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A more important Galois connection between distance
functions and inequality relations

aSándor Buglyó and bÁrpád Száz

Abstract. In a former paper, by using the ideas of R. DeMarr, the second

author established a useful Galois connection between distance functions on X

and inequality relations on X× R .

Now, by using the ideas of A. Brøndsted, M. Altman and the second author,
we establish a more important Galois connection between distance functions and

inequality relations on the same set X .

Introduction

Let X be a set and R̄ = R ∪ {−∞, +∞} . Denote by DX and EX the function
space R̄ X 2

and the power set P (X 2) , respectively. Moreover, let Φ be a fixed
member of DX .

Now, following the ideas of Brøndsted [ 7 ] and Altman [ 1 ] , for any d ∈ DX and
x , y ∈ X , we may naturally define

x 6d y ⇐⇒ d ( x , y ) 6 Φ (x , y ) .

Moreover, for any 6∈ EX and x, y ∈ X , we may also naturally define

d6( x , y ) = Φ (x , y ) if x 6 y and d6( x , y ) = +∞ if x 66 y .

Namely, thus we can show that the mappings

d 7→ 6d and 6 7→ d6

establish a decreasing Galois connection between the partially ordered sets DX and
EX in the sense that, for any d ∈ DX and 6∈ EX , we have

6 ⊂ 6d ⇐⇒ d 6 d6 .

Therefore, the extensive theory of Galois connections can be applied to investigate the
induced relations 6d and d6 .
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18 S. BUGLYÓ AND Á. SZÁZ

In particular, assume now that X = S×R for some set S . Then, having in
mind the results of DeMarr [ 15 ] , for any ρ ∈ DS and (p , λ), (q, µ) ∈ X, we may
naturally define

dρ

(
( p , λ ) , ( q , µ )

)
= ρ ( p , q ) .

Moreover, for any d ∈ DX and p , q ∈ S , we may also naturally define

ρd( p , q ) = inf
{

d
(
( p , λ ) , ( q , µ )

)
: λ , µ ∈ R

}
.

Namely, thus we can show that the mappings

ρ 7→ dρ and d 7→ ρd

establish an increasing Galois connection between the partially ordered sets DS and
DX in the sense that, for any ρ ∈ DS and d ∈ DX , we have

dρ 6 d ⇐⇒ ρ 6 ρd .

The importance of the latter Galois connection lies mainly in the fact that if in
particular

Φ
(
( p , λ ) , ( q , µ )

)
= µ − λ .

for all (p , λ), (q , µ) ∈ X , then for any ρ ∈ DS and (p , λ), (q, µ) ∈ X we have

( p , λ ) 6 dρ ( q , µ ) ⇐⇒ ρ ( p , q ) 6 µ− λ .

Moreover, for any 6∈ EX and p , q ∈ S , we have

ρd6 ( p , q ) = inf
{

µ− λ : ( p , λ ) 6 ( q , µ )
}

.

Therefore, the relations 6 dρ
and ρd6 are straightforward generalizations of those

considered by DeMarr [ 15 ] and the second author [ 24 ] .

Thus, it is not surprising that the mappings

ρ 7→ 6 dρ and 6 7→ ρ d6

establish a decreasing Galois connection between the partially ordered sets DS and
EX . For this, it is enough to note now only that, for any ρ ∈ DS and 6∈ EX , we
have

6⊂6 dρ ⇐⇒ dρ 6 d6 ⇐⇒ ρ 6 ρd 6 .

Therefore, the extensive theory of Galois connections can also be applied to investigate
the composite relations 6 dρ

and ρd 6 .

The most important basic facts on Galois connections, which may be unfamiliar
to the reader, will be briefly laid out in next preparatory sections with the help of the
notion of Pataki connections. This new notion lies strictly between those of closure
operations and Galois connections.
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1. The definitions of Galois and Pataki connections

If X is a set and 6 is a reflexive, transitive and antisymmetric relation on X ,
then the ordered pair X ( 6 ) = ( X, 6 ) is called a poset [ 3 ] .

If X ( 6 ) is a poset, then by taking X ′ = X and 6′ = > , we can at once get
another poset X ′( 6′) . This poset is called the dual of the former one.

Now, a function f of one poset X to another Y may be naturally called increasing
if x1 6 x2 implies f (x1) 6 f ( x2) for all x1 , x2 ∈ X .

Moreover, a function f of one poset X to another Y may be naturally called
decreasing if it is an increasing function of X to the dual Y ′ of Y .

The following definition is a dual to Schmidt’s ingenious reformulation [ 20 , p.
205 ] of Ore’s definition of Galois connections [ 17 ] . ( See also [ 19 ] , [ 9 , p. 155 ] and
[ 35 ] .)

Definition 1.1. If X and Y are posets and ∗ and ? are functions of X and
Y to Y and X , respectively, such that

x∗ 6 y ⇐⇒ x 6 y?

for all x ∈ X and y ∈ Y , then we say that the functions ∗ and ? establish an
increasing Galois connection between X and Y .

Remark 1.1. Now, we may naturally say that the functions ∗ and ? establish a
decreasing Galois connection between X and Y if they establish an increasing Galois
connection between X and Y ′.

Theoretically, increasing Galois connections are more natural than the decreasing
ones. However, in the practical applications one usually encounters with the decreasing
ones.

Example 1.1. Let R be a relation on one set X to another Y . For any A ⊂ X
and B ⊂ Y , define

ub (A) =
{

y ∈ Y : ∀ x ∈ A : xR y
}

and
lb (B) =

{
x ∈ X : ∀ y ∈ B : xR y

}
.

Then, it can be easily seen that the mappings

A 7→ ub (A) and B 7→ lb (B) ,

where A ⊂ X and B ⊂ Y , establish a decreasing Galois connection between the
posets P (X ) and P (Y ) .

Remark 1.2. The above construction was first considered by Birkhoff [ 3 , p.
122 ] in 1940 under the name polarities. ( For some further studies, see also Ore [ 17 ]
and Everett [ 12 ] .)

