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Corrections, Improvements, and Comments on Some
Gradshteyn and Ryzhik Integrals

Robert C. Elliott∗ and Witold A. Krzymień

Abstract. In this paper, we prove that two integrals from Gradshteyn and

Ryzhik (2014) [1] (namely, Eqs. 3.937 1 and 3.937 2) provide incorrect results

in certain conditions. We derive those conditions herein and provide the correc-
tions required for those two formulas. We furthermore derive improved formulas

for the solutions to those integrals that are less complicated, avoid the errors of

the original formulas, and work under a larger range of parameter values. The
improved formulas are used to verify the results of a few other related integrals

from [1]; the previous results need correction in some instances, or are correct but
can be extended in other instances. Lastly, we also consider the extended case of
complex-valued parameters and derive the resulting formulas.

1. Introduction

In Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products [1], the follow-
ing results for two definite integrals ([1, Eq. 3.937 1] and [1, Eq. 3.937 2], respectively)
are listed:

(1.1)

∫ 2π

0

exp(p cosx+ q sinx) sin(a cosx+ b sinx−mx) dx

= iπ
[
(b− p)2 + (a+ q)2

]−m/2
×
[
(A+ iB)m/2 Im

(√
C − iD

)
− (A− iB)m/2 Im

(√
C + iD

)]
.

(1.2)

∫ 2π

0

exp(p cosx+ q sinx) cos(a cosx+ b sinx−mx) dx

= π
[
(b− p)2 + (a+ q)2

]−m/2
×
[
(A+ iB)m/2 Im

(√
C − iD

)
+ (A− iB)m/2 Im

(√
C + iD

)]
.
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Im(z) is the modified Bessel function of the first kind. For these two equations, it is
specified that m ∈ N (i.e., m = 0, 1, 2, . . . ), A = p2 − q2 + a2 − b2, B = 2(pq + ab),
C = p2 +q2−a2−b2, D = 2(ap+bq), and it is required that (b−p)2 +(a+q)2 > 0. The
original source for these two formulas is given as Gröbner and Hofreiter ([2, Sec. 339,
Eq. 9b] and [2, Sec. 339, Eq. 9a], respectively). Note that D as given here corrects a
typo in the 8th edition of Gradshteyn and Ryzhik [1], which accidentally inserted a
minus sign into the equation for D. The correct version without the minus sign is in
Gröbner and Hofreiter [2] and earlier editions of [1].

In working with these two equations, we have determined that both of them can
yield an incorrect result. Specifically, when m has an odd value, the sign of the result
will be the opposite of what it should be. The conditions for this occurring depend
on what the values of a, b, p, and q are. In what follows, we show the source of the
error and derive the conditions in which the sign error occurs. We shall also derive
improved alternative formulas that are shorter, avoid this error, and do not require
(b− p)2 + (a+ q)2 > 0.

2. The Original Derivation

Gröbner and Hofreiter [2] give a hint about how to obtain the original formulas,
namely, by contour integration. Let us combine (1.2) and (1.1) together into one
equation by using eiθ = cos θ + i sin θ. This gives:

(2.1)

f =

∫ 2π

0

exp(p cosx+ q sinx) exp[ i(a cosx+ b sinx−mx)] dx

=

∫ 2π

0

exp
[
(p+ ia) cosx+ (q + ib) sinx

]
e−imx dx.

The results of the integral in (1.2) will then ultimately be given by Re(f) = (f +f)/2,
while the results of the integral in (1.1) will be given by Im(f) = (f − f)/(2i), where
f denotes the complex conjugate of f .

We next make the substitution z = eix, which transforms the integral into a
contour integral with the contour C being the complex unit circle.

(2.2)

f =

∮
C

exp

[
(p+ ia)

(
z + z−1

2

)
+ (q + ib)

(
z − z−1

2i

)]
z−m

dz

iz

=

∮
C

exp

[(
p+ ia

2

)
(z + z−1) +

(
b− iq

2

)
(z − z−1)

]
z−m−1 dz

i

=
1

i

∮
C

exp

[
(p+ b) + i(a− q)

2
z +

(p− b) + i(a+ q)

2
z−1

]
z−m−1 dz

For brevity, we shall denote X =
[
(p+b) + i(a−q)

]
/2 and Y =

[
(p−b) + i(a+q)

]
/2.
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Next, we substitute in the power series representation ex =
∑∞
n=0(xn/n!):

(2.3)

f =
1

i

∮
C

∞∑
n=0

z−m−1(Xz + Y z−1)n

n!
dz

=
1

i

∮
C

∞∑
n=0

z−m−1

n!

[
n∑
`=0

(
n

`

)
(Xz)`(Y z−1)n−`

]
dz

=
1

i

∮
C

∞∑
n=0

n∑
`=0

z2`−m−n−1

`! (n− `)!
X` Y n−` dz

(a)
=

1

i

∮
C

∞∑
`=0

∞∑
n=`

z2`−m−n−1

`! (n− `)!
X` Y n−` dz

(b)
=

1

i

∮
C

∞∑
`=0

∑̀
k=−∞

zk−m−1

`! (`− k)!
X` Y `−k dz

(c)
=

1

i

∮
C

∞∑
k=−∞

 ∞∑
`=max(0,k)

X` Y `−k

`! (`− k)!

 zk−m−1 dz.

Equalities (a) and (c) come from reversing the order of the summations, while equality
(b) substitutes k = 2` − n. We are left with a contour integral over a Laurent series
of z. From the residue theorem for contour integration, the value of the integral will
be 2πi times the coefficient of the z−1 term of the series; see e.g. Krantz [3]. This
coefficient occurs when k = m. We therefore obtain:

(2.4) f =
2πi

i

∞∑
`=m

X` Y `−m

`! (`−m)!
= 2π

∞∑
j=0

Xj+m Y j

(j +m)! j!
= 2πXm

∞∑
j=0

Xj Y j

j! (j +m)!
,

with the substitution j = `−m.
We now note the following power series representation of Iν(z) (Gradshteyn and

Ryzhik [1, Eq. 8.445]):

(2.5) Iν(z) =

∞∑
k=0

(z/2)ν+2k

k! Γ(ν + k + 1)
=
(z

2

)ν ∞∑
k=0

(z/2)2k

k! Γ(ν + k + 1)
.

