
SCIENTIA
Series A: Mathematical Sciences, Vol. 19 (2010), 25–36
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ls-Ponomarev-systems and 1-sequence-covering mappings

Nguyen Van Dung

Abstract. In this paper, we prove that f is an 1-sequence-covering (resp., 2-
sequence-covering) mapping from a locally separable metric space M onto a space

X if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wsn-cover (resp.,
double point-star so-cover) for X, where (f, M, X, {Pλ,n}) is an ls-Ponomarev-

system, and investigate further properties of mappings in the ls-Ponomarev-

system (f, M, X, {Pλ,n}).

1. Introduction

Characterizing images of metric spaces under covering-mappings by spaces having
certain networks is one of attracted problems in general topology. Recently, some au-
thors were interested in finding a general method to construct a covering-mapping
with metric domain. By this work, characterizations of images of metric spaces
were obtained systematically. In [1], the authors introduced the ls-Ponomarev-system
(f,M,X, {Pλ,n}), and used this notion to give necessary and sufficient conditions such
that the mapping f is a compact mapping (a compact-covering mapping, a sequence-
covering mapping, a pseudo-sequence-covering mapping, a sequentially-quotient map-
ping) from a locally separable metric space M onto a space X. As applications of
these results, the authors systematically obtained internal characterizations of cer-
tain compact images of locally separable metric spaces. Among covering-mappings,
1-sequence-covering mappings and 2-sequence-covering mappings which were intro-
duced by S. Lin in [11] play important roles, and cause many attentions in [3], [6],
[7], [9], [12], [13]. Thus, it is interested in finding a necessary and sufficient con-
dition such that f is an 1-sequence-covering (2-sequence-covering) mapping for an
ls-Ponomarev-system (f,M,X, {Pλ,n}).

In this paper, we prove that f is an 1-sequence-covering (resp., 2-sequence-covering)
mapping from a locally separable metric space M onto a space X if and only if
{(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wsn-cover (resp., double point-star
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so-cover) for X, where (f,M,X, {Pλ,n}) is an ls-Ponomarev-system, and investigate
further properties of mappings in the ls-Ponomarev-system (f,M,X, {Pλ,n}). These
results make the study of covering-mappings from locally separable metric spaces more
completely.

Throughout this paper, all spaces are Hausdorff, all mappings are continuous and
onto, a convergent sequence includes its limit point, and N denotes the set of all natural
numbers. Let f : X −→ Y be a mapping, P be a family of subsets of a space X, and
K ⊂ X, we denote f(P) = {f(P ) : P ∈ P}, st(K,P) =

⋃
{P ∈ P : P ∩ K 6= ∅},

and st(x,P) = st({x},P) for every x ∈ X. We say that a convergent sequence
{xn : n ∈ N} ∪ {x} converging to x is eventually in a subset U of a space X if
{xn : n > n0} ∪ {x} ⊂ U for some n0 ∈ N.

For terms are not defined here, please refer to [4] and [17].

2. 1-sequence-covering mappings in Ponomarev-systems

Definition 2.1. Let P be a subset of a space X.

(1) P is a sequential neighborhood of x [5], if for every convergent sequence S
converging to x in X, S is eventually in P .

(2) P is a sequentially open subset of X [5], if for every x ∈ P , P is a sequential
neighborhood of x.

Definition 2.2. Let P be a cover for a space X.

(1) P is a network for X [15], if P =
⋃
{Px : x ∈ X} with Px ⊂ {P ∈ P : x ∈ P},

and for every x ∈ U with U open in X, there exists P ∈ Px such that x ∈ P ⊂ U ,
where Px is a network at x in X.

(2) P is an sn-cover for X [13], if each P ∈ P is a sequential neighborhood of
some point in X, and for each x ∈ X, there exists P ∈ P such that P is a sequential
neighborhood of x.

(3) For each x ∈ X, P is a wsn-cover at x in X or a wsn(x)-cover for X, if there
exists P ∈ P such that P is a sequential neighborhood of x.

P is a wsn-cover for X [7] if, for every x ∈ X, P is a wsn(x)-cover for X.