Ordered triples ( X , Y , R ) , consisting of two sets X and Y and a relation R
on X to Y , have recently been also studied by several authors under the name formal
contexts [ 13 ] . These are important particular cases of relator spaces investigated by
the second author in [ 25 ] .
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Concerning the present definition of Galois connections, it is also worth mentioning
the following

Theorem 1.1. If ∗ and ? establish an increasing Galois connection between X
and Y , then ? and ∗ establish an increasing Galois connection between Y ′ and X ′.

Proof. Namely, for any y ∈ Y and x ∈ X , we have

g (y) 6′ x ⇐⇒ x 6 g (y) ⇐⇒ f (x) 6 y ⇐⇒ y 6′ f (x) .

�

The following analogue of Definition 1.1 has mainly been suggested to us by the
various structures derived from relators and the operations induced by these structures.
( See [ 21 ] , [ 22 ] , [ 18 ] and [ 28 ] .)

Definition 1.2. If ∗ is a function of one poset X to another Y and − is a
function of X to itself such that

x1 6 x−2 ⇐⇒ x∗1 6 x∗2

for all x1 , x2 ∈ X , then we say that the functions ∗ and − establish an increasing
Pataki connection between X and Y .

Remark 1.3. Now, we may naturally say that the functions ∗ and − establish a
decreasing Pataki connection between X and Y if they establish an increasing Pataki
connection between X and Y ′.

A close relationship between Galois and Pataki connections can be revealed by
the following

Theorem 1.2. If ∗ and ? establish an increasing Galois connection between
X and Y and − = ∗ ? , then ∗ and − establish an increasing Pataki connection
between X and Y .

Proof. Namely, for any x1 , x2 ∈ X , we have

x1 6 x−2 ⇐⇒ x1 6 x ∗ ?
2 ⇐⇒ x1 6 ( x ∗2 )? ⇐⇒ x ∗1 6 x ∗2 .

�

Remark 1.4. From the above theorem, we can see that several properties of
Galois connections can be immediately derived from those of Pataki connections.

Moreover, by using Theorem 1.2, we can easily establish the following

Example 1.2. Under the notation of Example 1.3, the mappings

A 7→ ub (A) and A 7→ lb
(
ub (A)

)
,

where A ⊂ X, establish a decreasing Pataki connection between the posets P (X )
and P (Y ) .

According to Erné [ 11 , p. 50 ] , the origins of the following brief reformulation
of the usual definition of closure operations [ 3 , p. 111 ] goes back to R. Dedekind.
( A closely related characterization was also observed by Everett [ 12 ] .)
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Definition 1.3. A function − of a poset X to itself is called a closure operation
on X if − and − establish an increasing Pataki connection between X and X .

Remark 1.5. Now, a function ◦ of a poset X to itself may be naturally called
an interior operation on X if it is a closure operation on the dual X ′ of X .

Thus, Pataki connections are more general objects than closure and interior ope-
rations. Moreover, we shall see that they are less general than Galois connections.

2. Some basic properties of Pataki connections

Simple applications of Definition 1.2 immediately yield the following

Theorem 2.1. If ∗ and − establish an increasing Pataki connection between X
and Y , then

(1) − is extensive ; (2) ∗ is increasing ; (3) ∗ = −∗ .

Proof. For any x ∈ X , we have x∗ 6 x∗ and x− 6 x− . Hence, by using
Definition 1.2, we can infer that x 6 x− and x−∗ 6 x∗. Therefore, the assertion
(1) and the inequality −∗ 6 ∗ are true.

Moreover, if x1 , x2 ∈ X such that x1 6 x2 , then because of the inequality
x2 6 x−2 we also have x1 6 x−2 . Hence, by using Definition 1.2, we can infer that
x ∗1 6 x ∗2 . Therefore, the assertion (2) is also true. Now, if x ∈ X , then from the
inequality x 6 x− we can see that x∗ 6 x−∗ . Therefore, the inequality ∗ 6 −∗ ,
and thus the assertion (3) is also true. �

Now, by using the above theorem and Definitions 1.2 and 1.3, we can also easily
prove the following

Theorem 2.2. If ∗ is a function of one poset X to another Y and − is a
function of X to itself, then the following assertions are equivalent :

(1) ∗ and − establish an increasing Pataki connection between X and Y ;

(2) − is a closure operation on X , and x−1 6 x−2 is equivalent to x∗1 6 x∗2
for all x1 , x2 ∈ X .

Proof. If (2) holds, then by Definitions 1.3 and 1.2, for any x1 , x2 ∈ X , we
have

x1 6 x−2 ⇐⇒ x−1 6 x−2 ⇐⇒ x∗1 6 x∗2.

Therefore, by Definition 1.2, (1) also holds.
While, if (1) holds, then by Definition 1.2 and Theorem 2.1, for any x1 , x2 ∈ X ,

we have
x1 6 x−2 ⇐⇒ x−∗1 6 x∗2 ⇐⇒ x∗1 6 x∗2.

Therefore, by Definition 1.3, the first part of (1) is true. Moreover, from the above
equivalences, we can also see that the second part of (2) is also true. �

From this theorem, by Definition 1.3, it is clear that in particular we also have
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Corollary 2.1. If − is a function of a poset X to itself, then the following
assertions are equivalent :

(1) − is a closure operation on X ;

(3) ∗ and − establish an increasing Pataki connection between X and Y for
some function ∗ of X to another poset Y .

Moreover, by using Theorem 2.1, we can also easily prove the following theorem
which shows the equivalence of the two definitions of closures.

Theorem 2.3. If − is a function of a poset X to itself, then the following
assertions are equivalent :

(1) − is a closure operation on X ;

(2) − is increasing, extensive, and idempotent .

Remark 2.1. Hence, we can see that if − is an increasing and extensive function
of a poset X to itself such that x−− 6 x− for all x ∈ X, then − is already a
closure operation on X .

Definition 2.1. If − is a closure operation on a poset X , then an element x of
X is called closed if x− 6 x .

By Theorem 2.3, it is clear that, under the notation X− =
{

x− : x ∈ X
}

, we
have the following

Theorem 2.4. If − is a closure operation on a poset X , then for any x ∈ X
the following assertions are equivalent :

(1) x is closed ; (2) x = x− ; (3) x ∈ X− .

