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The connected edge geodetic number of a graph

A.P. Santhakumarana and J. Johnb

Abstract. For a non-trivial connected graph G, a set S ⊆ V (G) is called an

edge geodetic set of G if every edge of G is contained in a geodesic joining some

pair of vertices in S. The edge geodetic number g1(G) of G is the minimum

order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge

geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such

that the subgraph G[S] induced by S is connected. The minimum cardinality of

a connected edge geodetic set of G is the connected edge geodetic number of G

and is denoted by g1c(G). A connected edge geodetic set of cardinality g1c(G)

is called a g1c - set of G or a connected edge geodetic basis of G. Some general

properties satisfied by this concept are studied. The connected edge geodetic

number of certain classes of graphs are determined. Connected graphs of order

p with connected edge geodetic number 2 are characterized. Various necessary

conditions for the connected edge geodetic number of a graph to be p − 1 or p

are given. It is shown that every pair k, p of integers with 3 6 k 6 p is realizable

as the connected edge geodetic number and order of some connected graph. For

positive integers r, d and n > d + 1 with r 6 d 6 2r, there exists a connected

graph of radius r, diameter d and connected edge geodetic number n. If p, d and

n are integers such that 2 6 d 6 p − 1 and d + 1 6 n 6 p, then there exists a

connected graph G of order p, diameter d and g1c(G) = n. Also if p, a and b are

positive integers such that 2 6 a < b 6 p, then there exists a connected graph G

of order p, g1(G) = a and g1c(G) = b.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without

loops or multiple edges. The order and size of G are denoted by p and q respectively.

For basic graph theoretic terminology we refer to Harary [4]. The distance d(u, v)

between two vertices u and v in a connected graph G is the length of a shortest u− v

path in G. An u − v path of length d(u, v) is called an u − v geodesic. It is known
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that this distance is a metric on the vertex set V (G). A vertex x is said to lie on an

u− v geodesic P if x is a vertex of P including the vertices u and v. For a vertex v of

G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The

minimum eccentricity among the vertices of G is the radius, rad G and the maximum

eccentricity is its diameter, diam G of G. For a cut-vertex v in a connected graph G

and a component H of G−v, the subgraph H and the vertex v together with all edges

joining v to V (H) is called a branch of G at v. A vertex v is an extreme vertex of a

graph G if the subgraph induced by its neighbours is complete. For any real number

x, ⌊x⌋ denotes the greatest integer less than or equal to x.

A geodetic set of G is a set S ⊆ V (G) such that every vertex of G is contained in

a geodesic joining some pair of vertices in S. The geodetic number g(G) of G is the

minimum order of its geodetic sets and any set of order g(G) is a geodetic basis. The

geodetic number of a graph was introduced in [1, 5] and further studied in [3]. It was

shown in [5] that determining the geodetic number of a graph is NP-hard problem.

The connected geodetic number was studied by Santhakumaran, Titus and John

in [9]. A connected geodetic set of G is a geodetic set S such that the subgraph G[S]

induced by S is connected. The minimum cardinality of a connected geodetic set

of G is the connected geodetic number of G and is denoted by gc(G). A connected

geodetic set of cardinality gc(G) is called a gc-set of G or connected geodetic basis of

G. The edge geodetic number was studied by Santhakumaran and John in [8]. A

set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a

geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is

the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G)

is an edge geodetic basis. Throughout the following G denotes a connected graph with

at least two vertices.

The following theorems are used in the sequel.

Theorem 1.1. [8] Each extreme vertex of a connected graph G belongs to every

edge geodetic set of G. In particular, each end vertex of G belongs every edge geodetic

set of G.

Theorem 1.2. [8] For a connected graph G, g1(G) = 2 if and only if there exist

peripheral vertices u and v such that every edge of G is on a diametral path joining u

and v.

Theorem 1.3. [8] For any non-trivial tree T with k end vertices, g1(T ) = k.

Theorem 1.4. [9] Every extreme vertex of a connected graph G belongs to every

connected geodetic set of G. In particular, each end vertex of G belongs to every

connected geodetic set of G.

Theorem 1.5. [9] Every cut vertex of a connected graph G belongs to every

connected geodetic set of G.
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Theorem 1.6. [9] For any non-trivial tree T of order p, gc(T ) = p.