(4) For each x ∈ X, P is an so-cover at x in X or an so(x)-cover for X, if for
each P ∈ P with x ∈ P , P is a sequential neighborhood of x.

P is an so-cover for X [13], if every element of P is a sequentially open subset of
X. It is easy to see that P is an so-cover for X if and only if, for every x ∈ X, P is
an so(x)-cover for X.

(5) P is a point-star network for X, if P =
⋃
{Pn : n ∈ N} where each Pn is a

cover for X and, for each x ∈ X, {st(x,Pn) : n ∈ N} is a network at x in X. Note
that a point-star network is a σ-strong network in the sense of [8], and {Pn : n ∈ N}
is a point-star network in the sense of [14].

Definition 2.3. Let f : X −→ Y be a mapping.
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(1) For each y ∈ Y , f is an 1(y)-sequence-covering mapping or an 1-sequence-
covering mapping at y, if there exists xy ∈ f−1(y) such that whenever {yn : n ∈ N}
is a sequence converging to y in Y there exists a sequence {xn : n ∈ N} converging to
xy in X with each xn ∈ f−1(yn).

f is an 1-sequence-covering mapping [11], if f is an 1(y)-sequence-covering map-
ping for every y ∈ Y .

(2) For each y ∈ Y , f is a 2(y)-sequence-covering mapping or a 2-sequence-covering
mapping at y, if whenever xy ∈ f−1(y) and {yn : n ∈ N} is a sequence converging
to y in Y there exists a sequence {xn : n ∈ N} converging to xy in X with each
xn ∈ f−1(yn).

f is a 2-sequence-covering mapping [11], if f is a 2(y)-sequence-covering mapping
for every y ∈ Y .

(3) f is an s-mapping (resp., compact mapping) [2] if, for each y ∈ Y , f−1(y) is
a separable (resp., compact) subset of X.

(4) f is an ss-mapping [10] if, for each y ∈ Y , there exists a neighborhood U of y
in Y such that f−1(U) is a separable subset of X.

(5) f is a cs-mapping [16] if, for each compact subset K of Y , f−1(K) is a
separable subset of X.

(6) f is a π-mapping [2] if, for each y ∈ Y and each neighborhood U of y in Y ,
d(f−1(y), X − f−1(U)) > 0, where X is a metric space with a metric d.

Lemma 2.1. Let f : X −→ Y be an 1-sequence-covering mapping at y in Y , and
U be a sequential neighborhood of xy in X. Then f(U) is a sequential neighborhood
of y in Y .

Proof. Let {yn : n ∈ N} be a sequence converging to y in Y . Then there exists
a sequence {xn : n ∈ N} converging to xy in X with each xn ∈ f−1(yn). Since U
is a neighborhood of xy, {xn : n ∈ N} ∪ {xy} is eventually in U . It implies that
{yn : n ∈ N} ∪ {y} is eventually in f(U). This proves that f(U) is a sequential
neighborhood of y. �

Lemma 2.2. Let f : X −→ Y be a 2-sequence-covering mapping, and U be a
sequentially open subset of X. Then the following hold.

(1) f(U) is a sequentially open subset of Y .
(2) f |U : U −→ f(U) is a 2-sequence-covering mapping.

Proof. (1). For each y ∈ f(U), let {yn : n ∈ N} be a sequence converging to y in
Y . Pick some xy ∈ f−1(y) ∩ U , then there exists a sequence {xn : n ∈ N} converging
to xy in X with each xn ∈ f−1(yn). Since U is sequentially open, {xn : n ∈ N}∪ {xy}
is eventually in U . It implies that {yn : n ∈ N} ∪ {y} is eventually in f(U). This
proves that f(U) is a sequential neighborhood of y for every y ∈ f(U), hence f(U) is
sequentially open in Y .