Remark 2.2. Now, by Theorems 2.3 and 2.4, we can also state that x− =
min { y ∈ X− : x 6 y } for all x ∈ X . Therefore, the closed elements of X uniquely
determine the closure operation on X .

In [ 35 ] , the second author has also proved a straightforward extension of the
following

Theorem 2.5. If ∗ is a function of one poset X to another Y and − is a
function of X to itself, then the following assertions are equivalent :

(1) ∗ and − establish an increasing Pataki connection ;

(2) ∗ is increasing and x− = max {u ∈ X : u∗ 6 x∗} for all x ∈ X .

Hence, it is clear that in particular we also have

Corollary 2.2. If ∗ is a function of one poset X to another Y , then there
exists at most one function − of X to itself such that ∗ and − establish an
increasing Pataki connection.
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Remark 2.3. Moreover, from Theorem 2.5 we can see that a function − of
a poset X to itself is a closure operation on X if and only if it is increasing and
x− = max {u ∈ X : u− 6 x−} for all x ∈ X .

Finally, we note that the following theorem is also true.

Theorem 2.6. If ∗ and − establish an increasing Pataki connection between X
and Y , then the following assertions are equivalent :

(1) ∗ is injective ; (2) − is the identity.

Remark 2.4. Hence, it is clear that a closure operation on X is injective if and
only if it is the identity.

Note that the corresponding statements for interior operations and decreasing
Pataki connections can be easily derived from the former results by appropriate dual-
izations.

3. Some basic properties of Galois connections

By Theorems 1.2 and 2.2, we evidently have the first parts of the following asser-
tions. The second parts can be obtained by using Theorem 1.1.

Theorem 3.1. If ∗ and ? establish an increasing Galois connection between X
and Y , then

(1) ∗ and ? are increasing ;

(2) ∗ ? is a closure and ? ∗ is an interior operation ;

(3) ∗ = ∗ ? ∗ and ? = ? ∗ ? .

Hence, by using Theorem 2.4, we can easily derive the following

Corollary 3.1. If ∗ and ? establish an increasing Galois connection between
X and Y , then Y ? is the family of all closed elements of X with respect to the
closure operation ∗ ? .

Proof. Note that X ∗ ⊂ Y , and thus X ∗? ⊂ Y ? . Moreover, Y ? ⊂ X , and
thus Y ? = Y ?∗? =

(
Y ?

)∗? ⊂ X ∗? . Therefore, Y ? = X ∗? , and thus by Theorem
2.4 the required assertion is also true. �

Moreover, by using Theorem 3.1, we can also easily establish the following

Example 3.1. Under the notation of Example 1.3, the mappings

A 7→ lb
(
ub (A)

)
and B 7→ ub

(
lb (B)

)
,

where A ⊂ X and B ⊂ Y , are closure operations on the posets P (X ) and P (Y ) ,
respectively.
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Remark 3.1. If − is a closure operation on a complete poset P , then it can be
shown that the closed elements of P form a complete poset. ( See [ 3 , p. 112 ] or [ 9 ,
p. 146 ].)

Thus, in particular the cuts lb
(
ub (A)

)
, where A ⊂ X , form a complete poset.

In the X = Y particular case, it is called the Dedekind–McNeille completion of X .
( See [ 3 , p. 126 ] or [ 9 , p. 166 ] .)

By using Theorem 3.1, we can also easily prove the following theorem which shows
the equivalence of the two definitions of Galois connections.

Theorem 3.2. If X and Y are posets and ∗ and ? are functions of X and Y
to Y and X , respectively, then the following assertions are equivalent :

(1) ∗ and ? establish an increasing Galois connection ;

(2) ∗ and ? are increasing and x 6 x∗? and y?∗ 6 y for all x ∈ X and
y ∈ Y .

In [ 35 ] , the second author has also proved a straightforward extension of the
following theorem whose origins go back to Pickert [ 19 ] .

Theorem 3.3. If X and Y are posets and ∗ and ? are functions of X and Y
to Y and X , respectively, then the following assertions are equivalent :

(1) ∗ and ? establish an increasing Galois connection ;

(2) ∗ is increasing and y? = max {x ∈ X : x∗ 6 y} for all y ∈ Y .

Hence, it is clear that in particular we also have

Corollary 3.2. If ∗ is a function of one poset X to another Y , then there
exists at most one function ? of Y to X such that ∗ and ? establish an increasing
Galois connection.

Now, as an certain converse to Theorem 1.2, we can also prove the following

Theorem 3.4. If ∗ and − establish an increasing Pataki connection between X
and Y such that ∗ is onto Y , then there exists a unique function ? of Y to X such
that ∗ and ? establish an increasing Galois connection between X and Y . Moreover,
we have − = ∗ ? .

Proof. By the axiom of choice, there exists a function ϕ of Y to X such that
y = ϕ (y)∗ for all y ∈ Y . Define y? = ϕ (y)− for all y ∈ Y . Then, by the
corresponding definitions, it is clear that

x 6 y? ⇐⇒ x 6 ϕ (y)− ⇐⇒ x∗ 6 ϕ (y) ⇐⇒ x∗ 6 y .

Therefore, ∗ and ? establish an increasing Galois connection between X and Y .
Now, to complete the proof, it remains to note only that by Corollary 3.2 ?

is unique. Moreover, by Theorem 1.2, ∗ and ∗ ? establish an increasing Pataki
connection between X and Y . Therefore, by Corollary 2.2, − = ∗ ? also holds. �
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Remark 3.2. The above theorem shows that Galois connections are somewhat
more general objects than Pataki connections.

However, in the theory of relator spaces the latter ones have proved to be more
natural and important tools than the former ones.

Finally, we note that the following theorem is also true.

Theorem 3.5. If ∗ and ? establish an increasing Galois connection between X
and Y , then the following assertions are equivalent :

(1) ∗ is onto Y ; (2) ? is injective ; (3) ? ∗ is the identity .

Hence, it is clear that in particular we also have

Corollary 3.3. If ∗ and ? establish an increasing Galois connection between
X and Y such that ∗ is injective and onto Y , then ? is just the inverse of ∗ .

Remark 3.3. The corresponding statements for decreasing Galois connections
can be easily derived from the preceding results by dualizations.

