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Series associated with Polygamma functions

Anthony Sofo

Abstract. We use integral identities to establish a relationship with sums that

include polygamma functions, moreover we obtain some closed forms of binomial
sums. In particular cases, we establish some identities for Polygamma functions

1. Introduction

The aim of this paper is to give a proof and some examples of the following
theorem:

Theorem 1. Let a be a positive real number, m > 0 , |t| 6 1 , j > 0, q ∈ N, p ∈ N
and j > 0, then

S (a, j,m, p, q, t) =
∞∑

n=0

tnnp

(
n+m− 1

n

)
Q(q)(a, j)(1.1)

= q

∫ 1

0

(1− x)j−1 [λm (f)](p) [log(1− x)]q−1
dx

+ j

∫ 1

0

(1− x)j−1 [λm (f)](p) [log(1− x)]q dx,

where Q(q)(a, j) = dqQ(a,j)
djq is the qth derivative operator of the binomial coefficient

Q(a, j) =
(

an+j
j

)−1

and [λm (f)](p) is the pth consecutive derivative operator of

λm (f) =
∑∞

n=0

(
n+m−1

n

)
f n = (1− f)−m where f = f (x) = txa for x ∈ (0, 1) .

First we state a number of lemmas that will be useful in the proof of Theorem
1. For specific values of the parameters (a, j,m, p, q, t) we then highlight a number of
examples, some of which include the summation of harmonic numbers.
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2. Technical Lemmas

Lemma 1. For a and m positive real numbers, and t ∈ R let

(2.1) f = f (x) = txa

and

λm (f) =
∞∑

n=0

(
n+m− 1

n

)
f n =

1
(1− f)m .

The consecutive derivative operator of the continuous function (1− f)−m for x ∈ (0, 1)
is defined as

[λm (f)](0) =
1

(1− txa)m

...

[λm (f)](p) = x
d

dx

(
x
d

dx

(
· · ·x d

dx

(
1

(1− f)m

)))
︸ ︷︷ ︸

p−times

so that

(2.2) [λm (f)](p) = ap
∞∑

n=0

np f n =
ap

(1− f)m+p

p∑
r=1

(−1)p+r+1 Cp,m(r) f r,

where the convolution coefficient

(2.3) Cp,m(r) =
r∑

ν=1

(−1)ν(m)ν

(
p− ν

r − ν

)
S (p, ν)

and

S (p, ν) =
{p
ν

}
=

1
ν!

ν∑
µ=0

(−1)µ

(
ν

µ

)
(ν − µ)p

are Stirling numbers of the second kind.
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Proof. We note from (2.1), that x df
dx = af and

[λm (f)](1) = a
∞∑

n=0

n

(
n+m− 1

n

)
f n =

maf

(1− f)m+1

[λm (f)](2) = a2
∞∑

n=0

n2

(
n+m− 1

n

)
f n =

a2

(1− f)m+2

{
mf(1− f) +m(m+ 1)f2

}
[λm (f)](3) = a3

∞∑
n=0

n3

(
n+m− 1

n

)
f n

=
a3

(1− f)m+3 {mf(1− f)2 + 3 ·m(m+ 1)f 2(1− f) +m(m+ 1)(m+ 2)f 3}

...

[λm (f)](p) = ap
∞∑

n=0

np

(
n+m− 1

n

)
f n

=
ap

(1− f)m+p

p∑
r=1

S (p, r) (m)r f r (1− f)p−r

=
ap

(1− f)m+p

p∑
r=1

S (p, r) (m)r f r

p−r∑
j=0

(−1)j

(
p− r

j

)
f j .

Collecting powers of f we have that

[λm (f)](p) =
ap

(1− f)m+p

p∑
r=1

(−1)p+r+1 Cp,m(r) f r,

where Cp,m(r) is given by (2.3).
By induction we see that

[λm (f)](p+1) = ap d

dx
[λm (f)](p) = ap x

d

dx

[
p∑

r=1

S (p, r) (m)r f r (1− f)−m−r

]
= ap+1

[
S (p, 1)mf (1− f)−m−1 + · · ·

+ f p (1− f)−m−p {(m+ p− 1)(m)p−1S (p, p− 1)

+p(m)pS (p, p)}+ (m+ p) (m)pS(p, p)f p+1 (1− f)−m−p−1
]
.

From properties of Stirling numbers of the second kind,

S (p, 1) = S (p+ 1, 1) = 1, S (p, p) = S (p+ 1, p+ 1) = 1.

