920, Ramanujan [3] introduced his unusual, and potentially important [4],
Bessel integral
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In this note, (1.1) is re-derived by a more pedestrian route and the method applied
to obtain several similar index-integrals, some alreadt tabulated [1, Chapter 17] and
some apparantly new. The idea is simply to employ Nielsen’s series [4]
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a number of which were the principal subject of [3] and which can be found in [1],

[2, Section 2.2]. Specifically, we shall examine the five examples, the first of which is
known [1, 2, 3].
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In most cases the resulting series is hypergeometric and can be summed.

2. Calculations and results

From (1.2) and (1.3) one has
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For example (i), this easily reduces to

Pla+m+1,b+m+1).
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for Re (a + b) > 1. Setting ¢ = 0 in (2.5) one obtains Ramanujan’s formula (1.1).
Similarly for (ii)
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and for example (iii)
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For example (iv) this procedure leads to
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for Re (a +b) > 3. The right-hand side of (2.8) does not appear to reduce further.
Finally, for example (v) one has
(2.9)
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where P has period 1.

In view of the unproven formula (10.2) in [3], expressing a four Bessel function
index integral as a hypergeometric series, it is possible that Ramanujan was aware of
the method used here, but chose not to use it.
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