SCIENTIA
Series A: Mathematical Sciences, Vol. 19 (2010), 25–36
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2010

ls-Ponomarev-systems and 1-sequence-covering mappings

Nguyen Van Dung

ABSTRACT. In this paper, we prove that f is an 1-sequence-covering (resp., 2-sequence-covering) mapping from a locally separable metric space M onto a space X if and only if $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star *wsn*-cover (resp., double point-star *so*-cover) for X, where $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ is an *ls*-Ponomarev-system, and investigate further properties of mappings in the *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$.

1. Introduction

Characterizing images of metric spaces under covering-mappings by spaces having certain networks is one of attracted problems in general topology. Recently, some authors were interested in finding a general method to construct a covering-mapping with metric domain. By this work, characterizations of images of metric spaces were obtained systematically. In [1], the authors introduced the *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$, and used this notion to give necessary and sufficient conditions such that the mapping f is a compact mapping (a compact-covering mapping, a sequencecovering mapping, a pseudo-sequence-covering mapping, a sequentially-quotient mapping) from a locally separable metric space M onto a space X. As applications of these results, the authors systematically obtained internal characterizations of certain compact images of locally separable metric spaces. Among covering-mappings, 1-sequence-covering mappings and 2-sequence-covering mappings which were introduced by S. Lin in [11] play important roles, and cause many attentions in [3], [6], [7], [9], [12], [13]. Thus, it is interested in finding a necessary and sufficient condition such that f is an 1-sequence-covering (2-sequence-covering) mapping for an *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$.

In this paper, we prove that f is an 1-sequence-covering (resp., 2-sequence-covering) mapping from a locally separable metric space M onto a space X if and only if $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star *wsn*-cover (resp., double point-star

²⁰⁰⁰ Mathematics Subject Classification. Primary 54E35, 54E40; Secondary 54D99, 54E99.

Key words and phrases. ls-Ponomarev-system, 1-sequence-covering, 2-sequence-covering, double point-star wsn-cover, double point-star so-cover.

so-cover) for X, where $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ is an *ls*-Ponomarev-system, and investigate further properties of mappings in the *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$. These results make the study of covering-mappings from locally separable metric spaces more completely.

Throughout this paper, all spaces are Hausdorff, all mappings are continuous and onto, a convergent sequence includes its limit point, and \mathbb{N} denotes the set of all natural numbers. Let $f: X \longrightarrow Y$ be a mapping, \mathcal{P} be a family of subsets of a space X, and $K \subset X$, we denote $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}, st(K, \mathcal{P}) = \bigcup \{P \in \mathcal{P} : P \cap K \neq \emptyset\}$, and $st(x, \mathcal{P}) = st(\{x\}, \mathcal{P})$ for every $x \in X$. We say that a convergent sequence $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ converging to x is *eventually* in a subset U of a space X if $\{x_n : n \geq n_0\} \cup \{x\} \subset U$ for some $n_0 \in \mathbb{N}$.

For terms are not defined here, please refer to [4] and [17].

2. 1-sequence-covering mappings in Ponomarev-systems

DEFINITION 2.1. Let P be a subset of a space X.

(1) P is a sequential neighborhood of x [5], if for every convergent sequence S converging to x in X, S is eventually in P.

(2) P is a sequentially open subset of X [5], if for every $x \in P$, P is a sequential neighborhood of x.

DEFINITION 2.2. Let \mathcal{P} be a cover for a space X.

(1) \mathcal{P} is a *network* for X [15], if $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ with $\mathcal{P}_x \subset \{P \in \mathcal{P} : x \in P\}$, and for every $x \in U$ with U open in X, there exists $P \in \mathcal{P}_x$ such that $x \in P \subset U$, where \mathcal{P}_x is a *network at* x in X.

(2) \mathcal{P} is an *sn-cover* for X [13], if each $P \in \mathcal{P}$ is a sequential neighborhood of some point in X, and for each $x \in X$, there exists $P \in \mathcal{P}$ such that P is a sequential neighborhood of x.

(3) For each $x \in X$, \mathcal{P} is a *wsn-cover at* x in X or a wsn(x)-cover for X, if there exists $P \in \mathcal{P}$ such that P is a sequential neighborhood of x.

 \mathcal{P} is a *wsn-cover* for X [7] if, for every $x \in X$, \mathcal{P} is a *wsn*(x)-cover for X.