Theorem 1.7. [6] For a connected graph G, gc(G) > 1 + diam(G).

2. The connected edge geodetic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices. A con-

nected edge geodetic set of G is an edge geodetic set S such that the subgraph G[S]

induced by S is connected. The minimum cardinality of a connected edge geodetic

set of G is the connected edge geodetic number of G and is denoted by g1c(G). A con-

nected edge geodetic set of cardinality g1c(G) is called a g1c-set of G or a connected

edge geodetic basis of G.

Example 2.2. For the graph G given in Figure 1 S1 = {v1, v2, v3, v4} is a g1c-set

so that g1c(G) = 4. Also S2 = {v1, v2, v3, v5} is another g1c-set of G.

Figure 1. G

Remark 2.3. For the graph G given in Figure 1, S = {v1, v2, v4} is an edge

geodetic basis of G so that g1(G) = 3. Thus the edge geodetic number and the

connected edge geodetic number are different.

Remark 2.4. There can be more than one g1c-set for a graph G. For the graph

G given in Figure 1, S1 and S2 are two different g1c-sets for G.

Theorem 2.5. Every extreme vertex of a connected graph G belongs to every

connected edge geodetic set of G. In particular, every end vertex of G belongs to

every connected edge geodetic set of G.

Proof. Since every connected edge geodetic set is also an edge geodetic set, the

result follows from Theorem 1.1. �

Theorem 2.6. For any connected graph G of order p, 2 6 g1(G) 6 g1c(G) 6 p.

Proof. An edge geodetic set needs at least two vertices and therefore g1(G) > 2.

Since every connected edge geodetic set is also an edge geodetic set, it follows that

g1(G) 6 g1c(G). Also, since V (G) induces a connected edge geodetic set of G, it is

clear that g1c(G) 6 p. �
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Remark 2.7. The bounds for g1c(G) in Theorem 2.6 are sharp. For the complete

graph K2, g1c(G) = g1(G) = 2 and for the complete graph Kp(p > 2), g1c(G) = p.

Also, all the inequalities in the theorem are strict. For the graph G given in Figure 1,

g1(G) = 3, g1c(G) = 4 and p = 5.

Corollary 2.8. Let G be any connected graph. If g1c(G) = 2, then g1(G) = 2.

Corollary 2.9. Let G be any connected graph. If g1(G) = p, then g1c(G) = p.

Corollary 2.10. For any connected graph G with k extreme vertices, g1c(G) >

max{2, k}.

Proof. This follows from Theorem 2.5 and Theorem 2.6. �

Corollary 2.11. For the complete graph Kp(p > 2), g1c(Kp) = p.

Theorem 2.12. Let G be a connected graph with cut vertices and let S be a

connected edge geodetic set of G. If v is a cut vertex of G, then every component of

G − v contains an element of S.

Proof. Let v be a cut vertex of G and S be a connected edge geodetic set of

G. Suppose that there exists a component say G1 of G − v such that G1 contains no

vertex of S. By Theorem 2.5, S contains all the extreme vertices of G and hence it

follows that G1 does not contain any extreme vertex of G. Thus G1 contains at least

one edge say xy. Since S is a connected edge geodetic set of G, there exist u, w ∈ S

such that xy lies in some u−w geodesic P : u = u0, u1....x, y...ul = w in G. Since the

u − x subpath of P and the x − w subpath of P both contain v, it follows that P is

not a path, contrary to assumption. �

Corollary 2.13. Let G be a connected graph with cut vertices and let S be a

connected edge geodetic set of G. Then every branch of G contains an element of S.

Theorem 2.14. Every cut-vertex of a connected graph G belongs to every con-

nected edge geodetic set of G.

Proof. Let G be a connected graph and S be a connected edge geodetic set of

G. Let v be any cut vertex of G and let G1, G2, . . . , Gr(r > 2) be the components

of G − v. By Theorem 2.12, S contains at least one vertex from each Gi(1 6 i 6 r).

Since G[S] is connected, it follows that v ∈ S. �

Corollary 2.15. For any connected graph G with k extreme vertices and l cut

vertices, g1c(G) > max{2, k + l}.

