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The integrals in Gradshteyn and Ryzhik.
Part 11: The incomplete beta function

Khristo N. Boyadzhiev, Luis A. Medina, and Victor H. Moll

Abstract. The table of Gradshteyn and Rhyzik contains some integrals that

can be expressed in terms of the incomplete beta function. We describe some

elementary properties of this function and use them to check some formulas in
the mentioned table.

1. Introduction

The table of integrals [1] contains a large variety of definite integrals that involve
the incomplete beta function defined here by the integral

(1.1) β(a) =
∫ 1

0

xa−1 dx

1 + x
.

The convergence of the integral requires a > 0. Nielsen, who used this function
extensively, attributed it to Stirling [3], page 17. The table [1] prefers to introduce
first the digamma function

(1.2) ψ(x) =
d

dx
log Γ(x) =

Γ′(x)
Γ(x)

,

and define β(x) by the identity

(1.3) β(x) =
1
2
(
ψ
(

x+1
2

)
− ψ

(
x
2

))
.

This definition appears as 8.370 and (1.1) appears as 3.222.1. Here

(1.4) Γ(x) =
∫ ∞

0

tx−1e−t dt

is the classical gamma function. Naturally, both starting points for β are equivalent,
and Corollary 2.2 proves (1.3). The value

(1.5) γ := −ψ(1) = −Γ′(1)
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62 K. BOYADZHIEV, L. MEDINA, AND V. MOLL

is the well-known Euler’s constant.

In this paper we will prove elementary properties of this function and use them
to evaluate some definite integrals in [1].

2. Some elementary properties

The incomplete beta function admits a representation by series.

Proposition 2.1. Let a ∈ R+. Then

(2.1) β(a) =
∞∑

k=0

(−1)k

a+ k
.

Proof. The result follows from the expansion of 1/(1+x) in (1.1) as a geometric
series. �

Corollary 2.2. The incomplete beta function is given by

(2.2) β(a) =
1
2

[
ψ

(
a+ 1

2

)
− ψ

(a
2

)]
.

This is 8.370 in [1].

Proof. The expansion for the digamma function ψ

(2.3) ψ(t) = −γ −
∞∑

k=0

(
1

t+ k
− 1
k + 1

)
has been discussed in [2]. Then

(2.4) ψ
(a

2

)
= −γ −

∞∑
k=0

(
2

a+ 2k
− 1
k + 1

)
and

(2.5) ψ

(
a+ 1

2

)
= −γ −

∞∑
k=0

(
2

a+ 2k + 1
− 1
k + 1

)
.

The identity (2.2) comes from adding these two expressions. �

These properties are now employed to prove some functional relations of the in-
complete beta function. The proofs will employ the identities

ψ(x+ 1) =
1
x

+ ψ(x)(2.6)

ψ(x)− ψ(1− x) = −π cot(πx)(2.7)
ψ(x+ 1

2 )− ψ( 1
2 − x) = π tan(πx)(2.8)

that were established in [2].
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Remark 2.1. Several of the evaluations presented here will employ the special
values

(2.9) ψ(n+ 1) = −γ +
n∑

k=1

1
k
,

that appears as 8.365.4, and

(2.10) ψ
(

1
2 ± n

)
= −γ + 2

(
n∑

k=1

1
2k − 1

− ln 2

)
,

that appears as 8.366.3.

Many of the formulas in Section 4.271 employ the values

(2.11) ψ′(n) =
π2

6
−

n−1∑
k=1

1
k2
,

that appear as 8.366.11 and also 8.366.12/13:

(2.12) ψ′( 1
2 ± n) =

π2

2
∓ 4

n∑
k=1

1
(2k − 1)2

.

Higher order derivatives are given by

ψ(n)(1) = (−1)n+1n!ζ(n+ 1) and

ψ(n)( 1
2 ) = (−1)n+1n!(2n+1 − 1)ζ(n+ 1).