Note also that for ν ∈ N, Γ(ν + k + 1) = (ν + k)!. Then, a comparison of (2.4) and
(2.5) shows they are very similar in form. We may manipulate (2.4) to obtain

(2.6)

f = 2π(X1/2)m (Y
1/2

)m (Y
1/2

)−m (Y 1/2)−m

× (Y 1/2)m (X1/2)m
∞∑
j=0

(X1/2)2j (Y 1/2)2j

j! (j +m)!
.

Then, combining alike exponents:

(2.7) f = 2π(XY )m/2(Y Y )−m/2
[
(XY )1/2

]m ∞∑
j=0

[
(XY )1/2

]2j
j! (j +m)!

,
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and by assigning z/2 = (XY )1/2, we get

(2.8) f = 2π(XY )m/2(Y Y )−m/2 Im
(
2
√
XY

)
.

From basic algebra, one can find that Y Y = |Y |2 = [(b−p)2 + (a+q)2]/4, XY =

(A− iB)/4, and 2
√
XY =

√
C + iD. The factor of 1/4 cancels in the first two terms

of (2.8). We then finally obtain

(2.9) f = 2π
[
(b− p)2 + (a+ q)2

]−m/2
(A− iB)m/2Im

(√
C + iD

)
.

It then just remains to use the properties (zw) = z w, zα = zα for α ∈ R, and

Iν(z) = Iν(z) for ν ∈ R (NIST [4, Eq. 10.34.7]). The result in (1.2) is obtained by
taking (f + f)/2, and the result in (1.1) is obtained by taking (f − f)/(2i). Due to
the factor of Y −m/2 in (2.6), which propagates to later equations, the formulas cannot
be used if Y = 0 (or equivalently |Y |2 = 0) to avoid dividing by zero. The solutions
therefore require (b− p)2 + (a+ q)2 > 0.

3. The Error

The reader may have intuited the source of the error in the derivation by this point.
Perhaps surprisingly, the error is not itself in breaking apart terms into products of
square roots in (2.6), though the act of doing so is eventually what leads to the error.
Rather, the error is in the recombination of terms in (2.7). In general, raising a
complex number to a power is not well-defined, as the result may be multi-valued.
(This is experienced even with purely real values. For instance, it is well known that
x1/2 in fact has two valid solutions: the positive and negative square roots.) A unique
and/or principal value for zα can be defined in two cases: 1) if z is complex, α is an
integer, and z 6= 0 if α 6 0, then zα is single-valued; 2) if z is positive real and α is
complex, then zα = eα log z. Unfortunately, neither of these cases may apply in general
for this problem.

The result of this is that zαwα does not always equal (zw)α. A simple counterex-
ample is z=w=−1 and α = 1/2. In this case, zα = wα = i, so zαwα = i× i = −1.
However, (zw)α = (−1×−1)1/2 = 11/2 = 1. One may denote z as |z|eiθz , where θz =
arg z. One could therefore define zα as |z|αeiαθz , and thus zαwα = (|z|·|w|)αeiα(θz+θw).
However, z may be equally be denoted as |z|ei(θz+2nπ) for any integer n. θz, be-
ing the principal argument of z, corresponds to the branch where n = 0, such that
θz ∈ (−π, π]. One may also denote y = (zw)α = |y|eiθy = (|z|·|w|)αeiαθy . It then
happens that zαwα may not equal (zw)α if α(θz + θw) crosses over the branch cut
at π radians and ends up in a different branch than αθy. Specifically, if α is an odd
integer multiple of 1/2, then zαwα 6= (zw)α if θz + θw 6∈ (−π, π], or in other words, if
either θz + θw > π or θz + θw 6 −π. In either of those two cases, a sign flip occurs,
and instead zαwα = −(zw)α.

4. Conditions that Cause an Error in the Integrals

In (2.7), a sign flip error can potentially occur in any of the three cases where vari-

ables are combined: Xm/2 Y m/2 → (XY )m/2, X1/2 Y 1/2 →
√
XY , or Y −m/2 Y −m/2 →

(Y Y )−m/2. In the first and third cases, the sign flip will occur only for odd values of
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m. In the second case, 2
√
XY is the input to the Bessel function Im(z). However,

for ν ∈ Z, Iν(−z) = (−1)νIν(z) (which is a special case of NIST [4, Eq. 10.34.1]).
So, Im(z) is an even function of z for even m and an odd function of z for odd m.

Consequently, if a sign error occurs for z = 2
√
XY , it will only have an effect on the

output of Im(z) if m is odd. We will consider these three cases separately.

4.1. Case 1: When Xm/2 Y m/2 6= (XY )m/2.
For ease of reference, X =

[
(p+b) + i(a−q)

]
/2 and Y =

[
(p−b) + i(a+q)

]
/2;

hence, Y =
[
(p−b)−i(a+q)

]
/2. We therefore have θX = argX = atan2(a−q, p+b) and

θY = arg Y = atan2(a+q, p−b), where atan2(y, x) is the “four-quadrant” version of the
inverse tangent function atan(y/x). For Xm/2 Y m/2, we must generally consider θX −
θY . The exception is when Y is a negative real number, where arg Y = π 6= − arg Y ,
which must be handled separately. We consider four cases for θX .

4.1.1. θX = 0. In other words, X is a positive real number. For this to occur,
a−q = 0 and p+b > 0. However, in this case, it is not possible for θX + θY to fall
outside of (−π, π]. Thus, no sign error will occur in this case.

4.1.2. θX is undefined, i.e., X = 0. This occurs when a−q = 0 and p+b = 0.
Trivially, though, Xm/2 Y m/2 = 0×Y m/2 = 0 and (XY )m/2 = 0m/2 = 0, so there
will be no sign error. (We are currently only considering odd values for m, so 00 will
not occur.) For similar reasons, a sign error will not occur if Y = 0, so we need not
consider that case.