Proof. This follows from Theorems 2.5, 2.6 and 2.14. �

Corollary 2.16. For any non-trivial tree T of order p, g1c(T ) = p.

Proof. This follows from Corollary 2.15. �
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Theorem 2.17. For every pair k, p of integers with 3 6 k 6 p, there exists a

connected graph G of order p such that g1c(G) = k.

Proof. Let Pk : u1, u2, u3, . . . , uk be a path on k vertices. Add new vertices

v1, v2, . . . , vp−k and join each vi(1 6 i 6 p − k) with u1 and u3, thereby obtaining

the graph G in Figure 2 Then G has order p and S = {u3, u4, . . . , uk} is the set of all

cut vertices and extreme vertices of G. By Theorems 2.5 and 2.14, g1c(G) > k − 2.

Clearly S is not a connected edge geodetic set of G and so g1c(G) > k−2. Now, neither

S ∪ {vi}(1 6 i 6 p − k) nor S ∪ {u2} is an edge geodetic set of G. But T = S ∪ {u1}

is an edge geodetic set of G such that G[T ] is dis-connected. It is clear that T ∪ {u2}

is a connected edge geodetic set of G and hence it follows that g1c(G) = k. �

Figure 2. G

Theorem 2.18. For the complete bipartite graph G = Km,n,

i) g1c(G) = 2 if m = n = 1.

ii) g1c(G) = n + 1 if m = 1, n > 2.

iii) g1c(G) = min{m, n} + 1 if m, n > 2.

Proof. i) and ii) follow from Corollary 2.16. (iii) Let m, n > 2. First assume

that m < n. Let U = {u1, u2, . . . , um} and W = {w1, w2, . . . , wn} be a bipartition

of G. Let S = U ∪ {w1}. We prove that S is a connected edge geodetic basis of G.

Any edge uiwj(1 6 i 6 m, 1 6 j 6 n) lies on the geodesic uiwjuk for any k 6= i so

that S is an edge geodetic set of G. Since G[S] is connected, S is a connected edge

geodetic set of G. Let T be any set of vertices such that |T | < |S|. If T ( U , G[T ] is

not connected and so T is not a connected edge geodetic set of G. If T ( W , again

T is not a connected edge geodetic set of G by a similar argument. If T ⊇ U , then

since |T | < |S|, we have T = U , which is not a connected geodetic set of G. Similarly,

since |T | < |S|, T cannot contain W . For if T ⊇ W , then |T | > n > m > m + 1 = |S|,

which is a contradiction. Thus T ( U ∪ W such that T contains at least one vertex

from each of S and W . Then since |T | < |S|, there exists vertices ui ∈ U and wj ∈ W
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such that ui /∈ T and wj /∈ T . Then clearly the edge uiwj does not lie on a geodesic

connecting two vertices of T so that T is not a connected edge geodetic set. Thus in

any case T is not a connected edge geodetic set of G. Hence S is a connected edge

geodetic basis so that g1(Km,n) = |S| = m+1. Now, if m = n, we can prove similarly

that S = U ∪ {y}, where y ∈ W is a connected edge geodetic basis of G. Hence the

theorem follows. �

Theorem 2.19. For the cycle Cp(p > 3), g1c(Cp) =

{

p
2 + 1 if p is even

⌊p

2⌋ + 2 if p is odd.

Proof. If p is even, let p = 2n. Let C2n : v1, v2, v3, . . . , v2n, v1 be the cycle of

order 2n. Then vn+1 is the antipodal vertex of v1. Let S = {v1, vn+1}. Clearly

S is an edge geodetic set of G. It is clear that G[S] is not connected. But S1 =

{v1, v2, . . . , vn+1} is a connected edge geodetic set of G so that g1c(G) 6 n + 1. If

S′ is any connected set of vertices of G with |S′| < |S1| , then S′ contains atmost n

elements. Hence no two vertices of S′ are pairwise antipodal. Thus S′ is not an edge

geodetic set of G. It follows that g1c(G) = n + 1.