Proposition 2.3. The incomplete beta function satisfies

β(x+ 1) =
1
x
− β(x),(2.13)

β(1− x) =
π

sinπx
− β(x),(2.14)

β(x+ 1) =
1
x
− π

sinπx
+ β(1− x).(2.15)

Proof. Using (2.2) we have

β(x+ 1) =
1
2

[
ψ

(
x+ 2

2

)
− ψ

(
x+ 1

2

)]
=

1
2

[
ψ
(x

2
+ 1
)
− ψ

(
x+ 1

2

)]
=

1
2

[
2
x

+ ψ
(x

2

)
− ψ

(
x+ 1

2

)]
=

1
x
− β(x).

This establishes (2.13). To prove (2.14) we start with

β(x) + β(1− x) =
1
2

[
ψ

(
1
2

+
x

2

)
− ψ

(x
2

)
+ ψ

(
1− x

2

)
− ψ

(
1
2
− x

2

)]
.

The formula (2.14) now follows from (2.7) and (2.8). �
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3. Some elementary changes of variables

The class of integrals evaluated here are obtained from (1.1) by some elementary
manipulations.

Example 3.1. The change x = tp in (1.1) yields

(3.1) β(a) = p

∫ 1

0

tap−1 dt

1 + tp
.

Replace a by a
p to obtain 3.241.1:

(3.2)
∫ 1

0

ta−1 dt

1 + tp
=

1
p
β

(
a

p

)
.

Example 3.2. The special case p = 2 in Example 3.1 gives

(3.3) β(a) = 2
∫ 1

0

t2a−1 dt

1 + t2
.

Choose a = b+1
2 , and relabel the variable of integration as x, to obtain 3.249.4:

(3.4)
∫ 1

0

xb dx

1 + x2
=

1
2
β

(
b+ 1

2

)
.

Example 3.3. The evaluation of 3.251.7:

(3.5)
∫ 1

0

xa dx

(1 + x2)2
= −1

4
+
a− 1

4
β

(
a− 1

2

)
comes from the change of variables t = x2 and integration by parts. Indeed,∫ 1

0

xa dx

(1 + x2)2
=

1
2

∫ 1

0

t(a−1)/2 d

dt

1
1 + t

dt

= −1
4

+
a− 1

4

∫ 1

0

t(a−3)/2 dt

1 + t
dt,

and (3.5) has been established.

Example 3.4. Formula 3.231.2 states that

(3.6)
∫ 1

0

xp−1 + x−p

1 + x
dx =

π

sinπp
.

The integrals is recognized as β(p)+β(1−p) and its value follows from (2.14). Similarly,
3.231.4 is

(3.7)
∫ 1

0

xp − x−p

1 + x
dx =

1
p
− π

sinπp
.

The integral is now recognized as β(1 + p) − β(1 − p), and the result follows from
(2.15).
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Example 3.5. The evaluation of 3.244.1:

(3.8)
∫ 1

0

xp−1 + xq−p−1

1 + xq
dx =

π

q
cosec

pπ

q

is

(3.9) I =
1
q

(β(p/q) + β(1− p/q))

according to (3.2). The result now follows from (2.14).

Example 3.6. The evaluation of 3.269.2:

(3.10)
∫ 1

0

x
xp − x−p

1 + x2
dx =

1
p
− π

2 sin(πp/2)

is obtained by the change of variables t = x2, that produces

(3.11) I =
1
2

∫ 1

0

tp/2 − t−p/2

1 + t
dt =

1
2

[
β
(p

2
+ 1
)
− β

(
1− p

2

)]
.

The result now follows from (2.15).

4. Some exponential integrals

In this section we present some exponential integrals that may be evaluated in
terms of the β-function.

Example 4.1. The change of variables x = e−t in (1.1) gives

(4.1) β(a) =
∫ ∞

0

e−at dt

1 + e−t
.

This appears as 3.311.2 in [1].

Example 4.2. The evaluation of 3.311.13:

(4.2)
∫ ∞

0

e−px + e−qx

1 + e−(p+q)x
dx =

π

p+ q
cosec

(
πp

p+ q

)
is achieved by the change of variables t = (p+ q)x that produces

I =
1

p+ q

∫ ∞

0

e−pt/(p+q)

1 + e−t
dt+

1
p+ q

∫ ∞

0

e−qt/(p+q)

1 + e−t
dt

=
1

p+ q

[
β

(
p

p+ q

)
+ β

(
1− p

p+ q

)]
.

The result now comes from (2.15).