(4) For each $x \in X$, \mathcal{P} is an so-cover at x in X or an so(x)-cover for X, if for each $P \in \mathcal{P}$ with $x \in P$, P is a sequential neighborhood of x.

 \mathcal{P} is an *so-cover* for X [13], if every element of \mathcal{P} is a sequentially open subset of X. It is easy to see that \mathcal{P} is an *so*-cover for X if and only if, for every $x \in X$, \mathcal{P} is an *so*(x)-cover for X.

(5) \mathcal{P} is a point-star network for X, if $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ where each \mathcal{P}_n is a cover for X and, for each $x \in X$, $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x in X. Note that a point-star network is a σ -strong network in the sense of [8], and $\{\mathcal{P}_n : n \in \mathbb{N}\}$ is a point-star network in the sense of [14].

DEFINITION 2.3. Let $f: X \longrightarrow Y$ be a mapping.

(1) For each $y \in Y$, f is an 1(y)-sequence-covering mapping or an 1-sequencecovering mapping at y, if there exists $x_y \in f^{-1}(y)$ such that whenever $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to y in Y there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

f is an 1-sequence-covering mapping [11], if f is an 1(y)-sequence-covering mapping for every $y \in Y$.

(2) For each $y \in Y$, f is a 2(y)-sequence-covering mapping or a 2-sequence-covering mapping at y, if whenever $x_y \in f^{-1}(y)$ and $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to y in Y there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

f is a 2-sequence-covering mapping [11], if f is a 2(y)-sequence-covering mapping for every $y \in Y$.

(3) f is an *s*-mapping (resp., compact mapping) [2] if, for each $y \in Y$, $f^{-1}(y)$ is a separable (resp., compact) subset of X.

(4) f is an *ss-mapping* [10] if, for each $y \in Y$, there exists a neighborhood U of y in Y such that $f^{-1}(U)$ is a separable subset of X.

(5) f is a cs-mapping [16] if, for each compact subset K of Y, $f^{-1}(K)$ is a separable subset of X.

(6) f is a π -mapping [2] if, for each $y \in Y$ and each neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

LEMMA 2.1. Let $f: X \longrightarrow Y$ be an 1-sequence-covering mapping at y in Y, and U be a sequential neighborhood of x_y in X. Then f(U) is a sequential neighborhood of y in Y.

PROOF. Let $\{y_n : n \in \mathbb{N}\}$ be a sequence converging to y in Y. Then there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$. Since Uis a neighborhood of x_y , $\{x_n : n \in \mathbb{N}\} \cup \{x_y\}$ is eventually in U. It implies that $\{y_n : n \in \mathbb{N}\} \cup \{y\}$ is eventually in f(U). This proves that f(U) is a sequential neighborhood of y.

LEMMA 2.2. Let $f : X \longrightarrow Y$ be a 2-sequence-covering mapping, and U be a sequentially open subset of X. Then the following hold.

- (1) f(U) is a sequentially open subset of Y.
- (2) $f|_U: U \longrightarrow f(U)$ is a 2-sequence-covering mapping.

PROOF. (1). For each $y \in f(U)$, let $\{y_n : n \in \mathbb{N}\}$ be a sequence converging to y in Y. Pick some $x_y \in f^{-1}(y) \cap U$, then there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$. Since U is sequentially open, $\{x_n : n \in \mathbb{N}\} \cup \{x_y\}$ is eventually in U. It implies that $\{y_n : n \in \mathbb{N}\} \cup \{y\}$ is eventually in f(U). This proves that f(U) is a sequential neighborhood of y for every $y \in f(U)$, hence f(U) is sequentially open in Y.

(2). For each $y \in f(U)$, let $\{y_n : n \in \mathbb{N}\}$ be a sequence converging to y in f(U). For each $x_y \in f^{-1}(y) \cap U = f|_U^{-1}(y)$, there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X. Since U is sequentially open, there exists $n_0 \in \mathbb{N}$ such that $\{x_n : n \ge n_0\} \subset U$. For each $n < n_0$, since $y_n \in f(U)$, there exists $x'_n \in f^{-1}(y_n) \cap U$. Put $t_n = x'_n$ if $n < n_0$ and $t_n = x_n$ if $n \ge n_0$. Then $\{t_n : n \in \mathbb{N}\}$ is a sequence in U converging to x_y with each $t_n \in f^{-1}(y_n) \cap U = f|_U^{-1}(y_n)$. It implies that $f|_U$ is a 2-sequence-covering mapping.