Furthermore, S (p, p− 1)+pS (p, p) = S (p+ 1, p) is the recurrence relation of Stirling
numbers of the second kind and from the fact that

(m+ p− 1)(m)p−1 = (m)p, (m+ p) (m)p = (m)p+1,
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we may write

ap+1
[
S (p, 1)mf (1− f)−m−1 + · · ·

+ f p (1− f)−m−p {(m+ p− 1)(m)p−1S (p, p− 1)

+p(m)pS (p, p)}+ (m+ p) (m)pS(p, p)f p+1 (1− f)−m−p−1
]

=
ap+1

(1− f)m+p+1
[S (p+ 1, 1) (m)1 f (1− f)p + · · ·

+S (p+ 1, p) (m)p f
p (1− f) + (m)p+1S(p+ 1, p+ 1)f p+1

]
=

ap+1

(1− f)m+p+1

p+1∑
r=1

S (p+ 1, r) (m)r f
r (1− f)p+1−r

so that (2.2) follows.

The next lemma deals with the derivatives of binomial coefficients.

Lemma 2. Let a be a positive real number with j > 0, n > 0 and let Q(a, j) =(
an+j

j

)−1

be an analytic function in j then,

(2.4) Q(1)(a, j)

=
dQ

dj
=


−Q(a, j)P (a, j), where P (a, j) =

an∑
r=1

1
r+j for j > 0

−Q(a, j) [ψ (j + 1 + an)− ψ (j + 1)]

,

and for λ > 2

(2.5) Q(λ)(a, j) =
dλQ

djλ
= −

λ−1∑
ρ=0

(
λ− 1
ρ

)
Q(ρ)(a, j)P (λ−1−ρ)(a, j),

where P (0)(a, j) = ψ (j + 1 + an) − ψ (j + 1), for n = 1, 2, 3, ..., and Q(0)(a, j) =
Q(a, j). For i = 1, 2, 3, ...

P (i)(a, j) =
diP

dji
=

di

dji
(ψ (j + 1 + an)− ψ(j + 1))(2.6)

= (−1)ii!
an∑

r=1

1

(r + j)i+1

= (−1)ii! [ζ (i+ 1, j + 1)− ζ (i+ 1, j + 1 + an)] .

Proof. Let

Q(a, j) =
(
an+ j

j

)−1

=
Γ (an+ 1) Γ (j + 1)

Γ (an+ j + 1)
=

Γ (an+ 1)∏an
r=1 (r + j)

.

Taking logs of both sides and differentiating with respect to j we obtain the result
(2.4).
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Now from (2.4) and for λ > 2

Q(λ)(a, j) =
dλQ

djλ
= Q(λ)(a, j) =

dλ−1

djλ−1
(−QP ) = −

λ−1∑
ρ=0

(
λ− 1
ρ

)
Q(ρ)P (λ−1−ρ)

and P (λ−1−ρ) (a, j) is given by (2.6).

Remark 1. We list the following

Q(1)(a, j) = −
(
an+ j

j

)−1 [
H

(1)
an+j −H

(1)
j

]
Q(2)(a, j) =

(
an+ j

j

)−1 [(
H

(1)
an+j −H

(1)
j

)2

+H
(2)
an+j −H

(2)
j

]
=
(
an+ j

j

)−1
[

an∑
r=1

r∑
s=1

2
(r + j) (s+ j)

]
,

Q(3)(a, j) = −
(
an+ j

j

)−1 [(
H

(1)
an+j −H

(1)
j

)3

+ 2
[
H

(3)
an+j −H

(3)
j

]
+3
[
H

(2)
an+j −H

(2)
j

] [
H

(1)
an+j −H

(1)
j

]]
.

In the special case when a = 1 and j = 0 we may write
Q(1)(1, 0) = −H(1)

n ,

Q(2)(1, 0) =
(
H

(1)
n

)2

+H
(2)
n ,

Q(3)(1, 0) =
(
H

(1)
n

)3

+ 3H(1)
n H

(2)
n + 2H(3)

n .

The generalised harmonic numbers are given by

H(r)
n =

n∑
k=1

1
kr

; Hn = H(1)
n .