66 K. BOYADZHIEV, L. MEDINA, AND V. MOLL

5. Some trigonometrical integrals

In this section we present the evaluation of some trigonometric integrals using the
β-function.

Example 5.1. The change of variables x = tan2 t in (1.1) gives

(5.1) β(a) = 2
∫ π/4

0

tan2a−1 t dt.

Introduce the new parameter b = 2a− 1 to obtain 3.622.2:

(5.2)
∫ π/4

0

tanb t dt =
1
2
β

(
b+ 1

2

)
.

Example 5.2. The change of variables x = tan t in (3.5) gives

(5.3)
∫ π/4

0

tana t cos2 t dt = −1
4

+
a− 1

4
β

(
a− 1

2

)
.

Now use (2.13) to obtain

(5.4) β

(
a− 1

2

)
=

2
a− 1

− β
(
a+ 1

2

)
,

that converts (5.3) to

(5.5)
∫ π/4

0

tana t cos2 t dt =
1
4

+
1− a

4
β

(
a+ 1

2

)
.

This is the form in which 3.623.3 appears in [1]. Using this form and (5.2) we obtain
3.623.2:

(5.6)
∫ π/4

0

tana t sin2 t dt = −1
4

+
1 + a

4
β

(
a+ 1

2

)
.

Example 5.3. The evaluation of 3.624.1:

(5.7)
∫ π/4

0

sinp x dx

cosp+2 x
=

1
p+ 1

can be done by writing the integral as

(5.8) I =
∫ π/4

0

tanp+2 x dx+
∫ π/4

0

tanp x dx.

These are evaluated using (5.2) to obtain

(5.9) I =
1
2
β

(
p+ 3

2

)
+

1
2
β

(
p+ 1

2

)
.

The rule (2.13) completes the proof.
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Example 5.4. The integral 3.651.2

(5.10)
∫ π/4

0

tanµ x dx

1− sinx cosx
=

1
3

(
β

(
µ+ 2

2

)
+ β

(
µ+ 1

2

))
can be established directly using the integral definition of β given in (1.1). Simply
observe that dividing the numerator and denominator of the integrand by cos2 x yields,
after the change of variables t = tanx, the identity∫ π/4

0

tanµ x dx

1− sinx cosx
=

∫ π/4

0

tanµ x

(sec2 x− tanx)
dx

cos2 x

=
∫ 1

0

tµ dt

t2 − t+ 1

=
∫ 1

0

tµ+1 + tµ

t3 + 1
dt.

The change of variables t = s1/3 gives the result.

The evaluation of 3.651.1

(5.11)
∫ π/4

0

tanµ x dx

1 + sinx cosx
=

1
3

(
ψ

(
µ+ 2

2

)
− ψ

(
µ+ 1

2

))
can be established along the same lines. This part employs the representation 8.361.7:

(5.12) ψ(z) =
∫ 1

0

xz−1 − 1
x− 1

dx− γ

established in [2].

Example 5.5. The elementary identity

(5.13)
1

1− sin2 x cos2 x
=

1
2

(
1

1 + sinx cosx
+

1
1− sinx cosx

)
and the evaluations given in Examples 5.11 and 5.10 gives a proof of 3.656.1:

(5.14) 1
12

(
−ψ

(
µ+1

6

)
− ψ

(
µ+2

6

)
+ ψ

(
µ+4

6

)
+ ψ

(
µ+5

6

)
+ 2ψ

(
µ+2

6

)
− 2ψ

(
µ+1

6

))
.

Example 5.6. The final integral in this section is 3.635.1:

(5.15)
∫ π/4

0

cosµ−1(2x) tanx dx =
1
2
β(µ).

This is easy: start with

(5.16) tanx =
sinx
cosx

=
2 sinx cosx

2 cos2 x
=

sin 2x
1 + cos 2x

,

and use the change of variables t = cos 2x to produce the result.
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6. Some hyperbolic integrals

This section contains the evaluation of some hyperbolic integrals using the β-
function.

Example 6.1. The integral (4.1) can be written as

(6.1) β(a) =
∫ ∞

0

et(1/2−a) dt

et/2 + e−t/2
,

and with t = 2y and b = 2a− 1, we obtain 3.541.6:

(6.2)
∫ ∞

0

e−by dy

cosh y
= β

(
b+ 1

2

)
.