Let p be odd. If p = 3, then by Corollary 2.11, g1c(G) = 3 = ⌊p

2⌋+2 . Let p > 5 and

let p = 2n+1. Let C2n+1 : v1, v2, . . . , v2n+1, v1 be the cycle of order 2n+1. Then vn+1

and vn+2 are antipodal vertices of v1. Let S = {v1, vn+1, vn+2}. It is clear that S is an

edge geodetic set of G and G[S] is not connected. But S1 = {v1, v2, . . . , vn, vn+1, vn+2}

is a connected edge geodetic set of G so that g1c(G) 6 n + 2. If S′ is any connected

set of vertices of G with |S′| < |S1| , then S′ contains at most n + 1 elements. Hence

S′ contains at most two vertices say u and v which are antipodal to each other. Let

w 6= v be the antipodal vertex of u. Then the edge vw does not lie on any geodesic

joining a pair of vertices of S′. Thus S′ is not an edge geodetic set of G. It follows

that g1c(G) = n + 2 = ⌊p

2⌋ + 2. �

The following theorem characterizes graphs for which the connected edge geodetic

number is 2.

Theorem 2.20. For any connected graph G, g1c(G) = 2 if and only if G = K2.

Proof. If G = K2, then g1c(G) = 2. Conversely, let g1c(G) = 2. Let S = {u, v}

be a minimum connected edge geodetic set of G. Then uv is an edge. If G 6= K2, then

there exists an edge xy different from uv. Then xy cannot lie on any u − v geodesic

so that S is not a g1c-set, which is a contradiction. Thus G = K2. �

We give below some necessary conditions on a graph G for which g1c(G) = p − 1

and g1c(G) = p.

Theorem 2.21. Let G be a connected graph of order p > 3. If G contains exactly

one vertex of degree p − 1 and which is not a cut vertex of G, then g1c(G) = p − 1.

Proof. Let v be the unique vertex of degree p − 1. Let S = V − {v}. Let vu

be any edge incident with v. Since v is the only vertex of degree p − 1, there exists
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at least one vertex say u′ such that u and u′ are not adjacent. Then vu lies on the

geodesic uvu′ joining u and u′ in S. Any edge e = xy which is not incident with v

lies on the geodesic xy itself joining two vertices of S. Thus S is an edge geodetic set

of G. Since v is not a cut vertex of G, G[S] is connected so that g1c(G) 6 p − 1. We

claim that g1c(G) = p − 1. Let T be any set of vertices with |T | 6 p − 2. Then there

exist at least two vertices say u and w which are not in T . If v /∈ T , then v 6= u or

v 6= w so that the edge vu or vw cannot lie on any geodesic joining two vertices of T .

If v ∈ T , again the edge vu or vw cannot lie on any geodesic joining two vertices of T .

In any case, T is not an edge geodetic set of G. Hence g1c(G) = p − 1. �

Corollary 2.22. If a connected graph G has exactly one vertex v of degree p−1

and which is not a cut vertex, then g1c(G) = p−1 and G has a unique connected edge

geodetic basis consisting of all the vertices of G other than v.

Proof. The proof is contained in the proof of Theorem 2.21. �

Corollary 2.23. For the wheel W1,p−1, g1c(W1,p−1) = p − 1.

Remark 2.24. The converse of Theorem 2.21 is false. For the graph G given in

Figure 3, S = {v1, v2, v3, v4, v5} is a g1c-set of G. Therefore g1c(G) = 5 = p − 1 and

no vertex has degree p − 1.

Figure 3. G

Theorem 2.25. Let G be a connected graph. If every vertex of G is either an

extreme vertex or a cut-vertex of G, then g1c(G) = p.

Proof. Let G be a connected graph with every vertex of G is either an extreme

vertex or a cut-vertex of G. Then the result follows from Corollary 2.15. �

Corollary 2.26. Let G be a connected graph of order p > 3 such that G =

K1 + ∪mjKj , where
∑

mj > 2, then g1c(G) = p.

Remark 2.27. The converse of the Theorem 2.25 is false. For the graph G given in

Figure 4, S = {v1, v2, v3, v4, v5, v6} is a connected g1c-set of G so that g1c(G) = 6 = p.

But G has vertices which are neither cut vertices nor extreme vertices.
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Figure 4. G

Theorem 2.28. If a connected graph G has more than one vertex of degree p−1,

then every connected edge geodetic set contains all those vertices of degree p − 1.