4.1.3. 0<θX 6π. This occurs either when a−q > 0 or when a−q = 0 and p+b <
0. The only possibility for a sign error to occur in this case is when arg Y > 0. This
will happen either if a+q < 0, so −π < θY < 0, or if a+q = 0 and p−b < 0, so Y is a
negative real number and θY = θY = π. Considering the latter case first, if θY = π and
θX is strictly greater than zero, then θX+θY must be strictly greater than π. Hence, a
condition for a sign error to occur is if either 1) (a−q > 0)∩(a+q= 0)∩(p−b< 0), which
reduces to (q=−a)∩(q < 0)∩(p< b); or 2) (a−q= 0)∩(p+b< 0)∩(a+q= 0)∩(p−b< 0),
which reduces to (a= q= 0) ∩ (p<−|b|). Similarly, if θX = π (i.e., a−q = 0 and
p+b < 0), then a sign error will occur for any positive value of θY . The case of
θY = π has already been covered above. Otherwise, a sign error will also occur when
(a−q= 0) ∩ (a+q < 0) ∩ (p+b< 0), which reduces to (q= a) ∩ (q < 0) ∩ (p<−b).

For the remaining possibility, θX and θY are both positive but neither equals π.
This occurs when both a−q > 0 and a+q < 0, or in other words when q < −|a|.
Under this condition, we must determine when θX + θY > π. For this, we may use
the following property of atan2:

(4.1) atan2(y, x) =


π

2
− atan

(
x

y

)
, if y > 0;

−π
2
− atan

(
x

y

)
, if y < 0.

Then, the condition θX+θY > π, or equivalently atan2(a−q, p+b)+atan2(−a−q, p−b)
> π, may then be rewritten as π/2 − atan

(
p+b
a−q

)
+ π/2 − atan

(
p−b
−a−q

)
> π. After

some basic algebraic manipulations, this reduces to p < −ba/q. It is also interesting
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to note that in two of the earlier cases, i.e. (q=−a) ∩ (q < 0) ∩ (p< b) and (q= a) ∩
(q < 0) ∩ (p<−b), the inequality for p can be alternatively written in the same way,
i.e., p < −ba/q in both of those cases as well.

4.1.4. −π <θX < 0. This occurs when a−q < 0. A sign error will only occur in
this case if arg Y is also negative, so that a+q > 0. Combining the two conditions,
this means q > |a|. The sign error will occur if θX + θY 6 −π, or equivalently
atan2(a−q, p+b) + atan2(−a−q, p−b) 6 −π. Using the lower half of (4.1) and similar
algebraic manipulations as before, we obtain the very similar condition p 6 −ba/q
(this time including equality).

To summarize, the result Xm/2 Y m/2 6= (XY )m/2 will occur under any of the
following conditions:

(4.2a)
[
(|q| > |a|) OR (q = −|a| 6= 0)

]
AND p < −ba

q
;

(4.2b) q > |a| AND p = −ba
q

;

(4.2c) q = a = 0 AND p < −|b|.

4.2. Case 2: When X1/2 Y 1/2 6=
√
XY .

This case is much the same as Case 1, except we are now considering θX + θY
instead of θX + θY . As such, we shall omit most of the details of the derivation.
The key difference is that the inequality conditions on a+q become the opposite of
those from Case 1 (i.e., instances of “greater than” now become “less than” and vice
versa). Also, with a+q being the imaginary component of Y (instead of −a−q for Y ),
the inequality for p reduces to p < −bq/a rather than p < −ba/q. Consequently, it
ends up that the result Xm/2 Y m/2 6= (XY )m/2 will occur under any of the following
conditions:

(4.3a)
[
(|a| > |q|) OR (a = |q| 6= 0)

]
AND p < −bq

a
;

(4.3b) a < −|q| AND p = −bq
a

;

(4.3c) a = q = 0 AND p < −|b|.

4.3. Case 3: When Y −m/2 Y −m/2 6= (Y Y )−m/2.
Overall, it will most commonly be the case that θY = −θY , so θY + θY = 0 (or is

undefined if Y = 0). Since 0 ∈ (−π, π], there will not be a sign error. The one exception
is when Y is a negative real number, so θY = θY = π and θY + θY = 2π. Y will be a

negative real number when a+q = 0 and p−b < 0. Hence, Y −m/2 Y −m/2 6= (Y Y )−m/2

will occur when:

(4.4) a = −q AND p < b.

Neither Y −m/2, Y −m/2, nor (Y Y )−m/2 can be calculated when a = −q and p = b, as
Y = 0 in that event.
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4.4. An Overall Error. As seen, there are three cases that can cause a sign
error when calculating the different parts of f . However, it could potentially occur
that two of the parts produce a sign error, while the third does not. Thus, the two
errors could cancel each other out, coincidentally leading to a correct overall result.
Examining the conditions in (4.2), (4.3), and (4.4), the only time there can be an
overlap is when q = −a, q 6 0, and a > 0. If q 6= −a, then Case 3 will not yield a
sign error, and only one of Case 1 or Case 2 can cause an error but not both. In this
event, either |q| > |a| (Case 1), |a| > |q| (Case 2), q = a and both are positive (Case
2), or q = a and both are negative (Case 1). On the other hand, if q = −a but q > 0,
then a must be negative; likewise, if q = −a but a < 0, then q must be positive. In
either event, only Case 3 will yield a sign error.

When q = −a and neither equals zero, then −bq/a = −ba/q = b. In this event,
the error conditions (4.2a), (4.3a), and (4.4) are all equivalent to each other. Hence,
either all three cases will simultaneously yield a sign error or none of them will yield
an error. If all three are in error, then the overall result will also be in error.

When a = q = 0, then conditions (4.2c), (4.3c), and/or (4.4) could be satisfied. If
b 6 0, then the condition p < −|b| is equivalent to p < b. Hence, again either all three
cases will yield a sign error simultaneously, or none of them will yield an error. On
the other hand, if b > 0, then if p < b, Case 3 will yield a sign error. However, p may
still fall in the range of −b 6 p < b, which will not cause a sign error in Cases 1 and 2.
Nonetheless, a single sign error will cause an overall error in the final result. If p < −b
with b > 0, then Cases 1 and 2 will yield a sign error along with Case 3, and the three
sign errors will again create an error in the overall result. Thus, for a = q = 0, it is
sufficient to have p < b to cause an overall error in the result.