Example 6.2. Integration by parts produces∫ ∞

0

e−ax dx

cosh2 x
= 2

∫ ∞

0

e−ax d

dx

1
1 + e−2x

dx

= −1 + 2a
∫ ∞

0

e−ax dx

1 + e−2x
.

The change of variables t = 2x now gives the evaluation of 3.541.8:

(6.3)
∫ ∞

0

e−ax dx

cosh2 x
= aβ

(a
2

)
− 1.

Example 6.3. The change of variables t = e−x gives

(6.4)
∫ ∞

0

e−ax tanhx dx =
∫ 1

0

ta−1 − ta

1 + t2
dt,

and with s = t2 we get

I =
1
2

∫ 1

0

sa/2−1 − s(a−1)/2

1 + s
ds

=
1
2

[
β
(a

2

)
− β

(a
2

+ 1
)]
.

The transformation rule (2.13) gives the evaluation of 3.541.7:

(6.5)
∫ ∞

0

e−ax tanhx dx = β
(a

2

)
− 1
a
.

7. Differentiation formulas

Example 7.1. Differentiating (1.1) with respect to the parameter a yields

(7.1)
∫ 1

0

xa−1 lnx
1 + x

dx = β′(a),

that appears as 4.251.3 in [1].
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Example 7.2. Differentiating (3.2) n times with respect to the parameter a
produces 4.271.16 written in the form

(7.2)
∫ 1

0

xa−1 lnn x

1 + xp
dx =

1
pn+1

β(n)

(
a

p

)
.

The choice n = 1 now gives formula 4.254.4 in [1]:

(7.3)
∫ 1

0

xa−1 lnx
1 + xp

dx =
1
p2
β′
(
a

p

)
.

Example 7.3. The special case n = 1, a = 1 and p = 1 in (7.2) produces the
elementary integral 4.231.1:

(7.4)
∫ 1

0

lnx dx
1 + x

= −π
2

12
.

In this evaluation we have employed the values

(7.5) ψ′(1) = ζ(2) =
π2

6
, and ψ′(1/2) =

π2

12
,

that appear in (2.12).

Example 7.4. Formula 4.231.14:

(7.6)
∫ 1

0

x lnx
1 + x2

dx = −π
2

48

comes from (7.3) by choosing the parameters n = 1, a = 2 and p = 2. The values
of ψ′(1) and ψ′(1/2) are employed again. Naturally, this evaluation also comes from
(7.4) via the change of variables x2 7→ x.

Example 7.5. The choice n = a = 1 and p = 2 in (7.3) and the values

(7.7) ψ(2)
(

1
4

)
= π2 + 8G and ψ(2)

(
3
4

)
= π2 − 8G,

where G is Catalan constant defined by

(7.8) G =
∞∑

k=0

(−1)k

(2k + 1)2

yields the evaluation of 4.231.12:

(7.9)
∫ 1

0

lnx dx
1 + x2

= −G.

The change of variables x = t/a, with a > 0, and the elementary integral

(7.10)
∫ a

0

dt

t2 + a2
=

π

4a
,

give the evaluation of 4.231.11:

(7.11)
∫ a

0

lnx dx
x2 + a2

=
π ln a− 4G

4a
.
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Example 7.6. Now choose n = 1, a = 2 and p = 1 in (7.3) and use the value
ψ′(3/2) = π2/2− 4 given in (2.12) to obtain 4.231.19:

(7.12)
∫ 1

0

x lnx
1 + x

dx =
π2

12
− 1.

Combining this with (7.4) gives 4.231.20:

(7.13)
∫ 1

0

1− x
1 + x

lnx dx = 1− π2

6
.

Example 7.7. The values

(7.14) ψ(2)
(

1
4

)
= −2π3 − 56ζ(3) and ψ(2)

(
3
4

)
= 2π3 − 56ζ(3),

given in [4], are now used to produce the evaluation of 4.261.6:

(7.15)
∫ 1

0

ln2 x dx

1 + x
=
π3

16
.