28 NGUYEN VAN DUNG

(2). For each y ∈ f(U), let {yn : n ∈ N} be a sequence converging to y in
f(U). For each xy ∈ f−1(y) ∩ U = f |−1

U (y), there exists a sequence {xn : n ∈ N}
converging to xy in X. Since U is sequentially open, there exists n0 ∈ N such that
{xn : n > n0} ⊂ U . For each n < n0, since yn ∈ f(U), there exists x′n ∈ f−1(yn) ∩ U .
Put tn = x′n if n < n0 and tn = xn if n > n0. Then {tn : n ∈ N} is a sequence in
U converging to xy with each tn ∈ f−1(yn) ∩ U = f |−1

U (yn). It implies that f |U is a
2-sequence-covering mapping. �

Definition 2.4. Let
⋃
{Pn : n ∈ N} be a point-star network for X. For every

n ∈ N, put Pn = {Pα : α ∈ An}, and endowed An with discrete topology. Put

M =
{
a = (αn) ∈

∏
n∈N

An : {Pαn : n ∈ N}

forms a network at some point xa in X
}
.

Then M , which is a subspace of the product space
∏

n∈N An, is a metric space,
xa is unique, and xa =

⋂
n∈N Pαn for every a ∈ M . Define f : M → X by f(a) = xa,

then f is a mapping and (f,M,X, {Pn}) is a Ponomarev-system [14].

In [7, Theorem 3.10], for a Ponomarev-system (f,M,X, {Pn}), Y. Ge and S. Lin
proved that f is an 1-sequence-covering mapping if and only if each Pn is a wsn-cover
for X. Now, we modify this result as follows.

Proposition 2.1. Let (f,M,X, {Pn}) be a Ponomarev-system. Then the follow-
ing are equivalent for every point x ∈ X.

(1) f is an 1(x)-sequence-covering mapping.
(2) Each Pn is a wsn(x)-cover for X.

Proof. (1) ⇒ (2). Let f be an 1(x)-sequence-covering mapping. There exists
ax ∈ f−1(x) such that whenever {xn : n ∈ N} is a sequence converging to x in X
there exists a sequence {an : n ∈ N} converging to ax in M with each an ∈ f−1(xn).
Let ax = (αn), we shall prove that Pαk

is a sequential neighborhood of x for every
k ∈ N. Whenever {yi : i ∈ N} is a sequence converging to x in X, there exists a
sequence {bi : i ∈ N} converging to ax in M with each bi ∈ f−1(yi). Put Uk = {b =
(βn) ∈ M : βk = αk}, then Uk is an open neighborhood of ax in M . So the sequence
{bi : i ∈ N} ∪ {ax} is eventually in Uk, hence the sequence {yi : i ∈ N} ∪ {x} is
eventually in f(Uk) ⊂ Pαk

. This proves that Pαk
is a sequential neighborhood of x.

(2) ⇒ (1). Let each Pn be a wsn(x)-cover for X. For each n ∈ N, there exists
Pαn

∈ Pn such that Pαn
is a sequential neighborhood of x. Then {Pαn

: n ∈ N} forms
a network at x in X. Let {xi : i ∈ N} be a sequence converging to x in X. Then
{xi : i ∈ N}∪{x} is eventually in each Pαn

. For each i ∈ N, put αin = αn if xi ∈ Pαn
,

otherwise, pick some αin ∈ An such that xi ∈ Pαin . Then {Pαin : n ∈ N} forms a
network at xi in X. Put ai = (αin) and ax = (αn), we find that ai ∈ f−1(xi) and
ax ∈ f−1(x). Since {xi : i ∈ N} ∪ {x} is eventually in Pαn

, there exists n(i) such that
αin = αn for every i > n(i). This proves that {ai : i ∈ N} is a sequence converging to
ax in M . Then f is an 1(x)-sequence-covering mapping. �
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Next, we state a necessary and sufficient condition such that f is a 2-sequence-
covering mapping at x ∈ X for a Ponomarev-system (f,M,X, {Pn}).

Proposition 2.2. Let (f,M,X, {Pn}) be a Ponomarev-system. Then the follow-
ing are equivalent for every x ∈ X.

(1) f is a 2(x)-sequence-covering mapping.
(2) Each Pn is an so(x)-cover for X.

Proof. (1) ⇒ (2). Let f be a 2(x)-sequence-covering mapping. For each x ∈
P ∈ Pn, there exists a = (αn) ∈ M such that Pαn

= P . As in the proof (1) ⇒ (2) of
Proposition 2.1, we find that P is a sequential neighborhood of x in X. This proves
that Pn is an so(x)-cover for X.