In summary, it is not possible for two out of the three cases to yield a sign error
while the third does not. Either none of the cases yields a sign error (in which event
the final result is correct), a single case yields a sign error, or all three cases yield sign
errors at the same time. In either of the last two events, an overall sign error will be
the result.

The conditions that cause an overall sign error when calculating f using (2.9) can
be summed up fairly succinctly. First, we define K as follows:

(4.5) K =


q/a, if |a| > |q| AND a 6= 0;

a/q, if |q| > |a| AND q 6= 0;

−1, if a = q = 0.

Then, a sign error occurs under the either of the following two conditions:

(4.6a) p < −bK;

(4.6b)
[
(a < −|q|) OR (q > |a|)

]
AND p = −bK.

We lastly note that the above conditions yield a sign error specifically when cal-
culating f using (2.9). However, there are a limited subset of conditions that result
in either the real or imaginary part of f being equal to zero while the other part is
not. If (4.6) holds and Re(f) = 0, then (1.2) will still correctly yield zero while (1.1)
will have a sign error. A straightforward way for this to happen is if p = b = 0; then,
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B = D = 0 and A = −C. With an odd value for m, it will then occur that (A−iB)m/2

is purely real and Im
(√
C + iD) is purely imaginary, or vice versa; hence, (2.9) will

yield a purely imaginary value. (Trivially, Y Y must be positive and real, and thus so
is (Y Y )−m/2). Likewise, if (4.6) holds and Im(f) = 0, then (1.1) will still correctly
yield zero while (1.2) will have a sign error. A straightforward way for this latter case
to occur is when a = q = 0; then, B = D = 0 and A = C. Consequently, (A− iB)m/2

and Im
(√
C + iD) will both be either purely real or purely imaginary, and so (2.9)

will yield a purely real value.

5. Improved Expressions for Integrals

It is of course possible to correct the expressions in (1.1) and (1.2) so that they
consistently give the proper results. For example, one could multiply both expressions
by (−1)m if the conditions in (4.6) hold. Alternatively, one could just not combine

the alike terms in (2.7). After deleting the (Y
1/2

)m (Y
1/2

)−m terms (which cancel

each other) from (2.7), this would give f = 2πXm/2 Y −m/2Im
(
2
√
X
√
Y
)
. The result

of the integral in (1.1) can then be expressed as iπ
[
Xm/2 Y −m/2Im

(
2
√
X
√
Y
)
−

Xm/2 Y −m/2Im
(
2
√
X
√
Y
)]

, and the result of the integral in (1.2) can be expressed

as π
[
Xm/2 Y −m/2Im

(
2
√
X
√
Y
)

+Xm/2 Y −m/2Im
(
2
√
X
√
Y
)]

.

However, we can instead derive an alternative expression that avoids the compli-
cations surrounding combining terms with non-integer exponents in the first place.
Resuming the derivation by continuing from (2.4):

(5.1)

f = 2πXm
∞∑
j=0

Xj Y j

j! (j +m)!
= 2πXm

∞∑
j=0

Xj Y j

j! Γ(j+m+1)

=
2πXm

Γ(m+1)

∞∑
j=0

Xj Y j Γ(m+1)

j! Γ(j+m+1)
=

2πXm

m!

∞∑
j=0

Xj Y j

j! (m+1)j
,

where (z)j = Γ(z+j)/Γ(z) denotes the Pochhammer symbol. Since j is a non-negative
integer, Xj and Y j each have a single value, and their product will equal (XY ) j . (As
a simple proof, XjY j = X·X·X·. . .·X︸ ︷︷ ︸

j copies

·Y ·Y ·Y ·. . .·Y︸ ︷︷ ︸
j copies

= XY ·XY ·XY ·. . .·XY︸ ︷︷ ︸
j copies

= (XY ) j .)

Replacing Xj Y j with (XY ) j in the last sum of (5.1), it can be seen that the sum is, by
definition, the (confluent) hypergeometric function 0F1(;m+1;XY ). This is a special
case of the generalized hypergeometric function pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑
k=0

(a1)k(a2)k···(ap)k
(b1)k(b2)k···(bq)k

zk

k! (NIST [4, Eq. 16.2.1]), with p = 0 parameters in the numerator

and q = 1 parameter in the denominator. (These are not the same “p” and “q” as
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otherwise used in this paper.) Therefore, we end up with:

(5.2)

f =
2πXm

m!
0F1(;m+ 1;XY )

=
2π

m!

[
(p+b) + i(a−q)

2

]m
0F1

(
;m+ 1;

(p2+q2−a2−b2) + i[2(ap+ bq)]

4

)
.

Let us define four new constants as follows:

(5.3a) A′ =
p+ b

2
,

(5.3b) B′ =
a− q

2
,

(5.3c) C ′ =
p2 + q2 − a2 − b2

4
,

(5.3d) D′ =
ap+ bq

2
.

We can then express f somewhat more compactly as

(5.4) f =
2π

m!
(A′ + iB′)m 0F1(;m+ 1;C ′ + iD′).

We also note that, from the power series definition of 0F1 and the property zα = zα

for α ∈ R, it follows that 0F1(; b1; z) = 0F1(; b1; z) for b1 ∈ R. Using (f−f)/(2i) and
(f+f)/2, we ultimately arrive at the new expressions for the integrals:∫ 2π

0

exp(p cosx+ q sinx) sin(a cosx+ b sinx−mx) dx

=
iπ

m!

[
(A′− iB′)m 0F1(;m+ 1;C ′− iD′)− (A′+ iB′)m 0F1(;m+ 1;C ′+ iD′)

](5.5)

∫ 2π

0

exp(p cosx+ q sinx) cos(a cosx+ b sinx−mx) dx

=
π

m!

[
(A′− iB′)m 0F1(;m+ 1;C ′− iD′) + (A′+ iB′)m 0F1(;m+ 1;C ′+ iD′)

](5.6)

There is one corner case with the new expressions that also existed in the originals.
In the event A′ = B′ = m = 0, then the expressions contain 00. In this event, the
terms (A′ + iB′)m and (A′ − iB′)m should be treated as limz→0 z

0 = 1.
The expressions in (5.5) and (5.6) offer several improvements over the original

expressions in (1.1) and (1.2). Most importantly, they avoid the sign errors that can
occur with the original expressions. The new expressions are also somewhat more
compact, having fewer terms to calculate than the original ones. This is mostly since

the term
[
(b−p)2 + (a+q)2

]−m/2
is no longer present. Because of the absence of that

term, (5.5) and (5.6) can therefore also be used in the event (b−p)2 + (a+q)2 = 0,
which is a limitation of the original expressions.