4. The induced inequalities and écarts

Definition 4.1. Let X be a set and R̄ = R ∪ {−∞ , +∞} . Then a function d
of X 2 to R̄ is called an écart on X .

Remark 4.1. In particular, an écart d on X is called a distance function if
0 6 d (x , y ) for all x , y ∈ X .

Moreover, a distance function d on X is called a quasi-pseudo-metric if
d ( x , x ) = 0 and d ( x , z ) 6 d ( x , y ) + d ( y , z ) for all x , y , z ∈ X . In most
of the existing literature the finite valuedness of d is also required.

The following definition has mainly been suggested by Brøndsted [ 7 ] and Altman
[ 1 ] .

Definition 4.2. Let Φ be a fixed écart on X . For any écart d on X and
x , y ∈ X , define

x 6d y ⇐⇒ d ( x , y ) 6 Φ (x , y ) .

Concerning the induced inequality relation 6d , in [ 34 ] , the second author has
established the following propositions.

Proposition 4.1. The following assertions are equivalent :

(1) 6d is reflexive on X ; (2) d ( x , x ) 6 Φ (x , x ) for all x ∈ X .

Proposition 4.2. If

d ( x , z ) 6 d ( x , y ) + d ( y , z ) and Φ (x , y ) + Φ ( y , z ) 6 Φ (x , z )

for all x , y , z ∈ X , then the relation 6d is transitive.
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Proposition 4.3. If for any x , y ∈ X we have

0 6 d (x , y ) and Φ (x , y ) 6 −Φ ( y , x ) ,

and moreover d ( x , y ) = 0 , d ( y , x ) = 0 , Φ (x , y ) = 0 and Φ ( y , x ) = 0 imply
x = y , then the relation 6d is antisymmetric.

Proof. If x 6 y and y 6 x , then

d ( x , y ) 6 Φ (x , y ) and d ( y , x ) 6 Φ ( y , x ) ,

and thus −Φ ( y , x ) 6 −d ( y , x ) . Hence, we can already see that

0 6 d ( x , y ) 6 Φ (x , y ) 6 −Φ ( y , x ) 6 −d ( y , x ) 6 0 ,

and thus

d ( x , y ) = 0 , d ( y , x ) = 0 , Φ (x , y ) = 0 , Φ ( y , x ) = 0 .

Therefore, x = y also holds. �

Remark 4.2. Note that if in particular d is a quasi-metric and −Φ is a quasi-
pseudo-metric on X , then 6d is already a partial order on X .

Namely, in this case Φ satisfies the converse of the triangle inequality. Thus, in
particular, for any x , y ∈ X , we have Φ (x , y ) + Φ ( y , x ) 6 Φ (x , x ) = 0 , and
hence Φ (x , y ) 6 −Φ ( y , x ) .

In addition to Definition 4.2, we may also naturally introduce the following

Definition 4.3. For any relation 6 on X and x , y ∈ X , define

d6( x , y ) = Φ (x , y ) if x 6 y and d6( x , y ) = +∞ if x 66 y .

Concerning the induced écart d6 , we can easily establish the following proposi-
tions.

Proposition 4.4. The following assertions are equivalent :

(1) 0 6 d6( x , y ) for all x , y ∈ X ;

(2) 0 6 Φ (x , y ) for all x , y ∈ X with x 6 y .

Proposition 4.5. The following assertions are equivalent :

(1) d6(x , x ) = 0 for all x ∈ X ;

(2) 6 is reflexive on X and Φ (x , x ) = 0 for all x ∈ X .

Proposition 4.6. If Φ is finite-valued, then following assertions are equivalent :

(1) d6(x , z ) 6 d6( x , y ) + d6( y , z ) for all x , y , z ∈ X ;

(2) 6 is transitive and Φ (x , z ) 6 Φ (x , y ) + Φ ( y , z ) for all x , y , z ∈ X
with x 6 y and y 6 z .
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Proof. If x , y , z ∈ X , such that x 6 y and y 6 z , then by (1), Definition
4.3, and the assumption +∞ /∈ Φ (X 2) , we have

d6(x , z ) 6 d6( x , y ) + d6( y , z ) = Φ ( x , y ) + Φ ( y , z ) < +∞ .

Hence, by using Definition 4.3, we can infer that x 6 z and d6(x , z ) = Φ (x , z ) .
Therefore, (1) implies (2).

To prove the converse implication, note that if x , y , z ∈ X such that either
x 66 y or y 66 z , then by Definition 4.3 and the assumption −∞ /∈ Φ (X 2) , we
have d6( x , y )+ d6( y , z ) = +∞ . Therefore, the required inequality automatically
holds. While if x 6 y and y 6 z , then by (2) and Definition 4.3 we have x 6 z and

d6( x , z ) = Φ (x , z ) 6 Φ (x , y ) + Φ ( y , z ) = d6( x , y ) + d6( y , z ) .

�

Remark 4.3. In this respect it is also worth noticing that if +∞ /∈ Φ( X 2) and
6 is an antisymmetric relation on X such that x < y for some x , y ∈ X , then the
écart d6 is not symmetric.

Namely, in this case x 6 y and x 6= y . Hence, by the antisymmetry of 6 , we
have y 66 x . Therefore, d6( y , x ) = +∞ , but d6 ( x , y ) = Φ (x , y ) 6= +∞ .
Thus, d6( x , y ) 6= d6( y , x ) .

5. Galois connections between écarts and inequalities

Definition 5.1. Let X be a set, and denote by D and E the families of all écarts
d and relations 6 on X , respectively.

Moreover, consider the families D and E to be partially ordered by the pointwise
inequality and the ordinary set inclusion, respectively.

Remark 5.1. Thus, we have D = R̄ X 2
and E = P ( X 2) . Hence, it is clear that

D and E are complete posets.

Moreover, to clear up the appropriateness of our former Definition 4.3, we can
easily prove the following

Theorem 5.1. The mappings

d 7→ 6d and 6 7→ d6

establish a decreasing Galois connection between D and E .

Proof. If d ∈ D and 6∈ E , then by Definitions 4.2 and 4.3 it is clear that
6d∈ E and d6 ∈ D . Therefore, by Definition 1.1 and Remark 1.1, we need only
show that

6 ⊂ 6d ⇐⇒ d 6 d6 .