(2) ⇒ (1). Let P be an so(x)-network for X. For each ax = (αn) ∈ f−1(x), we
find that each Pαn

is a sequential neighborhood of x in X. As in the proof (2) ⇒ (1)
of Proposition 2.1, we find that for each sequence {xi : i ∈ N} converging to x in X
there exists a sequence {ai : i ∈ N} converging to ax in M with each ai ∈ f−1(xi).
This proves that f is a 2(x)-sequence-covering mapping. �

Corollary 2.1. Let (f,M,X, {Pn}) be a Ponomarev-system. Then the following
are equivalent.

(1) f is a 2-sequence-covering mapping.
(2) Each Pn is an so-cover for X.

3. 1-sequence-covering mappings in ls-Ponomarev-systems

The notions of double point-star cover (double point-star cs-cover, double point-
star cs∗-cover, double point-star cfp-cover, double point-star wcs-cover) have been
introduced and investigated in [1]. In this section, we investigate further properties of
the ls-Ponomarev-system (f,M,X, {Pλ,n}), and introduce the notion of double point-
star wsn-cover (resp., double point-star so-cover) to state a necessary and sufficient
condition such that f is an 1-sequence-covering (resp., 2-sequence-covering) mapping.

Definition 3.1. Let {Xλ : λ ∈ Λ} be a cover for a space X such that each Xλ

has a sequence of covers {Pλ,n : n ∈ N}.
(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cover for X [1], if, for every

λ ∈ Λ,
⋃
{Pλ,n : n ∈ N} is a point-star network for Xλ consisting of countable covers

Pλ,n.

(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable (resp., point-finite, locally count-
able, compact-countable) double point-star cover for X, if {(Xλ, {Pλ,n}) : λ ∈ Λ} is
a double point-star cover for X such that {Xλ : λ ∈ Λ} and each Pλ,n is point-
countable (resp., point-finite, locally countable, compact-countable). Note that each
Pλ,n is countable, then it is obviously point-countable (locally countable, compact-
countable).
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Definition 3.2. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cover for X.

(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wsn-cover for X if, for each
x ∈ X, there exists λ ∈ Λ such that Xλ is a sequential neighborhood of x and each
Pλ,n is a wsn-cover at x in Xλ.

(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable (resp., point-finite, locally count-
able, compact-countable) double point-star wsn-cover for X, if it is a double point-star
wsn-cover for X and a point-countable (resp., point-finite, locally countable, compact-
countable) double point-star cover for X.

(3) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star so-cover for X, if {Xλ : λ ∈ Λ}
is an so-cover for X, and each Pλ,n is an so-cover for Xλ.

(4) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable (resp., point-finite, locally count-
able, compact-countable) double point-star so-cover for X, if it is a double point-star
so-cover for X and a point-countable (resp., point-finite, locally countable, compact-
countable) double point-star cover for X.

Definition 3.3. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cover for a
space X, and (fλ,Mλ, Xλ, {Pλ,n}) be the Ponomarev-system for each λ ∈ Λ. Since
each Pλ,n is countable, Mλ is a separable metric space. Put M =

⊕
λ∈Λ Mλ, and

f =
⊕

λ∈Λ fλ. Then M is a locally separable metric space, and f is a mapping
from a locally separable metric space M onto X. The system (f,M,X, {Pλ,n}) is an
ls-Ponomarev-system [1].

In [1], a necessary and sufficient condition such that f is a compact mapping for
an ls-Ponomarev-system (f,M,X, {Pλ,n}) has been obtained as follows.

Lemma 3.1 ([1], Theorem 2.15). Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system.
Then the following are equivalent.

(1) f is a compact mapping.
(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star cover for X.

Proof. (1) ⇒ (2) Let f be a compact mapping. For each x ∈ X, since f−1(x)
is compact, {λ ∈ Λ : f−1(x) ∩ Mλ 6= ∅} is finite. Then {λ ∈ Λ : x ∈ Xλ} is
finite, i.e., {Xλ : λ ∈ Λ} is point-finite. On the other hand, for each λ ∈ Λ, since
f−1

λ (x) = f−1(x)∩Mλ is compact, fλ is a compact mapping. Then each Pλ,n is point-
finite by [7, Theorem 3.7.(1)]. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite
double point-star cover for X.