There is one further advantage to the newer expressions. So far in this paper, it has
been implicitly assumed that a, b, p, and q are all real-valued constant parameters.
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However, there is nothing in particular in the derivations of (2.1)–(2.6) and (5.1)–
(5.4) that prevents those constants from being complex numbers instead. Thus, (5.4)
also will give the correct result for the integral in (2.1) when using complex-valued
constants. However, there is now the complication that the solution to the integral in
(5.5) would no longer be obtained from (f−f)/(2i), and the solution to the integral
in (5.6) would no longer be obtained from (f+f)/2. Instead, those two integrals must
be reworked a bit first. For brevity of notation, we shall denote the real part of a
constant “u” (i.e., Reu) by uR and the imaginary part (i.e., Imu) by uI . For (5.5),
we have:

(5.7)

∫ 2π

0

exp
[
(pR+ipI) cosx+ (qR+iqI) sinx

]
× sin

[
(aR+iaI) cosx+ (bR+ibI) sinx−mx

]
dx

=
1

2i

∫ 2π

0

exp
[
(pR+ipI) cosx+ (qR+iqI) sinx

]
×
{

exp
(
i
[
(aR+iaI) cosx+ (bR+ibI) sinx−mx

])
− exp

(
−i
[
(aR+iaI) cosx+ (bR+ibI) sinx−mx

])}
dx

=
i

2
×

∫ 2π

0

exp
([

(pR+aI) + i(pI−aR)
]

cosx

+
[
(qR+bI) + i(qI−bR)

]
sinx

)
e+imx dx︸ ︷︷ ︸

f1

− i

2
×

∫ 2π

0

exp
([

(pR−aI) + i(pI+aR)
]

cosx

+
[
(qR−bI) + i(qI+bR)

]
sinx

)
e−imx dx︸ ︷︷ ︸

f2

=
i

2
(f1 − f2).

For (5.6), we end up with (f1 + f2)/2. One can observe that if p, q, a, and b are all
real values, so pI = qI = aI = bI = 0, f2 simplifies to f in (2.1), and f1 reduces to f .

Hence, with f1 and f2, we have two expressions that are extremely similar to that
of (2.1). Thus, the results of the integrals are still given in the form of (5.4). The key
difference is simply that original constants p, q, a, and b are replaced by the real part
of that constant plus or minus the imaginary part of a different constant; for example,
p becomes pR+aI or pR−aI . (The two “cos” constants p and a and the two “sin”
constants q and b end up paired together.) f1 also has the slight complication that it
contains a “+m” instead of a “−m”. However, we can instead consider f1 to convert
that plus to a minus, then undo the conjugate for the final result. It is then simply
a matter of making the appropriate substitution of constants in (5.4) to obtain the
result. The final expressions for the integrals are as follows:
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0

exp(p cosx+ q sinx) sin(a cosx+ b sinx−mx)dx [p, q, a, and b complex-valued]

=
iπ

m!

[
(A1 + iB1)m 0F1(;m+ 1;C1 + iD1)− (A2 + iB2)m 0F1(;m+ 1;C2 + iD2)

](5.8)

∫ 2π

0

exp(p cosx+ q sinx) cos(a cosx+ b sinx−mx)dx [p, q, a, and b complex-valued]

=
π

m!

[
(A1 + iB1)m 0F1(;m+ 1;C1 + iD1) + (A2 + iB2)m 0F1(;m+ 1;C2 + iD2)

](5.9)

where

(5.10a) A1 =
pR + aI − qI + bR

2
,

(5.10b) A2 =
pR − aI + qI + bR

2
,

(5.10c) B1 =
pI − aR + qR + bI

2
,

(5.10d) B2 =
pI + aR − qR + bI

2
,

(5.10e) C1 =
(pR + aI)

2 + (qR + bI)
2 − (pI − aR)2 − (qI − bR)2

4
,

(5.10f) C2 =
(pR− aI)2 + (qR− bI)2 − (pI + aR)2 − (qI + bR)2

4
,

(5.10g) D1 =
(pI − aR)(pR + aI) + (qI − bR)(qR + bI)

2
,

(5.10h) D2 =
(pI + aR)(pR− aI) + (qI + bR)(qR− bI)

2
.

Again, if pI = qI = aI = bI = 0 so that the constants are real-valued, then the
expressions in (5.10) will reduce so that A1 = A2 = A′, B1 = −B′, B2 = B′, C1 =
C2 = C ′, D1 = −D′, and D2 = D′. Hence, (5.8) and (5.9) will reduce to (5.5) and
(5.6), respectively.

We lastly note that complex-valued constants can also be technically used with
the form of f given by (2.9), with its restriction changing from (b− p)2 + (a+ q)2 > 0
to (b − p)2 + (a + q)2 6= 0. However, the same type of sign errors will still result
from its use, and the analysis of the conditions where those sign errors occur would be
considerably more complicated. Use of (5.4) therefore still remains the better option.
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6. Comments on Other Integrals

The results of (5.5) and (5.6) can be used to verify the results of a few other
related integrals in Gradshteyn and Ryzhik [1]. Specifically, we consider the following
integrals, which are special cases of (5.5) and (5.6). (In some instances, we add accents
below to aid in distinguishing between constants.)

6.1. Integral 1 (Gradshteyn and Ryzhik [1, Eq. 3.931 4]):

(6.1)

∫ π

0

e−p
′ cos x cos(p′ sinx) dx =

1

2

∫ 2π

0

e−p
′ cos x cos(p′ sinx) dx = π

The equality between the two integrals can be determined by noting the value of
sinx from π to 2π equals the negative of the value from π to 0, whereas the value of
cosx from π to 2π equals the same value from π to 0. Thus, the equation takes on
the same values between π to 2π as it does from 0 to π, albeit in the reverse order.
Hence, the value of the integral over those two ranges of angles is the same.