Example 7.8. The relation

(7.16) ψ(n)(1− z) + (−1)n+1ψ(n)(z) = (−1)nπ
dn

dzn
cotπz,

and the choice n = 4, a = 1 and p = 2 in (7.3) produces∫ 1

0

ln4 x dx

1 + x2
=

1
25
β(4)

(
1
2

)
=

1
1024

(
ψ(4)

(
3
4

)
− ψ(4)

(
1
4

))
=

1
1024

(
−π d4

dz4
cotπz

∣∣∣
z=3/4

)
.

This yields the evaluation of 4.263.2:

(7.17)
∫ 1

0

ln4 x dx

1 + x2
=

5π5

64
.

The evaluation of 4.265:

(7.18)
∫ 1

0

ln6 x dx

1 + x2
=

61π7

256
,

can be checked by the same method.

Example 7.9. Now choose n ∈ N and take a = n+1 and p = 1 in (7.3) to obtain
the expression

(7.19) I :=
∫ 1

0

xn ln2 x

1 + x
dx =

1
8
β(2)(n+ 1).

This is now expressed in terms of the ψ−function and then simplified employing the
relation

(7.20) ψ(m)(z) = (−1)m+1m!ζ(m+ 1, z),
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with the Hurwitz zeta function

(7.21) ζ(s, z) :=
∞∑

k=0

1
(z + k)s

.

We conclude that

(7.22) I =
1
4

(
ζ

(
3,
n+ 1

2

)
− ζ

(
3,
n+ 2

2

))
.

The elementary identity

(7.23) ζ
(
s, a

2

)
− ζ

(
s, a+1

2

)
= 2s

∞∑
k=0

(−1)k

(k + a)s
,

is now used with s = 3 and a = n+ 1 to obtain

(7.24)
∫ 1

0

xn ln2 x dx

1 + x
= 2

∞∑
k=0

(−1)k

(k + n+ 1)3
.

This is finally transformed to the form

(7.25)
∫ 1

0

xn ln2 x dx

1 + x
= (−1)n

(
3
2
ζ(3) + 2

n∑
k=1

(−1)k

k3

)
.

This is 4.261.11 of [1].

The same method produces 4.262.4:

(7.26)
∫ 1

0

xn ln3 x dx

1 + x
= (−1)n+1

(
7π4

120
− 6

n−1∑
k=0

(−1)k

(k + 1)4

)
.

Example 7.10. The method of the previous example yields the value of 4.262.1:

(7.27)
∫ 1

0

ln3 x dx

1 + x
= −7π4

120
.

Here we use ψ(3)(1) = π4/15 and ψ(3)(1/2) = π4.

Similarly, ψ(5)(1) = 8π6/63 and ψ(5)(1/2) = 8π6 yields 4.264.1:

(7.28)
∫ 1

0

ln5 x dx

1 + x
= −31π6

252
,

and ψ(7)(1) = 8π8/15 and ψ(7)(1/2) = 136π8 yields 4.266.1:

(7.29)
∫ 1

0

ln7 x dx

1 + x
= −127π8

240
.
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Example 7.11. A combination of the evaluations given above produces 4.261.2:

(7.30)
∫ 1

0

ln2 x dx

1− x+ x2
=

10π3

81
√

3
.

Indeed, ∫ 1

0

ln2 x dx

1− x+ x2
=

∫ 1

0

1 + x

1 + x3
ln2 x dx

=
∫ 1

0

ln2 x dx

1 + x3
+
∫ 1

0

x ln2 x dx

1 + x3

=
1
27

(
β(2)( 1

3 ) + β(2)( 2
3 )
)

=
1

216

(
ψ(2)

(
2
3

)
− ψ(2)

(
1
3

)
+ ψ(2)

(
5
6

)
− ψ(2)

(
1
6

))
=

π

216

(
d2

dz2
cotπz

∣∣∣
z=1/3

+
d2

dz2
cotπz

∣∣∣
z=1/6

)
=

π

216

(
8π2

3
√

3
+ 8
√

3π2

)
=

10π3

81
√

3
.

Example 7.12. Replace n by 2n in (7.2) and set a = p = 1 to produce∫ 1

0

ln2n x dx

1 + x
= β(2n)(1)

=
1

22n+1

(
ψ(2n)(1)− ψ(2n)

(
1
2

))
=

22n − 1
22n

(2n)!ζ(2n+ 1).

This appears as 4.271.1.