(2) ⇒ (1). Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a point-finite double point-star cover
for X. For each x ∈ X, Λx = {λ ∈ Λ : x ∈ Xλ} is finite by point-finiteness of {Xλ :
λ ∈ Λ}. Since each Pλ,n is point-finite, f−1

λ (x) is compact by [7, Theorem 3.7.(1)].
It implies that f−1(x) =

⋃
{f−1

λ (x) : λ ∈ Λx} is compact, then f is a compact
mapping. �

In the next, we state necessary and sufficient conditions such that f is an s-
mapping (ss-mapping, cs-mapping) for an ls-Ponomarev-system (f,M,X, {Pλ,n}).
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Proposition 3.1. Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system. Then the
following are equivalent.

(1) f is an s-mapping (resp., ss-mapping, cs-mapping).
(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable (resp., locally countable, compact-

countable) double point-star cover for X.

Proof. (1) ⇒ (2). Let f : X −→ Y be an s-mapping. For each x ∈ X, we find
that {λ ∈ Λ : f−1(x) ∩Mλ 6= ∅} is countable. Then {λ ∈ Λ : x ∈ Xλ} is countable,
hence {Xλ : λ ∈ Λ} is point-countable. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a
point-countable double point-star cover for X.

For the parenthetic part, let f be an ss-mapping. For each x ∈ X, there exists an
open neighborhood U of x such that f−1(U) is separable. Then {λ ∈ Λ : f−1(U) ∩
Mλ 6= ∅} is countable, hence {λ ∈ Λ : U ∩Xλ 6= ∅} is countable. Thus, {Xλ : λ ∈ Λ}
is locally countable. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is locally countable double
point-star cover for X.

Let f be a cs-mapping. For each compact subset K of X, we find that f−1(K) is
separable. Then {λ ∈ Λ : f−1(K)∩Mλ 6= ∅} is countable, hence {λ ∈ Λ : K∩Xλ 6= ∅}
is countable. Thus, {Xλ : λ ∈ Λ} is compact-countable. It implies that {(Xλ, {Pλ,n}) :
λ ∈ Λ} is compact-countable double point-star cover for X.

(2) ⇒ (1). Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a point-countable double point-star
cover for X. For each x ∈ X, we find that Λx = {λ ∈ Λ : x ∈ Xλ} is countable. Note
that each f−1

λ (x) is separable. Then f−1(x) =
⋃
{f−1

λ (x) : λ ∈ Λ} is separable. This
proves that f is an s-mapping.

For the parenthetic part, let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a locally countable double
point-star cover for X. For each x ∈ X, there exists a neighborhood U of x such that
{λ ∈ Λ : U ∩Xλ 6= ∅} is countable. Then {λ ∈ Λ : f−1(U) ∩Mλ 6= ∅} is countable.
Since each f−1(U) ∩Mλ is separable, f−1(U) is separable. This proves that f is an
ss-mapping.

Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a compact-countable double point-star cover for X.
For each compact subset K of X, we find that {λ ∈ Λ : K ∩ Xλ 6= ∅} is countable.
Then {λ ∈ Λ : f−1(K)∩Mλ 6= ∅} is countable. Since each f−1(K)∩Mλ is separable,
f−1(K) is separable. This proves that f is a cs-mapping. �

For an ls-Ponomarev-system (f,M,X, {Pλ,n}), necessary and sufficient condi-
tions such that f is a compact-covering (sequence-covering, pseudo-sequence-covering,
sequentially-quotient) mapping have been obtained by means of certain double point-
star covers in [1]. In the next, we state a necessary and sufficient condition such that
f is an 1-sequence-covering (resp., 2-sequence-covering) mapping by means of double
point-star wsn-covers (resp., double point-star so-covers).

Theorem 3.1. Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system. Then the fol-
lowing are equivalent.