The integral on the right corresponds to (5.6) with p = −p′, b = p′, and q =
a = m = 0. We therefore have A′, B′, C ′, and D′ all equal to zero. Consequently,
as stated before, (A′ ± iB′)m should be treated as being equal to 1. (5.6) then gives
(π/0!)

[
1· 0F1(; 1; 0)+1· 0F1(; 1; 0)

]
= π[1+1] = 2π. Therefore, after multiplying by the

leading factor of 1/2, this matches with and confirms the original result. This result
also applies in the degenerate case of p′ = 0:

∫ π
0
e0 cos(0) dx =

∫ π
0

1 · 1 dx = π. We
furthermore note that the same result is achieved in the event p′ is complex. In this
case, all the constants in (5.10) work out to be 0, so (5.9) yields the value as (5.6). It
is also worth noting that the same result holds if the p′ inside the cos term is replaced
by −p′, since cos(−z) = cos(z). By extension, the minus sign in the exp term may
also be removed (e.g., by setting p′ = −u). Hence, [1, Eq. 3.931 4] can be generalized

to be
∫ π

0
e±p

′ cos x cos(p′ sinx) dx = (1/2)
∫ 2π

0
e±p

′ cos x cos(p′ sinx) dx = π.

6.2. Integrals 2 and 3 (Gradshteyn and Ryzhik [1, Eqs. 3.932 1 and 3.931 2]):

(6.2)

∫ π

0

ep
′ cos x sin(p′ sinx) sinmxdx =

1

2

∫ 2π

0

ep
′ cos x sin(p′ sinx) sinmxdx =

πp′m

2m!

(6.3)

∫ π

0

ep
′ cos x cos(p′ sinx) cosmxdx =

1

2

∫ 2π

0

ep
′ cos x cos(p′ sinx) cosmxdx =

πp′m

2m!

The equality between the two integrals again is a result of the mirror symmetry of
the equation between 0 to π and between π to 2π; hence, the integral over those two
ranges of angles gives the same value. The expressions in both equations are not quite
in the required form. However, we can make use of the trigonometric product identities
sin θ · sinφ =

[
cos(θ−φ) − cos(θ+φ)

]
/2 and cos θ · cosφ =

[
cos(θ−φ) + cos(θ+φ)

]
/2.

The expression in (6.2) can then be rewritten as

(6.4)
1

4

∫ 2π

0

[
ep

′ cos x cos(p′ sinx−mx)− ep
′ cos x cos(p′ sinx+mx)

]
dx,
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and the expression in (6.3) can be rewritten as

(6.5)
1

4

∫ 2π

0

[
ep

′ cos x cos(p′ sinx−mx) + ep
′ cos x cos(p′ sinx+mx)

]
dx.

The last cos term in both (6.4) and (6.5) can be written equivalently as cos(−p′ sinx−
mx).

We therefore end up with two applications of (5.6); in the first, p = p′, b = p′,
and a = q = 0, while in the second, b = −p′, and the other constants are the same
as in the first. This yields A′ = p′ in the first case and A′ = 0 in the second case. In
both cases, B′ = C ′ = D′ = 0. Substituting these values into (5.6) yields 2πp′m/m!
for the first half of the integrals in (6.4) and (6.5). The second half, however, depends
on whether m > 0 or m = 0, on account of 0m terms. If m > 0, then 0m = 0,
and the second half of the integral reduces to zero. On the other hand, if m = 0,
then 00 should be treated as equal to 1, and the result for the second half is 2π (the
same as seen in the previous section). Consequently, the result for (6.2) and (6.4) is[
2πp′m/m! − 0

]
/4 = (πp′m)/(2m!) when m > 0, but

[
2πp′m/m! − 2π

]
/4 = 0 when

m = 0. Likewise, the the result for (6.3) and (6.5) is
[
2πp′m/m!+0

]
/4 = (πp′m)/(2m!)

when m > 0, but
[
2πp′m/m!+2π

]
/4 = π when m = 0. Hence, it must be specified that

the original results for (6.2) and (6.3) are only applicable when m > 0. The results
for m = 0 can be cross-checked by substituting m = 0 into the original integrals. For
(6.2), sinmx = sin 0 = 0, and thus

∫ π
0

0 dx = 0. For (6.3), cosmx = cos 0 = 1, and
thus the integral reduces to the equation in Section 6.1. As already seen, the result of
that integral has been confirmed to be π.

In considering the case of complex-valued p′, for the first half of the integrals
in (6.4) and (6.5), from (5.10) we obtain A1 = A2 = p′R, B1 = B2 = p′I , and the
remaining constants equal 0. Thus, A1 + iB1 = A2 + iB2 = p′R + ip′I , which is simply
p′. The first half of the integral thus evaluates to 2πp′m/m!, the same as if p′ is
real-valued. Likewise, for the second half of (6.4) and (6.5), all the constants in (5.10)
are equal to zero. We therefore get the same results as the real case: 0 if m > 0, and
2π if m = 0. Hence, the overall solutions to (6.2)/(6.4) and to (6.3)/(6.5) remain the
same whether p′ is real-valued or complex-valued.

6.3. Integral 4 (Gradshteyn and Ryzhik [1, Eq. 3.936 1]):

(6.6)

∫ 2π

0

ep
′ cos x cos(p′ sinx−mx) dx = 2

∫ π

0

ep
′ cos x cos(p′ sinx−mx) dx =

2πp′m

m!

This integral is the same as we considered in the previous section for the first half
of (6.4) and (6.5). We have confirmed that 2πp′m/m! is correct for all non-negative
integers m, whether p is real or complex.

6.4. Integrals 5 and 6 (Gradshteyn and Ryzhik [1, Eqs. 3.936 2 and 3.936 3]):

(6.7)

∫ 2π

0

ep
′ sin x sin(p′ cosx+mx) dx =

2πp′m

m!
sin
(mπ

2

)
[p′ > 0]

(6.8)

∫ 2π

0

ep
′ sin x cos(p′ cosx+mx) dx =

2πp′m

m!
cos
(mπ

2

)
[p′ > 0]
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To begin, we rewrite the formulas as (−1)ep
′ sin x sin(−p′ cosx−mx) and ep

′ sin x×
cos(−p′ cosx−mx) to obtain the required −mx instead of +mx. For both formulas,
we then have q = p′, a = −p′, and p = b = 0. These parameters give B′ = −p′ and
A′ = C ′ = D′ = 0. Substituting these values into (5.5) and multiplying by the −1
factor in front of the rewritten formula yields

(6.9)
(−1)

iπ

m!