Proof. Let G be a graph with more than one vertex of degree p − 1. If u and v

are two vertices of degree p− 1, then uv is an edge and it does not lie on any geodesic

joining two vertices of G other than u and v. Hence it follows that both u and v

belong to every connected edge geodetic set of G. �

Theorem 2.29. For any connected graph G with at least two vertices of degree

p − 1, g1c(G) = p.

Proof. If all the vertices are of degree p − 1, then G = Kp and so g1c(G) = p.

Otherwise, let v1, v2, . . . , vk(2 6 k 6 p − 2) be the vertices of degree p − 1. Suppose

g1c(G) < p. Let S be a connected edge geodetic basis of G such that |S| < p.

By Theorem 2.28, S contains all the vertices v1, v2, . . . , vk. Let v be a vertex such

that v /∈ S. Then deg(v) < p − 1. Since any two of v1, v2, . . . , vk are adjacent,

the edge vvi(1 6 i 6 k) cannot lie on a geodesic joining a pair of vertices vj and

vl(j 6= l). Similarly, since any vj is adjacent to any vertex of S, which is different from

v1, v2, . . . , vk, the edge vvi(1 6 i 6 k) cannot lie on a geodesic joining a vertex vj and

a vertex of S, which is different from v1, v2, . . . , vk. Now, let u and w be vertices of

S different from v1, v2, . . . , vk. Since vi is adjacent to both u and w and d(u, v) 6 2,

the edge vvi cannot lie on a geodesic joining u and w. Thus we see that the edges

vvi(1 6 i 6 k) do not lie on any geodesic joining a pair of vertices of S, which is

a contradiction to the fact that S is a connected edge geodetic basis of G. Hence

g1c(G) = p. �

Remark 2.30. The converse of Theorem 2.29 is false. For the graph G given in

Figure 4, S = {v1, v2, v3, v4, v5, v6} is a connected edge geodetic basis of G so that

g1c(G) = 6 = p and G has no vertex of degree p − 1.

Theorem 2.31. If G is a connected graph of order p > 3 such that G contains a

cut vertex v of degree p − 1, then g1c(G) = p.

Proof. Let S be any connected edge geodetic set of G. Then, by Theorem 2.14,

v ∈ S. Claim S = V (G) is the connected edge geodetic basis of G. Otherwise, there

exists a proper subset T of V such that T is a connected edge geodetic basis of G. By
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Theorem 2.14, v ∈ T . Since T ( V , there exists a vertex u ∈ V such that u /∈ T . Since

T is a connected edge geodetic set of G, the edge vu lies on a geodesic joining a pair

of vertices x and y of T . Let the geodesic be P : x, . . . , v, u, . . . , y. We have u 6= x, y.

If x = v, then, since v is adjacent to every vertex of G, vy is the only geodesic joining

v and y. Similarly if x 6= v, then xvy is the only geodesic joining x and y. Thus in

any case P is not a x − y geodesic, which is a contradiction. �

Remark 2.32. The converse of Theorem 2.31 is false. For the graph G given

in Figure 5, S = {v1, v2, v3, v4, v5} is a connected edge geodetic basis. Therefore

g1c(G) = 5 = p. But G has no cut-vertex of degree p − 1.

Figure 5. G

Theorem 2.33. If G is a connected non complete graph such that it has a mini-

mum cutset of G consisting of i independent vertices, then g1c(G) 6 p − i + 1.

Proof. Since G is non complete, it is clear that 1 6 i 6 p − 2. Let U =

{v1, v2, . . . , vi} be a minimum independent cutset of vertices of G. Let G1, G2, . . . ,

Gr(r > 2) be the components of G − U and let S = V (G) − U . Then every vertex

vj(1 6 j 6 i) is adjacent to at least one vertex of Gt for every t(1 6 t 6 r). Let uv be

any edge of G. If uv lies in one of the Gt for any (1 6 t 6 r), then clearly uv lies on

the geodesic (uv itself) joining two vertices u and v of S. Otherwise, uv is of the form

vju(1 6 j 6 i), where u ∈ Gt for some t such that 1 6 t 6 r. As r > 2, vj is adjacent

to some w in Gs for some s 6= t such that 1 6 s 6 r. Thus vju lies on the geodesic

uvjw of length 2. Thus S is an edge geodetic set such that G[S] is not connected.