For this, note that if x , y ∈ X such that x 6 y , then by Definition 4.3 we have
d6( x , y ) = Φ (x , y ) . Hence, if d 6 d6 , we can infer that d ( x , y ) 6 Φ (x , y ) .
Therefore, by Definition 4.2, we have x 6d y . This show that d 6 d6 implies
6 ⊂ 6d .
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To prove the converse implication, note that if d 66 d6 , then there exist
x , y ∈ X such that d ( x , y ) 66 d6( x , y ) , and hence d6( x , y ) < d ( x , y ) . Thus,
in particular d6( x , y ) < +∞ . Hence, by using Definition 4.3, we can infer that
x 6 y and d6(x , y ) = Φ ( x , y ) . Thus, in particular Φ ( x , y ) < d ( x , y ) , and
hence d ( x , y ) 66 Φ (x , y ) . Therefore, by Definition 4.2, we have x 66d y . Conse-
quently, 6 6⊂6d . This shows that 6⊂6d also implies d 6 d6 . �

Remark 5.2. From this theorem, by Corollary 3.2, we can see that the definition
of d6 cannot be altered without disturbing the validity of Theorem 5.1.

Moreover, from Theorem 5.1, by using the results of Section 3, we can easily derive
several useful facts about the induced inequalities and écarts.

For instance, by Theorems 5.1 and 3.1 and Remarks 1.1 and 1.5, we have the
following

Theorem 5.2. The following assertions are true :

(1) the mappings d 7→ 6d and 6 7→ d6 are decreasing ;

(2) the mappings d 7→ d6d
and 6 7→ 6d6 are closure operations ;

(3) 6d = 6d6d
for all d ∈ D and d6 = d6d6

for all 6∈ E .

Hence, by Corollary 3.1, it is clear that we also have the following

Corollary 5.1. The following assertions are true :

(1) d is a closed member of D if and only if d = d6 for some 6∈ E ;

(2) 6 is a closed member of E if and only if 6=6d for some d ∈ D .

In addition to Theorem 5.2, we can also easily establish the following

Theorem 5.3. For any d ∈ D and x , y ∈ X , we have

(1) d6d
( x , y ) = Φ (x , y ) whenever d ( x , y ) 6 Φ (x , y ) ;

(2) d6d
( x , y ) = +∞ whenever Φ (x , y ) < d ( x , y ) .

Proof. If d (x , y ) 6 Φ (x , y ) , then by Definition 4.2 x 6d y . Hence, by
Definition 4.3, d6d

( x , y ) = Φ (x , y ) .
While, if Φ (x , y ) < d ( x , y ) , then d ( x , y ) 66 Φ (x , y ) . Thus, by Definition

4.2, x 66d y . Hence, by Definition 4.3, d6d
( x , y ) = +∞ . �

From this theorem, by using Definition 1.3, we can immediately derive

Corollary 5.2. A member d of D is closed if and only if

(1) d ( x , y ) 6 Φ (x , y ) implies d ( x , y ) = Φ (x , y ) ;

(2) Φ (x , y ) < d ( x , y ) implies d ( x , y ) = +∞ .
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Proof. By Definition 1.1 and Theorem 5.2, d is closed if and only d6d
6 d .

That is, for any x , y ∈ X , we have d6d
( x , y ) 6 d ( x , y ) . However, the lat-

ter inequality, by Theorem 5.3, means only that Φ (x , y ) 6 d ( x , y ) whenever
d ( x , y ) 6 Φ (x , y ) , and +∞ 6 d ( x , y ) whenever Φ (x , y ) < d ( x , y ) . There-
fore, the required assertion is also true. �

From this corollary, it is clear that in particular we also have

Corollary 5.3. If d ∈ D such that +∞ /∈ d ( X 2) , then d is a closed member
of D if and only if d = Φ .

Proof. Namely, if d is a closed member of D , then by Corollary 5.2 Φ (x , y ) <
d ( x , y ) implies d ( x , y ) = +∞ . Therefore, by the assumption +∞ /∈ d ( X 2) , for
any x , y ∈ X we have Φ ( x , y ) ≮ d (x , y ) , and thus d ( x , y ) 6 Φ (x , y ) . Hence,
by Corollary 5.2, it follows that d (x , y ) = Φ ( x , y ) . Therefore, d = Φ . Moreover,
by Corollary 5.2, we can see Φ is a closed member of D . �

In addition to Theorem 5.2, we can also easily establish the following

Theorem 5.4. For any 6∈ E and x , y ∈ X , the following assertions are
equivalent :

(1) x 6d6 y ; (2) Φ (x , y ) = +∞ if x 66 y .

Proof. If (1) holds, then by Definition 4.2 d6( x , y ) 6 Φ (x , y ) . Thus, by
Definition 4.3, +∞ 6 Φ (x , y ) if x 66 y . Therefore, (2) also holds.

Conversely, if (2) holds, then by using Definition 4.3 we can at once see that
d6( x , y ) 6 Φ (x , y ) . Therefore, by Definition 4.2, (1) also holds. �

From this theorem, by using Definition 1.3, we can immediately derive

Corollary 5.4. A member 6 of E is closed if and only if x 6 y whenever
x 66 y implies Φ (x , y ) = +∞ .

Proof. By Definition 1.11 and Theorem 5.2, 6 is closed if and only 6d6⊂6 .
That is, x 6d6 y implies x 6 y . However, by Theorem 5.4, the former inequality
means only that Φ (x , y ) = +∞ if x 66 y . Therefore, the required assertion is also
true. �

Moreover, by using Theorem 5.4, we can also easily prove the following

Theorem 5.5. If +∞ /∈ Φ (X 2) , then 6=6d6 for all 6∈ E .

Proof. If 6∈ E , then by Theorem 5.2 we always have 6⊂6d6 . Moreover,
if x , y ∈ X such that x 6d6 y , then by Theorem 5.4 we have Φ (x , y ) = +∞
whenever x 66 y . Hence, by the assumption Φ (x , y ) 6= +∞ , it is clear that
x 6 y . Therefore, the inclusion 6d6⊂6 also holds. �

Remark 5.3. The above theorem shows that if +∞ /∈ Φ (X 2) , then each mem-
ber of E is closed.