[
(0 + ip′)m0F1(;m+1; 0)− (0− ip′)m0F1(;m+1; 0)

]
=

π

im!

[
(ip′)m − (−ip′)m

]
.

Since m is a non-negative integer, the factor of p′m may safely be pulled out of
both terms. We also can express ±i as e±iπ/2. This gives

(6.10)
πp′m

im!

[
(i)m − (−i)m

]
=

2πp′m

m!

eimπ/2 − e−imπ/2

2i
=

2πp′m

m!
sin
(mπ

2

)
.

Similarly, substituting the constants into (5.6) and following the same steps ultimately
gives

(6.11)
2πp′m

m!

eimπ/2 + e−imπ/2

2
=

2πp′m

m!
cos
(mπ

2

)
.

This therefore leads to a significant observation: the results of (6.10) and (6.11) are
valid even for p′ < 0 and for p′ = 0 if m > 0. They also hold for p′ = m = 0 if p′m is
treated as equal to one. Consequently, in the original results given in [1, Eqs. 3.936 2
and 3.936 3], the restriction p′ > 0 is unnecessary.

Extending the consideration to complex-valued p′, substituting the parameters
into (5.10) gives A1 = −p′I , A2 = p′I , B1 = p′R, B2 = −p′R, and C1 = C2 = D1 = D2 =
0. Inserting these values into (5.8) and again multiplying by the −1 factor yields

(6.12)

(−1)
iπ

m!

[
(−p′I + ip′R)m − (p′I − ip′R)m

]
=

π

im!

([
i(p′R + ip′I)

]m − [(−i)(p′R + ip′I)
]m)

=
π

im!

[
(ip′)m − (−ip′)m

]
.

This is the same as the end of (6.9). Although p′ is now complex-valued, we can still
safely pull out the factor of p′m as before. Ultimately, we find the same result as in
(6.10) holds for complex-valued p′, as does the result in (6.11).

6.5. Integral 7 (Gradshteyn and Ryzhik [1, Eq. 3.936 4]):

(6.13)

∫ 2π

0

ecos x sin(mx− sinx) dx = 0

After rewriting the formula as (−1)ecos x sin(sinx−mx), we find this is a special
case of (5.5) with p = b = 1 and q = a = 0. This therefore gives A′ = 1 and
B′ = C ′ = D′ = 0. Substituting these into (5.5) yields the first half of the formula
equal to the second half. Subtracting them hence gives zero, confirming the original
result.
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In a sense, this may be considered to be a special case of the “sin” counterpart
to the “cos” integral in the first half of (6.4) and (6.5), in which p′ = 1. In fact, the
same result would be obtained in any case where b = p and q = a = 0, including

complex values. Thus, [1, Eq. 3.936 4] could be generalized to
∫ 2π

0
ep cos x sin(mx −

p sinx) dx = 0 or
∫ 2π

0
ep cos x sin(p sinx −mx) dx = 0. Furthermore, we may consider

ep cos x sin(p sinx + mx) instead of ep cos x sin(p sinx − mx). In this case, we end up
with b = −p and q = a = 0. As seen already in earlier subsections, this makes all the
constants in (5.3) and (5.10) equal to zero. Consequently, the first and second parts
of (5.5) equal each other, as do the first and second parts of (5.8). Subtracting the
two parts thus again equals zero. Hence, [1, Eq. 3.936 4] could be generalized even

further to
∫ 2π

0
ep cos x sin(p sinx±mx) dx = 0, which applies for both real-valued and

complex-valued p.

6.6. Integrals 8 and 9 (Gradshteyn and Ryzhik [1, Eqs. 3.937 3 and 3.937 4]):

(6.14)

∫ 2π

0

exp(p cosx+ q sinx) sin(q cosx− p sinx+mx) dx

=
2π

m!

(
p2 + q2

)m/2
sin

(
m atan

q

p

)

(6.15)

∫ 2π

0

exp(p cosx+ q sinx) cos(q cosx− p sinx+mx) dx

=
2π

m!

(
p2 + q2

)m/2
cos

(
m atan

q

p

)
Once again we begin by rewriting the formulas as (−1) exp(p cosx + q sinx) ×

sin(−q cosx+ p sinx−mx) and exp(p cosx+ q sinx) cos(−q cosx+ p sinx−mx). We
thus have a special case of (5.5) and (5.6) where a = −q and b = p. These parameters
give A′ = p, B′ = −q, and C ′ = D′ = 0. Substituting these constants into (5.5),
multiplying by the factor of −1 in front, then doing a bit of algebraic manipulation
gives

[
π/(im!)

]
·
[
(p+ iq)m− (p− iq)m

]
. Let z = p+ iq, so that the expression may be

written as

(6.16)
π

im!

[
zm−zm

]
=

2π

m!
|z|m eim arg z − e−im arg z

2i
=

2π

m!

(
p2 + q2

)m/2
sin(m arg z)

The result in (6.16) is similar to the original result in (6.14). However, it must
be noted that arg(p + iq) does not equal atan(q/p) in all circumstances. The former
yields angles in the range of (−π, π] radians, whereas the latter only yields angles in
(−π/2, π/2). If p < 0, then there will be a difference of ±π between the two. In
general, one may say that arg(p + iq) = atan(q/p) + kπ, where k may equal 0, 1, or
−1 depending on the values of p and q. We may substitute this into (6.16), then make
make use of the trigonometric identity sin(θ + φ) = sin θ cosφ+ cos θ sinφ:
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(6.17)

2π

m!

(
p2 + q2

)m/2
sin
[
m arg(p+ iq)

]
=

2π

m!

(
p2 + q2

)m/2
sin

[
m

(
atan

q

p
+ kπ

)]
=

2π

m!