The Digamma function ψ (z) is defined as

ψ (z) =
d

dz
log Γ (z) =

Γ′ (z)
Γ (z)

or log Γ (z) =
∫ z

1

ψ (t) dt,

and has [5] the series representation

ψ (z) =
∞∑

r=0

(
1

r + 1
− 1
r + z

)
− γ,

where γ is the Euler-Mascheroni constant, defined by

γ = lim
n→∞

(
n∑

r=1

1
r
− log (n)

)
= −ψ (1) ≈ 0.577215664901532860606512 . . . ,
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and Γ (z) is the Gamma function. Similarly the polygamma function ψ(k) (z) , k ∈
N ∪ {0} , N = {1, 2, 3, . . . } . is defined by

ψ(k) (z) =
dk+1

dzk+1
log Γ (z) =

dk

dzk

(
Γ′ (z)
Γ (z)

)
= −

∫ 1

t=0

[log(t)]k tz−1

1− t
dt, k ∈ N0 := N ∪ {0} ,

ψ(0) (z) = ψ (z) . The polygamma function is connected to the Hurwitz zeta function
by ψ(k) (z) = (−1)k+1ζ (k + 1, z) . The Digamma function is connected to the classical
result

(2.7)
∞∑

n=1

(m)n

n (p)n

= ψ (p)− ψ (p−m)

for R (p−m) > 0; p /∈ Z−0 := {−1,−2,−3, . . . } , where

(m)n =
Γ (m+ n)

Γ (m)
=

 1; n = 0

m (m+ 1) (m+ 2) · · · (m+ n− 1) ; n ∈ N

denotes the Pochhammer symbol, or the shifted factorial symbol. The well documented
Gauss summation formula

∞∑
n=0

(m)n (q)n

n! (p)n

=
Γ (p) Γ (p−m− q)
Γ (p−m) Γ (p− q)

, R (p−m− q) > 0; p /∈ Z−0

is also closely related to the summation (2.7). One dimensional Euler sums may be
written in the form (other forms are possible)

En =
∞∑

n=1

tn
[
H

(r)
n

]p
nq

, t = {1,−1} .

In the study of Euler sums En, there inevitably appears a rich zoo of special functions
including gamma, digamma, polygamma, polylogarithms, zeta and many other func-
tions, see for example [3], [2], [4], [1] and [7] . Some of these functions are related in
a special way, such as

H(1)
n = ψ (n+ 1)− ψ (1) = ψ (n+ 1) + γ

and

H(r+1)
n =

(−1)r

r!

(
ψ(r) (n+ 1)− ψ(r) (1)

)
.

We state the following theorem which was given in [6].
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Theorem 2. Let a be a positive real number, m > 0 , |t| 6 1 and j > 0, then
∞∑

n=0

tn
(

n+m−1
n

)(
an+j

j

) = j

∫ 1

0

(1− x)j−1

(1− txa)m dx(2.8)

=a+1 Fa

[
m, 1

a ,
2
a ,

3
a , . . . ,

a
a

1+j
a , 2+j

a , 3+j
a , . . . , a+j

a

∣∣∣∣∣ t
]
.

Remark 2. Many specific examples of (2.8) were given in [6], such as:

∞∑
n=0

(
n+m−1

n

)
Γ
(

n
2 + 1

)
Γ
(

n
2 + j + 1

) = j

∫ 1

0

(1− x)j−1

(1−
√
x)m dx =

2j 2F1

[
2, 1− j

j + 2−m

∣∣∣∣∣− 1

]
(j + 1−m) (j −m)

=
1

m!
(

j−1
j−1−m

) m∑
µ=0

(
m
µ

)
∏j−m

ν=1

(
ν + µ

2

)
and

∞∑
n=0

(
1
α

)n (n+3
n

)(
2n+4

4

) = 4
∫ 1

0

(1− x)3(
1− x2

α

)4 dx =3 F2

[
4, 1

2 , 1
5
2 , 3

∣∣∣∣∣ 1
α

]
, α 6= 1

=
1
4

[
3α+

5
√
α

2
ln
(
α+ 1
α− 1

)
− 3 (α)3/2

2
ln
(
α+ 1
α− 1

)]
.

Now we give a proof of Theorem 1 of this paper.

Proof. From (2.8) we can write
∞∑

n=0

tn
(

n+m−1
n

)(
an+j

j

) = j

∫ 1

0

(1− x)j−1

(1− txa)m dx,

if we now apply the operator [λm (f)](p), from (2.2), we see that
∞∑

n=0

tn np
(

n+m−1
n

)(
an+j

j

) = j

∫ 1

0

(1− x)j−1 [λm (f)](p)
dx.