Moreover, as an immediate consequence of Theorem 5.5, we can also state
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Corollary 5.5. If +∞ /∈ Φ (X 2) , then the mapping d 7→ 6d is onto E and
the mapping 6 7→ d6 is injective.

6. A Galois connection between écarts on S and S×R

Definition 6.1. Let S be a set and X = S×R . For any écart ρ on S and
( p , λ ) , ( q , µ ) ∈ X , define

dρ

(
( p , λ ) , ( q , µ )

)
= ρ ( p , q ) .

Concerning the induced écart dρ , we can easily establish the following

Proposition 6.1. dρ is a pseudo-metric on X if and only if ρ is a pseudo-metric
on S .

In this respect, it is also worth proving the following

Proposition 6.2. If d is a pseudo-metric on X such that the mapping

λ 7→ d
(
( p , λ ) ( q , µ )

)
,

is increasing for any p , q ∈ S and µ ∈ R , then d = dρ for some pseudo-metric ρ
on S .

Proof. If λ1 , λ2 ∈ R such that λ1 6 λ2 , then by the assumed increasingness,
for any p , q ∈ S and µ ∈ R , we have

d
(
( p , λ1 ) , ( q , µ )

)
6 d

(
( p , λ2) , ( q , µ )

)
.

Moreover, since d is a pseudo-metric, we also have

d
(
( p , λ2) , ( q , µ )

)
6 d

(
( p , λ2) , ( p , λ1)

)
+ d

(
( p , λ1) , ( q , µ )

)
and

d
(
( p , λ2) , ( p , λ1)

)
= d

(
( p , λ1) , ( p , λ2)

)
6 d

(
( p , λ2) , ( p , λ2)

)
= 0 .

Therefore,
d

(
( p , λ2 ) , ( q , µ )

)
6 d

(
( p , λ1) , ( q , µ )

)
also holds. Thus, we necessarily have

d
(
( p , λ1) , ( q , µ )

)
= d

(
( p , λ2) , ( q , µ )

)
,

even if λ2 6 λ1 . Now, we can also easily see that

d
(
( p , λ1) , ( q , µ1)

)
= d

(
( p , λ2) , ( q , µ1)

)
=

= d
(
( q , µ1 ) , ( p , λ2)

)
= d

(
( q , µ2) , ( p , λ2)

)
= d

(
( p , λ2) , ( q , µ2)

)
for all p , q ∈ S and λ1 , λ2 , µ1 , µ2 ∈ R . Hence, it clear that, by defining

ρ ( p , q ) = d
(
( p , 0 ) , ( q , 0)

)
for all p , q ∈ S , we can get an écart ρ on S such that

dρ

(
( p , λ ) , ( q , µ )

)
= ρ ( p , q ) = d

(
( p , 0) , ( q , 0 )

)
= d

(
( p , λ ) , ( q , µ )

)
for all p , q ∈ S and λ , µ ∈ R , and thus dρ = d . Hence, by Proposition 6.1, we can
see that ρ is also a pseudo-metric. �
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In addition to Definition 6.1, we may also naturally introduce the following

Definition 6.2. For any écart d on X and p , q ∈ S , define

ρd( p , q ) = inf
{

d
(
( p , λ ) , ( q , µ )

)
: λ , µ ∈ R

}
.

Unfortunately, now an analogue of Proposition 6.1 does not hold. However, by
denoting the family of all écarts on S by DS , we can easily prove the following

Theorem 6.1. The mappings

ρ 7→ dρ and d 7→ ρd

establish an increasing Galois connection between DS and DX .

Proof. If ρ ∈ DS and d ∈ DX , then by Definitions 6.1 and 6.2 it is clear that
dρ ∈ DX and ρd ∈ DS . Therefore, by Definition 1.1, we need only show that

dρ 6 d ⇐⇒ ρ 6 ρd .

For this, note that if dρ 6 d and p , q ∈ S , then for any λ , µ ∈ R we have

ρ ( p , q ) = dρ

(
( p , λ ) , ( q , µ )

)
6 d

(
( p , λ ) , ( q , µ )

)
.

Therefore,

ρ ( p , q ) 6 inf
{

d
(
( p , λ ) , ( q , µ )

)
: λ , µ ∈ R

}
= ρd( p , q ) .

Thus, ρ 6 ρd also holds.
Conversely, if ρ 6 ρd holds, then for any (p , λ) , (q , µ) ∈ X , we have

dρ

(
( p , λ ) , ( q , µ )

)
= ρ ( p , q ) 6 ρd( p , q ) =

= inf
{

d
(
( p , α ) , ( q , β , )

)
: α , β ∈ R

}
6 d

(
( p , λ ) , ( q , µ )

)
.

Therefore, dρ 6 d also holds. �

Remark 6.1. From this theorem, by Corollary 3.2, we can see that the definition
of ρd cannot be altered without disturbing the validity of Theorem 6.5.

Moreover, from Theorem 6.1, by Theorem 3.1, we can immediately get the
following assertion which is also quite obvious from Definitions 6.1 and 6.2.

Corollary 6.1. The mappings considered in Theorem 6.1 are increasing.

By using the above mentioned definitions, we can also easily establish the following

Theorem 6.2. For any ρ ∈ DS , we have ρ = ρdρ
.

Proof. Namely,

ρdρ
( p , q ) = inf

{
dρ

(
( p , λ ) , ( q , µ )

)
: λ , µ ∈ R

}
=

= inf
{

ρ ( p , q ) : λ , µ ∈ R
}

= ρ ( p , q )

for all p , q ∈ S . Therefore, the required equality is also true. �

Remark 6.2. The above theorem shows that each member of DS is closed.

Moreover, as an immediate consequence of Theorems 6.2, we can state
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Corollary 6.2. The mapping ρ 7→ dρ is injective and the mapping d 7→ ρd

is onto DS.

Remark 6.3. Finally, we note that from Theorem 6.1, by Theorem 3.1, we can
also state that the mapping d 7→ dρd

is an interior operation on DX .