(
p2 + q2

)m/2 [
sin

(
m atan

q

p

)
cos(kmπ) + cos

(
m atan

q

p

)
sin(kmπ)

]

sin(kmπ) will equal 0 for integer values of k and m; thus, the second part of the above
equation will vanish. On the other hand, for cos(kmπ), if either m is even or k = 0,
then we are taking the cosine of an integer multiple of 2π, which yields a value of 1.
However, if m is odd and k = ±1, then we are taking the cosine of an odd integer
multiple of π, which yields a value of −1. Hence, the original formula in [1, Eq. 3.937 3]
will yield a sign error if m is odd and p < 0. (The formula also might not be able to
be used depending on whether the method of calculating atan(·) accepts a number
divided by zero as an input.)

Similarly, substituting the constants into (5.6) will yield (2π/m!)
(
p2 + q2

)m/2 ×
cos(m arg z). We may then use the trigonometric identity cos(θ + φ) = cos θ cosφ −
sin θ sinφ to convert cos(m arg z) to cos

[
m atan(q/p)

]
· cos(kmπ)− sin

[
m atan(q/p)

]
×

sin(kmπ). Consequently, it can be seen that the original formula in [1, Eq. 3.937 4]
will also yield a sign error if m is odd and p < 0.

Both formulas may be corrected by multiplying by (−1)m if p < 0. However, one
can alternatively express [1, Eq. 3.937 3] in either of the following ways, which both
corrects the error and allows for the use of p = 0:

∫ 2π

0

exp(p cosx+ q sinx) sin(q cosx− p sinx+mx) dx

=
2π

m!

(
p2 + q2

)m/2
sin
[
m atan2(q, p)

]
(6.18a)

=
2π

m!

(
p2 + q2

)m/2
sin
[
m arg(p+ iq)

]
.(6.18b)

Gradshteyn and Ryzhik [1, Eq. 3.937 4] may be expressed correctly in a similar way,
replacing sin in (6.18a) and (6.18b) with cos:

∫ 2π

0

exp(p cosx+ q sinx) cos(q cosx− p sinx+mx) dx

=
2π

m!

(
p2 + q2

)m/2
cos
[
m atan2(q, p)

]
(6.19a)

=
2π

m!

(
p2 + q2

)m/2
cos
[
m arg(p+ iq)

]
.(6.19b)

When considering complex-valued p and q, substitution of the parameters into
(5.10) gives A1 = pR− qI , A2 = pR + qI , B1 = pI + qR, B2 = pI − qR, and C1 = C2 =
D1 = D2 = 0. Inserting these constants into (5.8) and multiplying by the factor of −1
in front yields the following equivalent forms to express the result for [1, Eq. 3.937 3]:
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∫ 2π

0

exp(p cosx+ q sinx) sin(q cosx− p sinx+mx) dx [p and q complex-valued]

=
iπ

m!

([
(pR+qI) + i(pI−qR)

]m − [(pR−qI) + i(pI+qR)
]m)

(6.20a)

=
iπ

m!

([
(pR+qI)

2 + (pI−qR)2
]m/2

eim arg[(pR+qI)+i(pI−qR)](6.20b)

−
[
(pR−qI)2 + (pI+qR)2

]m/2
eim arg[(pR−qI)+i(pI+qR)]

)
=
iπ

m!

[
(p− iq)m − (p+ iq)m

]
.(6.20c)

The form in (6.20c) is essentially the same as at the start of (6.16). However, in
this case, since the imaginary parts of p and q may not be zero, the terms cannot be
combined to form a sin term in the same way.

In a similar way, we can insert the constants into (5.9) to yield the following
equivalent forms to express the result for [1, Eq. 3.937 4]:∫ 2π

0

exp(p cosx+ q sinx) cos(q cosx− p sinx+mx) dx [p and q complex-valued]

=
π

m!

([
(pR+qI) + i(pI−qR)

]m
+
[
(pR−qI) + i(pI+qR)

]m)
(6.21a)

=
π

m!

([
(pR+qI)

2 + (pI−qR)2
]m/2

eim arg[(pR+qI)+i(pI−qR)](6.21b)

+
[
(pR−qI)2 + (pI+qR)2

]m/2
eim arg[(pR−qI)+i(pI+qR)]

)
=

π

m!

[
(p− iq)m + (p+ iq)m

]
(6.21c)

7. Conclusion

In this paper, we have examined several integrals that appear in Gradshteyn and
Ryzhik [1]. Our main focus has been on [1, Eq. 3.937 1] [1, Eq. 3.937 2]; the others are
special cases of these two integrals. We have determined that the formulas for these
two integrals produce a sign error about half the time if the integer m is odd, and
have derived the conditions for the formulas’ parameters that lead to a sign error. We
furthermore have derived updated expressions ((5.5) and (5.6)) that correct the errors,
are simpler, and can be used for a wider range of parameter values. For the special
cases, we have determined that some are correct but can be generalized further, while
others contain errors as well. To summarize:

• [1, Eq. 3.931 4]: The minus sign may be replaced by ±.
• [1, Eqs. 3.932 1 and 3.931 2]: The formulas are only correct if m > 0; they

are incorrect if m = 0. [1, Eq. 3.932 1] instead yields 0 if m = 0, while [1,
Eq. 3.931 2] instead yields π if m = 0.
• [1, Eq. 3.936 1]: The formula is correct as given.
• [1, Eqs. 3.936 2 and 3.936 3]: The restriction p > 0 is unnecessary and may

be removed.
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• [1, Eq. 3.936 4]: The integrated equation may be generalized to ep cos x ×
sin(p sinx±mx); the same result of 0 will be obtained.
• [1, Eqs. 3.937 3 and 3.937 4]: If m is odd, an error in sign will result from

the formulas when p < 0. To correct this and also allow p = 0 to be used,
atan(q/p) should be replaced by atan2(q, p) or arg(p+ iq).

Lastly, we have also considered the extended case where the parameters are
complex-valued rather than real-valued, and have derived the results for the inte-
grals in this event. In the case of [1, Eqs. 3.937 1 to 3.937 4], the resulting expressions
(respectively (5.8), (5.9), (6.20), and (6.21)) are somewhat more complicated. How-
ever, for the other integrals, it turns out that the same formulas (extended and/or
corrected) still apply if p is complex-valued.
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