Example 7.13. The change of variables t = bx in (7.2) produces∫ b

0

ta−1 ln t
bp + tp

=
ba−p

p2
β′
(

a
p

)
+ b1−a ln b

∫ b

0

ta−1 dt

bp + tp

=
ba−b

p2
β′
(

a
p

)
+ ln b

ba−p

p
β
(

a
p

)
.

The last integral was evaluated using (3.2).

Differentiate this identity with respect to the parameter b to obtain∫ b

0

ta−1 ln t
(bp + tp)2

dt =
ba−2p ln b

2p
+
p− a
p3

ba−2pβ′
(

a
p

)
(7.31)

− ba−2p

p2
(1 + (a− p) ln b)β

(
a
p

)
.
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The special case a = b = p = 1 yields 4.231.6:

(7.32)
∫ 1

0

lnx dx
(1 + x)2

= −β(1) = − ln 2.

Similarly, the choice a = 2, b = 1 and p = 2 yields 4.234.2:

(7.33)
∫ 1

0

x lnx dx
(1 + x)2

= −1
4
β(1) = − ln 2

4
.

Example 7.14. In this last example of this section we present an evaluation of
4.234.1:

(7.34)
∫ ∞

1

lnx dx
(1 + x2)2

=
G

2
− π

8
,

using the methods developed here. We begin with the change of variables x 7→ 1/x to
transform the problem to the interval [0, 1]. We have

(7.35)
∫ ∞

1

lnx dx
(1 + x2)2

= −
∫ 1

0

x2 lnx dx
(1 + x2)2

.

Now choose a = 3, b = −1 and p = 2 in (7.31) to obtain

(7.36)
∫ 1

0

x2 lnx dx
(1 + x2)2

= −1
8
β′
(

3
2

)
+

1
4
β

(
3
2

)
.

The value of (7.34) now follows from
1
4β
(

3
2

)
= 1

8

(
ψ
(

5
4

)
− ψ

(
3
4

))
= 1

8

(
4 + ψ

(
1
4

)
− ψ

(
3
4

))
= 1

2 −
π
8 ,

and
1
8β
′ ( 3

2

)
= 1

32

(
ψ′
(

5
4

)
− ψ′

(
3
4

))
= 1

32

(
ψ′
(

1
4

)
− ψ′

(
3
4

)
− 16

)
= 1

32

(
ζ(2, 1

4 )− ζ(2, 3
4 )− 16

)
= G

2 −
1
2 .

8. One last example

In this section we discuss the evaluation of 3.522.4:

(8.1)
∫ ∞

0

dx

(b2 + x2) coshπx
=

1
b
β

(
b+

1
2

)
.

The technique illustrated here will be employed in a future publication to discuss many
other evaluations.

To establish (8.1), introduce the function

(8.2) h(b, y) :=
∫ ∞

0

e−bt cos yt
cosh t

dt.
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This function is harmonic and bounded for Re b > 0. Therefore it admits a Poisson
representation

(8.3) h(b, y) =
1
π

∫ ∞

−∞
h(0, u)

b

b2 + (y − u)2
du.

The value h(0, u) is a well-known Fourier transform

(8.4) h(0, u) =
∫ ∞

0

cos yt
cosh t

dt =
π

2 cosh(πy/2)
,

that appears as 3.981.3 in [1]. Therefore we have

(8.5) h(b, y) =
b

2

∫ ∞

−∞

du

cosh(πu/2) [b2 + (y − u)2]
.

The special value y = 0 and (6.2) give the result (after replacing b by 2b and u by 2u).

Note 8.1. Formula (8.1) can also be obtained by a direct contour integration.
Details will be provided in a future publication.

We conclude with an interpretation of (8.1) in terms of the sine Fourier transform
of a function related to β(x). The proof is a simple application of the elementary
identity

(8.6)
∫ ∞

0

ext sin bt dt =
b

b2 + x2
.

The details are left to the reader.

Theorem 8.2. Let

(8.7) µ(x) :=
∫ ∞

0

e−xt dt

cosh t
= β

(
x+ 1

2

)
.

Then 3.522.4 in (8.1) is equivalent to the identity

(8.8)
∫ ∞

0

µ(t) sinxt dt = µ

(
2x
π

)
.
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