(1) f is an 1-sequence-covering (resp., 2-sequence-covering) mapping.
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(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wsn-cover (resp., double point-
star so-cover) for X.

Proof. (1) ⇒ (2). Let f be an 1-sequence-covering mapping. For each x ∈ X,
there exists ax ∈ f−1(x) such that whenever {xn : n ∈ N} is a sequence converging
to x in X there exists a sequence {an : n ∈ N} converging to ax in M with each
an ∈ f−1(xn). Let ax ∈ Mλ for some λ ∈ Λ. If {yn : n ∈ N} is a sequence converging
to x in X, then there exists a sequence {bn : n ∈ N} converging to ax in M with
each bn ∈ f−1(yn). Since Mλ is open in M , {bn : n ∈ N} ∪ {ax} is eventually in
Mλ. It implies that {yn : n ∈ N} ∪ {x} is eventually in Xλ. Then Xλ is a sequential
neighborhood of x.

For each sequence {xn : n ∈ N} converging to x in Xλ, there exists a sequence
{an : n ∈ N} converging to ax in M with each an ∈ f−1(xn). Since Mλ is open, there
exists n0 ∈ N such that {an : n > n0} ⊂ Mλ. For each n < n0, since xn ∈ Xλ, there
exists some a′n ∈ Mλ ∩ f−1(xn). Put bn = a′n if n < n0, and bn = an if n > n0. Then
{bn : n ∈ N} is a sequence in Mλ converging to ax with each bn ∈ f−1

λ (xn). It implies
that fλ is an 1(x)-sequence-covering mapping in Xλ. Then each Pλ,n is a wsn-cover
at x in Xλ by Proposition 2.1.

By the above, {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wsn-cover for X.

For the parenthetic part, let f be a 2-sequence-covering mapping. By Lemma 2.2,
{Xλ : λ ∈ Λ} is an so-cover for X, and each fλ = f |Mλ

is a 2-sequence-covering
mapping. It follows from Corollary 2.1 that each Pλ,n is an so-cover for Xλ. Then
{(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star so-cover for X.

(2) ⇒ (1). Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star wsn-cover for X.
For each x ∈ X, there exists λ ∈ Λ such that Xλ is a sequential neighborhood of x
and each Pλ,n is a wsn-cover at x in Xλ. It follows from Proposition 2.1 that fλ is an
1(x)-sequence-covering mapping. Then there exists ax ∈ f−1

λ (x) such that whenever
{xn : n ∈ N} is a sequence converging to x in Xλ there exists a sequence {an : n ∈ N}
converging to ax in Mλ with each an ∈ f−1

λ (xn). For each sequence {yn : n ∈ N}
converging to x in X, there exists n0 ∈ N such that {yn : n > n0} is a sequence in Xλ.
Then there exists a sequence {bn : n > n0} converging to ax in Mλ with bn ∈ f−1

λ (yn)
for every n > n0. For each n < n0, pick some b′n ∈ f−1(yn), and put cn = b′n if n < n0

and cn = bn if n > n0. Then {cn : n ∈ N} is a sequence converging to ax in M with
each cn ∈ f−1(yn). It implies that f is an 1-sequence-covering mapping.

For the parenthetic part, let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star so-
cover for X. For each x ∈ X, put Λx = {λ ∈ Λ : x ∈ Xλ}. We find that f−1(x) =⋃
{f−1

λ (x) : λ ∈ Λx}. For each ax ∈ f−1(x), there exists λ ∈ Λx such that ax ∈ f−1
λ (x).

If {xn : n ∈ N} is a sequence converging to x in X, there exists n0 ∈ N such that
{xn : n > n0} ⊂ Xλ. Since each Pλ,n is an so-cover for Xλ, fλ is a 2-sequence-covering
mapping by Corollary 2.1. Then there exists a sequence {an : n > n0} converging to
ax in Mλ with each an ∈ f−1

λ (xn). For each n < n0, pick some a′n ∈ f−1(xn). Put
bn = a′n if n < n0 and bn = an if n > n0. Then {bn : n ∈ N} is a sequence in M
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converging to ax with each bn ∈ f−1(xn). It implies that f is a 2-sequence-covering
mapping. �

By Lemma 3.1, Proposition 3.1, and Theorem 3.1, we get the following.