Now, it is clear that S ∪ {x}, where x ∈ U is a connected edge geodetic set of G so

that g1c(G) 6 |S ∪ {x}| = p − i + 1. �

Corollary 2.34. If G is a connected non complete graph such that it has a

minimum cutset of G consisting of i independent vertices, then g1c(G) 6 p − κ + 1,

where κ is the vertex connectivity of G.

Proof. By Theorem 2.33, g1c(G) 6 p − i + 1. Since κ 6 i, it follows that

g1c(G) 6 p − κ + 1. �

Corollary 2.35. If G is a connected non complete graph such that every mini-

mum cutset of vertices of G is independent, then g1c(G) 6 p − κ + 1.

Proof. This follows from Theorem 2.33. �
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3. Connected geodetic number and connected edge geodetic number of a

graph

Theorem 3.1. Every connected edge geodetic set of a connected graph G is a

connected geodetic set of G.

Proof. Let G be a connected graph and S be a connected edge geodetic set of

G. Let v ∈ V (G). Let uv be an edge of G. Then uv lies on a geodesic joining a pair

of vertices of S. Thus v lies on a geodesic joining a pair of vertices of S so that S is a

geodetic set of G. Since S is connected edge geodetic set of G, G[S] is connected and

so S is a connected geodetic set of G. �

Theorem 3.2. For any connected graph G, 2 6 gc(G) 6 g1c(G) 6 p.

Proof. Any connected edge geodetic set needs atleast two vertices and so g1c(G) >

2. Let S be any connected edge geodetic set of G with minimum cardinality. Then

g1c = |S|. By Theorem 3.1, S is a connected geodetic set of G so that gc(G) 6 |S| =

g1c(G). Also, since V (G) induces a connected edge geodetic set of G, it is clear that

g1c(G) 6 p. Thus 2 6 gc(G) 6 g1c(G) 6 p. �

Remark 3.3. For the graph K2, g1c(K2) = 2. For the graph G given in Figure 1,

S = {v1, v3, v5} is a gc-set so that gc(G) = 3 and S1 = {v1, v2, v3, v5} is a g1c-set so that

g1c(G) = 4 and so gc(G) < g1c(G). Also for any non-trivial tree T , gc(T ) = g1c(T ),

by Theorem 1.6 and Corollary 2.16.

Problem 3.4. Characterize graphs G for which gc(G) = g1c(G).

Theorem 3.5. For a connected graph G, g1c(G) > 1 + diam(G).

Proof. This follows from Theorems 1.7 and 3.2. �

Theorem 3.6. If G is a connected graph such that g1(G) = 2, then g1c(G) =

1 + diam(G).

Proof. Let g1(G) = 2. Then by Theorem 1.2, there exist peripheral vertices

u and v such that every edge of G lies on a diametral path joining u and v. Let

P : u = u0, u1, u2, . . . , un = v be a diametral path of G. Let S = {u0, u1, u2, . . . , un}.

Then it is clear that S is a connected edge geodetic set of G so that g1c(G) 6 |S| =

1 + diam(G). Now the theorem follows from Theorem 3.5. �

Theorem 3.7. For any positive integers 3 6 a 6 b, there exists a connected graph

G such that gc(G) = a and g1c(G) = b.

Proof. If a = b, let G = K1,a−1. Then by Theorem 1.6 and Corollary 2.16,

gc(G) = g1c(G) = a. If a = 3 and b > 4, then the graph G in Figure 6 is obtained from

the path on three vertices P : u1, u2, u3 by adding b−2 new vertices v1, v2, . . . , vb−2 and

joining each vi(1 6 i 6 b− 2) with u1, u2 and u3. It is clear that S = {u1, u2, u3} is a
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minimum connected geodetic set of G so that gc(G) = 3. Now u2 is a full degree vertex

such that it is not a cut vertex of G and so by Theorem 2.21, g1c(G) = b−2+3−1 = b.