DEFINITION 2.4. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a point-star network for X. For every $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$, and endowed A_n with discrete topology. Put

$$M = \left\{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \right\}$$

forms a network at some point x_a in X.

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} A_n$, is a metric space, x_a is unique, and $x_a = \bigcap_{n \in \mathbb{N}} P_{\alpha_n}$ for every $a \in M$. Define $f : M \to X$ by $f(a) = x_a$, then f is a mapping and $(f, M, X, \{\mathcal{P}_n\})$ is a *Ponomarev-system* [14].

In [7, Theorem 3.10], for a Ponomarev-system $(f, M, X, \{\mathcal{P}_n\})$, Y. Ge and S. Lin proved that f is an 1-sequence-covering mapping if and only if each \mathcal{P}_n is a *wsn*-cover for X. Now, we modify this result as follows.

PROPOSITION 2.1. Let $(f, M, X, \{\mathcal{P}_n\})$ be a Ponomarev-system. Then the following are equivalent for every point $x \in X$.

- (1) f is an 1(x)-sequence-covering mapping.
- (2) Each \mathcal{P}_n is a wsn(x)-cover for X.

PROOF. (1) \Rightarrow (2). Let f be an 1(x)-sequence-covering mapping. There exists $a_x \in f^{-1}(x)$ such that whenever $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X there exists a sequence $\{a_n : n \in \mathbb{N}\}$ converging to a_x in M with each $a_n \in f^{-1}(x_n)$. Let $a_x = (\alpha_n)$, we shall prove that P_{α_k} is a sequential neighborhood of x for every $k \in \mathbb{N}$. Whenever $\{y_i : i \in \mathbb{N}\}$ is a sequence converging to x in X, there exists a sequence $\{b_i : i \in \mathbb{N}\}$ converging to a_x in M with each $b_i \in f^{-1}(y_i)$. Put $U_k = \{b = (\beta_n) \in M : \beta_k = \alpha_k\}$, then U_k is an open neighborhood of a_x in M. So the sequence $\{b_i : i \in \mathbb{N}\} \cup \{a_x\}$ is eventually in U_k , hence the sequence $\{y_i : i \in \mathbb{N}\} \cup \{x\}$ is eventually in $f(U_k) \subset P_{\alpha_k}$. This proves that P_{α_k} is a sequential neighborhood of x.

 $(2) \Rightarrow (1)$. Let each \mathcal{P}_n be a wsn(x)-cover for X. For each $n \in \mathbb{N}$, there exists $P_{\alpha_n} \in \mathcal{P}_n$ such that P_{α_n} is a sequential neighborhood of x. Then $\{P_{\alpha_n} : n \in \mathbb{N}\}$ forms a network at x in X. Let $\{x_i : i \in \mathbb{N}\}$ be a sequence converging to x in X. Then $\{x_i : i \in \mathbb{N}\} \cup \{x\}$ is eventually in each P_{α_n} . For each $i \in \mathbb{N}$, put $\alpha_{in} = \alpha_n$ if $x_i \in P_{\alpha_n}$, otherwise, pick some $\alpha_{in} \in A_n$ such that $x_i \in P_{\alpha_{in}}$. Then $\{P_{\alpha_{in}} : n \in \mathbb{N}\}$ forms a network at x_i in X. Put $a_i = (\alpha_{in})$ and $a_x = (\alpha_n)$, we find that $a_i \in f^{-1}(x_i)$ and $a_x \in f^{-1}(x)$. Since $\{x_i : i \in \mathbb{N}\} \cup \{x\}$ is eventually in P_{α_n} , there exists n(i) such that $\alpha_{in} = \alpha_n$ for every $i \ge n(i)$. This proves that $\{a_i : i \in \mathbb{N}\}$ is a sequence converging to a_x in M. Then f is an 1(x)-sequence-covering mapping.

Next, we state a necessary and sufficient condition such that f is a 2-sequencecovering mapping at $x \in X$ for a Ponomarev-system $(f, M, X, \{\mathcal{P}_n\})$.

PROPOSITION 2.2. Let $(f, M, X, \{\mathcal{P}_n\})$ be a Ponomarev-system. Then the following are equivalent for every $x \in X$.

- (1) f is a 2(x)-sequence-covering mapping.
- (2) Each \mathcal{P}_n is an so(x)-cover for X.

PROOF. (1) \Rightarrow (2). Let f be a 2(x)-sequence-covering mapping. For each $x \in P \in \mathcal{P}_n$, there exists $a = (\alpha_n) \in M$ such that $P_{\alpha_n} = P$. As in the proof (1) \Rightarrow (2) of Proposition 2.1, we find that P is a sequential neighborhood of x in X. This proves that \mathcal{P}_n is an so(x)-cover for X.