Corollary 3.1. Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system. Then the fol-
lowing are equivalent, where “1-sequence-covering” and “double point-star wsn-cover”
can be replaced by “2-sequence-covering” and “double point-star so-cover”, respectively.

(1) f is an 1-sequence-covering s-mapping (resp., ss-mapping, cs-mapping, com-
pact mapping).

(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable (resp., locally countable, compact-
countable, point-finite) double point-star wsn-cover for X.

Next, we get a new characterization for 1-sequence-covering (2-sequence-covering)
compact images of locally separable metric spaces.

Corollary 3.2. The following are equivalent for a space X.

(1) X is an 1-sequence-covering (resp., 2-sequence-covering) compact image of
a locally separable metric space.

(2) X has a point-finite double point-star wsn-cover (resp., point-finite double
point-star so-cover).

Proof. (1) ⇒ (2). Let f : M −→ X be an 1-sequence-covering compact mapping
from a locally separable metric space M onto X. Since M is a locally separable metric
space, M = ⊕λ∈ΛMλ where each Mλ is a separable metric space by [4, 4.4.F]. Since
each Mλ is a separable metric space, Mλ has a sequence of open countable covers
{Bλ,n : n ∈ N} such that, for each compact subset K of Mλ and each open subset
U of Mλ with K ⊂ U , there exists n ∈ N satisfying st(K,Bλ,n) ⊂ U by [4, 5.4.E].
Let Cλ,n be a locally finite open refinement of each Bλ,n. Then, for each λ ∈ Λ,
{Cλ,n : n ∈ N} is a sequence of locally finite open countable covers for Mλ such that,
for each compact subset K of Mλ and each open subset U of Mλ with K ⊂ U , there
exists n ∈ N satisfying st(K, Cλ,n) ⊂ U . For each λ ∈ Λ and n ∈ N, putXλ = f(Mλ)
and Pλ,n = f(Cλ,n). We get following facts (a)-(e).

(a) {Xλ : λ ∈ Λ} is a cover for X.

(b) Each Pλ,n is countable.

(c) For each λ ∈ Λ, {Pλ,n : n ∈ N} is a point-star network for Xλ.

Let x ∈ U with U open in Xλ, then x ∈ V with V open in X and V ∩Xλ = U . Since
f is compact, f−1

λ (x) = f−1(x)∩Mλ is a compact subset of Mλ and f−1
λ (x) ⊂ Vλ with

Vλ = f−1(V )∩Mλ open in Mλ. Then there exists n ∈ N such that st(f−1
λ (x), Cλ,n) ⊂

Vλ. It implies that st(x,Pλ,n) ⊂ f(f−1(V )∩Mλ) ⊂ V ∩Xλ = U . Then {Pλ,n : n ∈ N}
is a point-star network for Xλ.

(d) {Xλ : λ ∈ Λ} is point-finite.

For each x ∈ X, since f−1(x) is compact, f−1(x) meets only finitely many Mλ’s.
It implies that {Xλ : λ ∈ Λ} is point-finite.
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(e) Each Pλ,n is point-finite.

For each x ∈ Xλ, since f is compact, f−1
λ (x) = f−1(x) ∩Mλ is a compact subset

of Mλ. Then f−1
λ (x) meets only finitely many members of Cλ,n by locally finiteness

of Cλ,n for every n ∈ N. It implies that x meets only finitely many members of each
Cλ,n. Therefore, Pλ,n is point-finite.

From (a)-(e) we find that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star
cover for X. Let x ∈ X, there exists ax ∈ M such that whenever {xn : n ∈ N} is a
sequence converging to x in X there exists a sequence {an : n ∈ N} converging to ax

in M with an ∈ f−1(xn). We find that ax ∈ Mλ for some λ ∈ Λ. Since Mλ is open
and Cλ,n is an open cover for Mλ for every n ∈ N, Xλ is a sequential neighborhood of
x and Pλ,n is a wsn-cover for Xλ by Lemma 2.1.

For the parenthetic part, let f be a 2-sequence-covering compact mapping. Then
the point-finite double point-star cover {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star
so-cover for X by Lemma 2.2.