Now we utilise the operator Q(q)(a, j), from (2.5), to obtain

∞∑
n=0

tn np

(
n+m− 1

n

)
Q(q)(a, j)

= q

∫ 1

0

(1− x)j−1 [λm (f)](p) [log(1− x)]q−1
dx

+ j

∫ 1

0

(1− x)j−1 [λm (f)](p) [log(1− x)]q dx.
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As a matter of interest it is worthwhile to note that for the special case of j = 0
we may express

∞∑
n=0

tnnp

(
n+m− 1

n

)
Q(q)(a, 0) = q

∫ 1

0

(1− x)−1 [λm (f)](p) [log(1− x)]q−1
dx.

The following examples can now be given.

3. Examples

Corollary 1. We consider the case p = 2 so that from (1.1) we have:

∞∑
n=1

tn n2

(
n+m− 1

n

)
dq

djq
[Q (a, j)]

= qmt

∫ 1

0

(1− x)j−1
xa (1 +mtxa)

(1− txa)m+2 [log(1− x)]q−1
dx

+ jmt

∫ 1

0

(1− x)j−1
xa (1 +mtxa)

(1− txa)m+2 [log(1− x)]q dx

From this corollary we can make a number of observations.

Remark 3. For q = 1, a = 2, j = 4,m = 2 and t = −1
∞∑

n=1

(−1)n+1
n2
(

n+1
n

)(
2n+4

4

) 2n∑
r=1

1
r + 4

=
∞∑

n=1

(−1)n+1
n2
(

n+1
n

)(
2n+4

4

) [
H

(1)
2n+4 −

25
12

]

= 2
∫ 1

0

(1− x)3 x2
(
1− 2x2

)
(1 + x2)4

dx+ 8
∫ 1

0

(1− x)3 x2
(
1− 2x2

)
(1 + x2)4

log(1− x)dx

=
23
8

+ 14G− 5ζ (2)− π

8
(29 + 14 ln(2)) +

39
4

ln (2) + 2 (log (2))2 ,

from which we extrapolate the result

∞∑
n=1

(−1)n+1
n2 (n+ 1)(

2n+4
4

) H
(1)
2n+4 =

103
12

+ 5ζ (2) +
π

8

(
29 + 14 ln(2)− 25 · 7

3

)
+

83
12

ln (2)− 14G− 2 (log (2))2 ,

where G is Catalan’s constant, defined by

G =
1
2

∫ 1

0

K(s)ds =
∞∑

r=1

(−1)r

(2r + 1)2
≈ 0.915965...,
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and K(s) is the complete elliptic integral of the first kind, given by

K(s) =
∫ π/2

0

dt√
1− s2 sin2 t

.

Remark 4. For non-integer, a = 1
2 , j = 3,m = 2, q = 3 and t = −1

∞∑
n=1

(−1)n+1
n2 (n+ 1)Q(3)

(
1
2
, 3
)

= 6
∫ 1

0

(1− x)2 x
1
2

(
1− 2x

1
2

)
(
1 + x

1
2

)4 [log(1− x)]2 dx

+ 6
∫ 1

0

(1− x)2 x
1
2

(
1− 2x

1
2

)
(
1 + x

1
2

)4 [log(1− x)]3 dx

=
32803

2
+ 2 log(4)

[
33 {log(4)}3 − 130 {log(4)}2 + 1230 log(4)− 4080

]
+ 24

[
65 log(4)− 205− 33 {log(4)}2

]
ζ (2)

+ [3168 log(4)− 3120] ζ (3)− 3564ζ (4) ,

and Q(3)
(

1
2 , 3
)

can be evaluated from (2.5).

Remark 5. The very special case of a = 1, j > m+ 2, q ∈ N and t = 1, gives
∞∑

n=1

n2

(
n+m− 1

n

)
Q(q) (1, j)

= qm

∫ 1

0

(1− x)j−m−3
x (1 +mx) [log(1− x)]q−1

dx

+ jm

∫ 1

0

(1− x)j−m−3
x (1 +mx) [log(1− x)]q dx

= (−1)q mq!

[
(m+ 1) (m+ 2)
(j −m− 2)q+1 − (m+ 1) (2m+ 1)

(j −m− 1)q+1 +
m2

(j −m)q+1

]
.

We can note that
∞∑

j=m+3

∞∑
n=1

n2

(
n+m− 1

n

)
Q(q) (1, j) ≈ O (ζ (q + 1)) .

For the case q = 4,
∞∑

j=m+3

∞∑
n=1

n2

(
n+m− 1

n

)
Q(4) (1, j) = 24m+ 72m2 +

93
4
m3 + 24mζ (5) .
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