7. A Galois connection between écarts on S

and inequalities on S×R

Definition 7.1. By using the notation X = S×R , we define

Φ
(
( p , λ ) , ( q , µ )

)
= µ − λ .

for any (p , λ) , (q , µ) ∈ X .
Moreover, by using Definitions 6.1, 4.2, 4.3 and 6.2, we define

6 ρ=6 dρ
and ρ6 = ρd 6

for any ρ ∈ DS and 6∈ EX .

Remark 7.1. Unfortunately, the latter notations may cause some confusions.
However, we trust the reader’s good sense to avoid them.

Now, concerning the induced inequality relation 6 ρ , we can easily establish the
following

Proposition 7.1. For any any ρ ∈ DS and (p , λ) , (q , µ) ∈ X , we have

( p , λ ) 6 ρ ( q , µ ) ⇐⇒ ρ ( p , q ) 6 µ− λ .

Proof. Note that

( p , λ ) 6 ρ ( q , µ ) ⇐⇒ ( p , λ ) 6 dρ
( q , µ ) ⇐⇒

⇐⇒ dρ

(
( p , λ ) , ( q , µ )

)
6 Φ

(
( p , λ ) , ( q , µ )

)
⇐⇒ ρ ( p , q ) 6 µ− λ .

�

Remark 7.2. Thus, 6 ρ is a straightforward generalization of the induced
inequality relations considered by DeMarr [ 15 ] and the second author [ 24 ] . ( Baranga
[ 2 ] has used a slightly different definition.)

In this respect, it is also worth noticing that now, by Definitions 7.1 and 4.3, we
also have the following

Proposition 7.2. For any any 6∈ EX and (p , λ) , (q , µ) ∈ X , we have

d6
(
( p , λ ) , ( q , µ )

)
= µ − λ if ( p , λ ) 6 ( q , µ )

and
d6

(
( p , λ ) , ( q , µ )

)
= +∞ if ( p , λ ) 66 ( q , µ ) .

Hence, by using Definitions 7.1 and 6.2, we can immediately derive the following
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Proposition 7.3. For any 6∈ EX and p , q ∈ S , we have

ρ6( p , q ) = inf
{

µ− λ : ( p , λ ) 6 ( q , µ )
}

.

Proof. Note that

ρ6( p , q ) = ρd6 ( p , q ) = inf
{

d6
(
( p , λ ) , ( q , µ )

)
: λ , µ ∈ R

}
=

= inf
{

µ− λ : ( p , λ ) 6 ( q , µ )
}

.

�

Remark 7.3. Thus, ρ6 is a straightforward generalization the induced écart
considered by the second author in [ 24 ] .

Therefore, it is not surprising that we have the following

Theorem 7.1. The mappings

ρ 7→ 6 ρ and 6 7→ ρ6

establish a decreasing Galois connection between DS and EX .

Proof. If ρ ∈ DS and 6∈ EX , then by the corresponding definitions it is clear
that 6 ρ∈ EX and ρ6 ∈ DS . Moreover, by Theorems 5.1 and 6.1, we can see that

6⊂6 ρ ⇐⇒ 6⊂6 dρ ⇐⇒ dρ 6 d6 ⇐⇒ ρ 6 ρd 6 ⇐⇒ ρ 6 ρ6 .

Therefore, by Definition 1.1 and Remark 1.1, the required assertion is also true. �

Remark 7.4. From this theorem, by Corollary 3.1, we can see that the definition
of ρ6 cannot be altered without disturbing the validity of Theorem 7.1.

Moreover, from Theorem 2.5, by Theorem 3.1 and Remark 1.1, we can imme-
diately get the following assertion which is also quite obvious from the corresponding
definitions.

Corollary 7.1. The mappings considered in Theorem 7.1 are decreasing.

Now, by using Propositions 7.3 and 7.1, we can also easily establish the following

Theorem 7.2. For any ρ ∈ DS , we have ρ = ρ6ρ
.

Proof. Namely,

ρ6ρ
( p , q ) = inf

{
µ− λ : ( p , λ ) 6ρ ( q , µ )

}
=

= inf
{

µ− λ : ρ ( p , q ) 6 µ− λ
}

= ρ ( p , q )

for all p , q ∈ S . �

Remark 7.5. The above theorem shows that each member of DS is closed.

Moreover, as an immediate consequence of Theorems 7.2, we can also state

Corollary 7.2. The mapping ρ 7→ 6ρ is injective and the mapping 6 7→ ρ6

is onto DS .
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From Theorem 7.1, by Theorem 3.1 and Remark 1.1, it is clear that we also have
the following

Theorem 7.3. The mapping 6 7→ 6ρ6 is a a closure operation on EX such
that ρ6 = ρ6ρ6

for all 6∈ EX .

Moreover, by using Propositions 7.1 and 7.3, we can also easily establish the
following

Theorem 7.4. For any 6∈ EX and (p , λ) , (q , µ) ∈ X , the following asser-
tions are equivalent :

(1) ( p , λ ) 6ρ6 ( q , µ ) ;

(2) for each ε > 0 there exist α , β ∈ R such that ( p , α ) 6 ( q , β ) and
β − α < µ− λ + ε .

Proof. Namely,

( p , λ ) 6ρ6 ( q , µ ) ⇐⇒ ρ6( p , q ) 6 µ− λ ⇐⇒
⇐⇒ inf

{
β − α : ( p , α ) 6 ( q , β )

}
6 µ− λ .

Hence, it is clear that assertions (1) and (2) are equivalent. �

From this theorem, by Definition 1.3, it is clear that in particular we have

Corollary 7.3. A member 6 of EX is closed if and only if for any
(p , λ) , (q , µ) ∈ X , having the property (2) established in Theorem 7.4, we already
have (p , λ) 6 (q , µ) .

Remark 7.6. By Theorem 2.4 and Corollary 3.1, we can also state that a member
6 of EX is closed if and only if 6=6ρ6 , or equivalently 6=6ρ for some ρ ∈ DS .

However, it is now more important to note that we can also prove the following

Theorem 7.5. A member 6 of EX is closed if and only if for any (p , λ) ,
(q , µ) ∈ X

(1) ( p , λ ) 6 ( q , µ ) implies ( p , λ + ν ) 6 ( q , µ + ν ) for all ν ∈ R ;

(2) ( p , λ ) 6 ( q , µ ) if and only if ( p , λ ) 6 ( q , µ + ε ) for all ε > 0 .