By the above, {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star wsn-cover
(resp., point-finite double point-star so-cover) for X.

(2) ⇒ (1). By Lemma 3.1 and Theorem 3.1. �

For a Ponomarev-system (f,M,X, {Pn}), the following is well-known.

Lemma 3.2 ([18], Lemma 2.2). Let (f,M,X, {Pn}) be a Ponomarev-system. Then
f is a π-mapping.

Next, we prove a sufficient condition such that f is a π-mapping for an ls-
Ponomarev-system (f,M,X, {Pλ,n}).

Proposition 3.2. Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system. If
⋃
{Pn :

n ∈ N} is a point-star network for X, where Pn =
⋃
{Pλ,n : λ ∈ Λ} for every n ∈ N,

then f is a π-mapping.

Proof. Let x ∈ U with U open in X. Since
⋃
{Pn : n ∈ N} is a point-star

network for X, st(x,Pn) ⊂ U for some n ∈ N. For each λ ∈ Λ with x ∈ Xλ we find
that st(x,Pλ,n) ⊂ Uλ where Uλ = U ∩Xλ. If a = (αi) ∈ Mλ such that d(f−1(x), a) <
1
2n

, there exists b = (βi) ∈ f−1
λ (x) such that dλ(a, b) <

1
2n

, where d and dλ are
metrics on M and Mλ, respectively. Therefore, αi = βi if i 6 n. It implies that
x ∈ Pαn

= Pβn
⊂ st(x,Pλ,n) ⊂ Uλ, hence a ∈ f−1(Pαn

) ⊂ f−1
λ (Uλ). This proves that

dλ(f−1
λ (x),Mλ − f−1

λ (Uλ)) >
1
2n

. Then

d(f−1(x),M − f−1(U)) = inf{d(a, b) : a ∈ f−1(x), b ∈ M − f−1(U)}

= min
{
1, inf{dλ(a, b) : a ∈ f−1

λ (x), b ∈ Mλ − f−1
λ (Uλ), λ ∈ Λ}

}
>

1
2n

> 0.

It implies that f is a π-mapping. �
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Finally, we give an example to prove that the inverse implication of Proposition 3.2
does not hold.

Example 3.1. There exists an ls-Ponomarev-system (f,M,X, {Pλ,n}) such that
the following hold.

(1) f is a compact mapping.
(2)

⋃
{Pn : n ∈ N} is not a point-star network for X.

Proof. Let X = {x, y} be a discrete space. Put X1 = X2 = X, and put
P1,1 = P2,2 = {{x}, {y}} and P1,n = {X} if n > 2, P2,n = {X} if n 6= 2. We find
that

⋃
{P1,n : n ∈ N} is a point-star network for X1, and

⋃
{P2,n : n ∈ N} is a point-

star network for X2. Then the ls-Ponomarev-system (f,M,X, {Pλ,n}) exists, where
{Xλ : λ ∈ Λ} = {X1, X2}.

(1). f is a compact mapping.

For each x ∈ X, we find that f−1
1 (x) = (αn) where α1 = α and αn = γ for

n > 2, and f−1
2 (x) = (αn) where α2 = α and αn = γ for n 6= 2. Then f−1(x) =

f−1
1 (x) ∪ f−1

2 (x) is a compact subset of M . On the other hand, f−1
1 (y) = (βn) where

β1 = β and βn = γ for n > 2, and f−1
2 (y) = (βn) where β2 = β and βn = γ for

n 6= 2. Then f−1(y) = f−1
1 (y) ∪ f−1

2 (y) is a compact subset of M . It implies that f
is a compact mapping.

(2).
⋃
{Pn : n ∈ N} is not a point-star network for X.

We find that P1 = P2 = {{x}, {y}, X}, and Pn = {X} if n > 2. Then st(x,Pn) =
X for every n ∈ N. This proves that

⋃
{Pn : n ∈ N} is not a point-star network

for X. �

Remark 3.1. Since every compact mapping from a metric space is a π-mapping,
Example 3.1 shows that the inverse implication of Proposition 3.2 does not hold.
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