Figure 6. G

If 3 < a < b, let G be the graph obtained from the path on three vertices P :

u1, u2, u3 by adding b − 3 new vertices v1, v2 . . . , vb−a, w1, w2, . . . , wa−3 and joining

each vi(1 6 i 6 b − a) with u1, u2, u3 and joining each wi(1 6 i 6 a − 3) with u2 and

the graph G is of order b and shown in Figure 7. By Theorems 1.4 and 1.5, every

connected geodetic set of G contains all the extreme vertices and all the cut vertices of

G. Now, let S = {w1, w2, . . . , wa−3, u2}. It is clear that S is not a connected geodetic

set of G. It is also easily seen that S ∪ {v}, where v ∈ V (G) − S is not a connected

geodetic set of G. But, it is clear that S1 = S ∪ {u1, u3} is a connected geodetic set

of G so that gc(G) = a − 2 + 2 = a. Now, since G contains the cut vertex u2, which

is of full degree, it follows from Theorem 2.31 that g1c(G) = b. �

Figure 7. G

For every connected graph G, rad G 6 diam G 6 2 rad G, Ostrand[7] showed that

every two positive integers a and b with a 6 b 6 2a are realizable as the radius and
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diameter, respectively, of some connected graph. Ostrand’s theorem can be extended

so that the connected edge geodetic number can be prescribed when g1c(G) > diamG+

1.

Theorem 3.8. For positive integers r, d and n > d + 1 with r 6 d 6 2r, there

exists a connected graph G with rad G = r, diam G = d and g1c(G) = n.

Proof. If r = 1, then d = 1 or 2. If d = 1, let G = Kn. Then by Corollary 2.11,

g1c(G) = n. If d = 2, let G = K1,n−1. Then by Corollary 2.16, g1c(G) = n. Now, let

r > 2. We construct a graph G with the desired properties as follows:

Case 1. Suppose r = d. For n = d + 1, let G = C2r. Then it is clear that r = d. By

Theorem 2.19, g1c(G) = d + 1 = n. Now, let n > d + 2. Let C2r : u1, u2, . . . , u2r, u1

be the cycle of order 2r. Let G be the graph obtained by adding the new vertices

x1, x2, . . . , xn−r−1 and joining each xi(1 6 i 6 n− r − 1) with u1 and u2 of C2r . The

graph G is shown in Figure 8. It is easily verified that the eccentricity of each vertex of

Figure 8. G

G is r so that rad G = diam G = r. Let S = {x1, x2, . . . , xn−r−1}. Then S is the set

of all extreme vertices of G with |S| = n− r − 1. It is clear that S is not a connected

edge geodetic set of G. Let T = S ∪ {u1, u2, u3, . . . , ur+1}. It is clear that T is a

connected edge geodetic set of G and so g1c(G) 6 |T | = n. Now, if g1c(G) < n, then

there exists a connected edge geodetic set M of G such that |M | < n. By Theorem

2.5, M contains S and since|M | < n, M contains at most r vertices of C2r. Since M

is a connected edge geodetic set of G, u1 or u2 must belong to M . We consider two

cases.

Case a. Suppose u1 ∈ M and u2 /∈ M . Since M is a connected edge geodetic set of G

and |M | < n, M contains at most the vertices u1, u2r, u2r−1, . . . , ur+2 of C2r. Then

the edge ur+1ur+2 does not lie on any geodesic joining a pair of vertices of M and so

M is not a connected edge geodetic set of G, which is a contradiction.

Case b. Suppose u1, u2 ∈ M . Now we may assume without loss of generality that

M contains at most the vertices u1, u2, u3, . . . , ur of C2r. Then the edge urur+1 does

not lie on any geodesic joining a pair of vertices of M and so M is not a connected

geodetic set of G, which is a contradiction. Thus g1c(G) = n.
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Case 2. Suppose r < d 6 2r. Let C2r : v1, v2, . . . , v2r, v1 be a cycle of order 2r and let

Pd−r+1 : u0, u1, . . . , ud−r be a path of order d−r+1. Let H be a graph obtained from

C2r and Pd−r+1 by identifying v1 in C2r and u0 in Pd−r+1. Now, we add n−d−1 new

vertices w1, w2, . . . , wn−d−1 to the graph H and join each vertex wi(1 6 i 6 n−d−1)

to the vertex ud−r−1 and obtain the graph G of Figure 9. Then rad G = r and diam

Figure 9. G

G = d. Let S = {v1, u1, u2, . . . , ud−r, w1, w2, . . . , wn−d−1} be the set of all cut vertices

and extreme vertices of G. By Theorems 2.5 and 2.14, every connected edge geodetic

set of G contains S. It is clear that S is not a connected edge geodetic set of G. Let

T = S ∪{v2, v3, . . . , vr+1}. It is clear that T is a connected edge geodetic set of G and

so g1c(G) 6 |T | = n. Then by an argument similar to that given in the proof of case

1 of this theorem, it can be proved that g1c(G) = n. �

Theorem 3.9. If p, d and n are integers such that 2 6 d 6 p−1 and d+1 6 n 6 p,

then there exists a connected graph G of order p, diameter d and g1c(G) = n.