Proof. If 6 is a closed member of E , then by Remark 7.6 we have 6=6ρ for
some ρ ∈ DS . Hence, by Proposition 7.1, it is clear that the above properties (1) and
(2) hold.

Next, we show that if (1) and (2) hold, then 6ρ6⊂6 , and thus 6 is a closed
member of E . For this, note that if (p , λ) 6ρ6 (q , µ) , then Theorem 7.3, for each
ε > 0 , there exist α , β ∈ R such that

( p , α ) 6 ( q , β ) and β − α < µ− λ + ε .

Hence, by (2), we can see that

( p , α ) 6 ( q , µ− λ + ε + α )
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also holds. However, by (1), this implies that

( p , λ ) 6 ( q , µ + ε ) .

Hence, again by (2), it is clear that (p , λ) 6 (q , µ) , and thus the required inclusion
is also true. �

8. Some further properties of the relations 6ρ and ρ6

By using Propositions 7.1 and 7.3 and Remark 7.6, we can also easily prove the
following analogues of the results of Section 3.

Actually, some of the following propositions can also be derived from those of
Section 4. However, the direct proofs seem more reliable.

Proposition 8.1. If ρ ∈ DS, then the following assertions are equivalent :

(1) 6ρ is reflexive on X ; (2) ρ( p , p ) 6 0 for all p ∈ S .

Corollary 8.1. If 6 is a closed member of EX , then the following assertions
are equivalent :

(1) 6 is reflexive on X ; (2) ρ6( p , p ) 6 0 for all p ∈ S .

Proof. Now, by Remark 7.17, we have 6=6ρ6 . Therefore, the required equi-
valence can be obtained from Proposition 8.1 by writing ρ6 in place of ρ . �

Proposition 8.2. If ρ ∈ DS such that ρ (p , r) 6 ρ(p , q) + ρ (q , r) for all
p , q , r ∈ S , then the relation 6ρ is transitive.

Corollary 8.2. If 6 is a closed member of EX such that the écart ρ6 satisfies
the triangle inequality, then the relation 6 is transitive.

Proposition 8.3. If ρ is a finite-valued écart on S such that the relation 6ρ is
transitive, then ρ satisfies the triangle inequality.

Proof. In this case, for any p , q , r ∈ S we have (p , 0) 6ρ

(
q , ρ (p , q)

)
and(

q , ρ (p , q)
)

6ρ

(
r , ρ (p , q) + ρ (q , r)

)
. Therefore, (p , 0) 6ρ

(
r , ρ (p , q) +

ρ (q , r)
)
, and thus ρ (p , r) 6 ρ(p , q) + ρ (q , r) is also true. �

Corollary 8.3. If 6 is a closed and transitive member of EX such that the
écart ρ6 is finite-valued, then ρ6 satisfies the triangle inequality.

Proposition 8.4. If ρ is a distance function on S such that ρ (p , q) = 0 and
ρ (q , p) = 0 imply p = q , then the relation 6ρ is antisymmetric.

Corollary 8.4. If 6 is a closed member of EX such that ρ6(p , q) = 0 and
ρ6(q , p) = 0 imply p = q , then the relation 6 is antisymmetric.

Proposition 8.5. If ρ ∈ DS such that the relation 6ρ is antisymmetric, then
ρ (p , q) 6 λ and ρ (q , p) 6 −λ imply p = q and λ = 0 .
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Proof. If the above inequalities hold, then (p , 0) 6ρ (q , λ) and (q , λ) 6ρ

(p , 0) . Therefore, (p , 0) = (q , λ) , and thus the required equalities are also true. �

Corollary 8.5. If 6 is a closed and antisymmetric member of EX , then
ρ6(p , q) 6 λ and ρ6(q , p) 6 −λ imply p = q and λ = 0 .

Proposition 8.6. If ρ ∈ DS such that ρ (p , q) = ρ (q , p) for all p , q ∈ S ,
then (p , λ) 6ρ (q , µ) implies (q , λ) 6ρ (p , µ) .

Corollary 8.6. If 6 is a closed member of EX such that the écart ρ6 is
symmetric, then (p , λ) 6 (q , µ) implies (q , λ) 6 (p , µ) .

Proposition 8.7. If ρ is a finite-valued écart on S such that the implication
established in Proposition 8.6 holds, then ρ is symmetric.

Proof. In this case, for any p , q ∈ S we have (p , 0) 6ρ

(
q , ρ( p , q)

)
, and

hence (q , 0) 6ρ

(
p , ρ( p , q)

)
. Therefore, ρ (q , p) 6 ρ (p , q) also holds. �

Corollary 8.7. If 6 is a closed member of EX such that the implication
established in Corollary 8.6 holds, then the écart ρ6 is symmetric.

In this respect, it is also worth mentioning that we also have the following

Proposition 8.8. If ρ ∈ DS, then the following assertions are equivalent :

(1) 6ρ is symmetric ; (2) ρ ( p , q ) = +∞ for all p , q ∈ S .

Proof. Note that if (1) holds and there exist p , q ∈ S such that ρ (p , q) < +∞ ,
then by taking µ = ρ (p , q) + 1 we have (p , 0) 6ρ (q , µ) , and hence (q , µ) 6ρ

(p , 0) . Therefore, ρ (q , p) 6 −µ = −ρ (p , q)−1 , and thus 0 6 ρ (p , q)+ρ (q , p) 6
−1 also holds, which is a contradiction. �

Corollary 8.8. If 6 is a closed member of EX , then the following assertions
are equivalent :

(1) 6 is symmetric ; (2) ρ6( p , q ) = +∞ for all p , q ∈ S .
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U.M.I. 14 (1977), 343–350.

[17] O. Ore, Galois connexions, Trans. Amer. Math. Soc. 55 (1944), 493–513.
[18] G. Pataki, On the extensions, refinements and modifications of relators, Math. Balk. 15 (2001),

155–186.
[19] G. Pickert, Bemerkungen über Galois-Verbindungen, Arch. Math. 3 (1952), 285–289.
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[22] Á. Száz, Refinements of relators, Tech. Rep., Inst. Math. Inf., Univ. Debrecen 76 (1993), 1–19.
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