(2) \Rightarrow (1). Let \mathcal{P} be an so(x)-network for X. For each $a_x = (\alpha_n) \in f^{-1}(x)$, we find that each P_{α_n} is a sequential neighborhood of x in X. As in the proof (2) \Rightarrow (1) of Proposition 2.1, we find that for each sequence $\{x_i : i \in \mathbb{N}\}$ converging to x in X there exists a sequence $\{a_i : i \in \mathbb{N}\}$ converging to a_x in M with each $a_i \in f^{-1}(x_i)$. This proves that f is a 2(x)-sequence-covering mapping.

COROLLARY 2.1. Let $(f, M, X, \{\mathcal{P}_n\})$ be a Ponomarev-system. Then the following are equivalent.

- (1) f is a 2-sequence-covering mapping.
- (2) Each \mathcal{P}_n is an so-cover for X.

3. 1-sequence-covering mappings in *ls*-Ponomarev-systems

The notions of double point-star cover (double point-star *cs*-cover, double pointstar *cs*^{*}-cover, double point-star *cfp*-cover, double point-star *wcs*-cover) have been introduced and investigated in [1]. In this section, we investigate further properties of the *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$, and introduce the notion of double pointstar *wsn*-cover (resp., double point-star *so*-cover) to state a necessary and sufficient condition such that f is an 1-sequence-covering (resp., 2-sequence-covering) mapping.

DEFINITION 3.1. Let $\{X_{\lambda} : \lambda \in \Lambda\}$ be a cover for a space X such that each X_{λ} has a sequence of covers $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$.

(1) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a *double point-star cover* for X [1], if, for every $\lambda \in \Lambda, \bigcup \{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a point-star network for X_{λ} consisting of countable covers $\mathcal{P}_{\lambda,n}$.

(2) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-countable (resp., point-finite, locally countable, compact-countable) double point-star cover for X, if $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star cover for X such that $\{X_{\lambda} : \lambda \in \Lambda\}$ and each $\mathcal{P}_{\lambda,n}$ is pointcountable (resp., point-finite, locally countable, compact-countable). Note that each $\mathcal{P}_{\lambda,n}$ is countable, then it is obviously point-countable (locally countable, compactcountable).

DEFINITION 3.2. Let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a double point-star cover for X.

(1) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a *double point-star wsn-cover* for X if, for each $x \in X$, there exists $\lambda \in \Lambda$ such that X_{λ} is a sequential neighborhood of x and each $\mathcal{P}_{\lambda,n}$ is a *wsn*-cover at x in X_{λ} .

(2) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-countable (resp., point-finite, locally countable, compact-countable) double point-star wsn-cover for X, if it is a double point-star wsn-cover for X and a point-countable (resp., point-finite, locally countable, compactcountable) double point-star cover for X.

(3) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a *double point-star so-cover* for X, if $\{X_{\lambda} : \lambda \in \Lambda\}$ is an *so*-cover for X, and each $\mathcal{P}_{\lambda,n}$ is an *so*-cover for X_{λ} .

(4) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-countable (resp., point-finite, locally countable, compact-countable) double point-star so-cover for X, if it is a double point-star so-cover for X and a point-countable (resp., point-finite, locally countable, compactcountable) double point-star cover for X.

DEFINITION 3.3. Let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a double point-star cover for a space X, and $(f_{\lambda}, M_{\lambda}, X_{\lambda}, \{\mathcal{P}_{\lambda,n}\})$ be the Ponomarev-system for each $\lambda \in \Lambda$. Since each $\mathcal{P}_{\lambda,n}$ is countable, M_{λ} is a separable metric space. Put $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$, and $f = \bigoplus_{\lambda \in \Lambda} f_{\lambda}$. Then M is a locally separable metric space, and f is a mapping from a locally separable metric space M onto X. The system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ is an *ls-Ponomarev-system* [1].

In [1], a necessary and sufficient condition such that f is a compact mapping for an *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ has been obtained as follows.

LEMMA 3.1 ([1], Theorem 2.15). Let $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ be an ls-Ponomarev-system. Then the following are equivalent.

- (1) f is a compact mapping.
- (2) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-finite double point-star cover for X.