Proof. We prove this theorem by considering three cases.

Case 1. Let d = 2. Let P3 be the path on three vertices u1, u2 and u3. Now add

p − 3 new vertices w1, w2, . . . , wp−n, v1, v2, . . . , vn−3. Let G be the graph obtained by

joining each vi(1 6 i 6 n − 3) to u1 and u2 and each wi(1 6 i 6 p − n) to both u1

and u3. The graph G is shown in Figure 10 and has order p with diameter d = 2.

Let S = {v1, v2, . . . , vn−3} be the set of extreme vertices of G. By Theorem 4.5, every

connected edge geodetic set contains S. It is clear that S is not a connected edge

geodetic set of G. It is easily seen that S ∪ {v} or S ∪ {u, v}, where u, v /∈ S, is not a

connected edge geodetic set of G. Now, it is clear that S ∪ {u1, u2, u3} is a connected

edge geodetic set of G so that g1c(G) = n.

Case 2. Let 3 6 d 6 p − 2. Let Pd+1 : u0, u1, u2, . . . , ud be a path of length

d. Add p − d − 1 new vertices w1, w2, . . . , wp−n, v1, v2, . . . , vn−d−1 to Pd+1 and join

w1, w2, . . . , wp−n to both u0 and u2 and join v1, v2, . . . , vn−d−1 to ud−1, there by

producing the graph G of Figure 11. Then G has order p and diameter d. Let

S = {u2, u3, . . . , ud, v1, v2, . . . , vn−d−1} be the set of all cut vertices and all extreme

vertices of G. By Theorems 2.5 and 2.14, every connected edge geodetic set of G

contains S. It is clear that S is not a connected edge geodetic set of G. Clearly
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Figure 10. G

S ∪ {x}, where x ∈ {u1, w1, w2, . . . , wp−n} is not a connected edge geodetic set of G.

Now S ∪{u0} is an edge geodetic set of G but not a connected edge geodetic set of G.

Since S ∪ {u0, u1} is a connected edge geodetic set of G, it follows that g1c(G) = n.

Figure 11. G

Case 3. Let d = p− 1. Then n = p. Let G be the path of order n. Then, by Corollary

2.16, g1c(G) = n. �

We proved that 2 6 g1(G) 6 g1c(G) 6 p. The following theorem gives a realization

for these parameters when 2 6 a < b 6 p.

Theorem 3.10. If p, a and b are positive integers such that 2 6 a < b 6 p, then

there exists a connected graph G of order p, g1(G) = a and g1c(G) = b.

Proof. We prove this theorem by considering two cases.

Case 1. 2 6 a < b = p. Let G be any tree with a pendant vertices. Then by Theorem

1.3, g1(G) = a and by Corollary 2.16, g1c(G) = p.
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Case 2. 2 6 a < b < p. Let Pb−a+2 : u1, u2, . . . , ub−a+2 be a path of length b − a + 1.

Add p − b + a − 2 new vertices w1, w2, . . . , wp−b, v1, v2, . . . , va−2 to Pb−a+2 and join

w1, w2, . . . , wp−b to both u1 and u3 and join v1, v2, . . . , va−2 to ub−a+1, there by pro-

ducing the graph G of Figure 12. Then G has order p and S = {ub−a+2, v1, v2, . . . , va−2}

is the set of all extreme vertices of G. It is clear that S is not an edge geodetic set

of G. On the other hand, S ∪ {u1} is an edge geodetic set of G and it follows from

Theorem 1.1 that g1(G) = a. By an argument exactly similar to the one given in Case

2 of Theorem 3.9, it can be proved that g1c(G) = b. �

Figure 12. G
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