PROOF. (1) \Rightarrow (2) Let f be a compact mapping. For each $x \in X$, since $f^{-1}(x)$ is compact, $\{\lambda \in \Lambda : f^{-1}(x) \cap M_{\lambda} \neq \emptyset\}$ is finite. Then $\{\lambda \in \Lambda : x \in X_{\lambda}\}$ is finite, i.e., $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-finite. On the other hand, for each $\lambda \in \Lambda$, since $f_{\lambda}^{-1}(x) = f^{-1}(x) \cap M_{\lambda}$ is compact, f_{λ} is a compact mapping. Then each $\mathcal{P}_{\lambda,n}$ is point-finite by [7, Theorem 3.7.(1)]. It implies that $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-finite double point-star cover for X.

(2) \Rightarrow (1). Let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a point-finite double point-star cover for X. For each $x \in X$, $\Lambda_x = \{\lambda \in \Lambda : x \in X_\lambda\}$ is finite by point-finiteness of $\{X_\lambda : \lambda \in \Lambda\}$. Since each $\mathcal{P}_{\lambda,n}$ is point-finite, $f_{\lambda}^{-1}(x)$ is compact by [7, Theorem 3.7.(1)]. It implies that $f^{-1}(x) = \bigcup \{f_{\lambda}^{-1}(x) : \lambda \in \Lambda_x\}$ is compact, then f is a compact mapping.

In the next, we state necessary and sufficient conditions such that f is an *s*-mapping (*ss*-mapping, *cs*-mapping) for an *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$.

PROPOSITION 3.1. Let $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ be an ls-Ponomarev-system. Then the following are equivalent.

- (1) f is an s-mapping (resp., ss-mapping, cs-mapping).
- (2) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-countable (resp., locally countable, compactcountable) double point-star cover for X.

PROOF. (1) \Rightarrow (2). Let $f: X \longrightarrow Y$ be an *s*-mapping. For each $x \in X$, we find that $\{\lambda \in \Lambda : f^{-1}(x) \cap M_{\lambda} \neq \emptyset\}$ is countable. Then $\{\lambda \in \Lambda : x \in X_{\lambda}\}$ is countable, hence $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-countable. It implies that $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-countable double point-star cover for X.

For the parenthetic part, let f be an *ss*-mapping. For each $x \in X$, there exists an open neighborhood U of x such that $f^{-1}(U)$ is separable. Then $\{\lambda \in \Lambda : f^{-1}(U) \cap M_{\lambda} \neq \emptyset\}$ is countable, hence $\{\lambda \in \Lambda : U \cap X_{\lambda} \neq \emptyset\}$ is countable. Thus, $\{X_{\lambda} : \lambda \in \Lambda\}$ is locally countable. It implies that $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is locally countable double point-star cover for X.

Let f be a *cs*-mapping. For each compact subset K of X, we find that $f^{-1}(K)$ is separable. Then $\{\lambda \in \Lambda : f^{-1}(K) \cap M_{\lambda} \neq \emptyset\}$ is countable, hence $\{\lambda \in \Lambda : K \cap X_{\lambda} \neq \emptyset\}$ is countable. Thus, $\{X_{\lambda} : \lambda \in \Lambda\}$ is compact-countable. It implies that $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is compact-countable double point-star cover for X.

(2) \Rightarrow (1). Let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a point-countable double point-star cover for X. For each $x \in X$, we find that $\Lambda_x = \{\lambda \in \Lambda : x \in X_{\lambda}\}$ is countable. Note that each $f_{\lambda}^{-1}(x)$ is separable. Then $f^{-1}(x) = \bigcup\{f_{\lambda}^{-1}(x) : \lambda \in \Lambda\}$ is separable. This proves that f is an s-mapping.

For the parenthetic part, let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a locally countable double point-star cover for X. For each $x \in X$, there exists a neighborhood U of x such that $\{\lambda \in \Lambda : U \cap X_{\lambda} \neq \emptyset\}$ is countable. Then $\{\lambda \in \Lambda : f^{-1}(U) \cap M_{\lambda} \neq \emptyset\}$ is countable. Since each $f^{-1}(U) \cap M_{\lambda}$ is separable, $f^{-1}(U)$ is separable. This proves that f is an *ss*-mapping.

Let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a compact-countable double point-star cover for X. For each compact subset K of X, we find that $\{\lambda \in \Lambda : K \cap X_{\lambda} \neq \emptyset\}$ is countable. Then $\{\lambda \in \Lambda : f^{-1}(K) \cap M_{\lambda} \neq \emptyset\}$ is countable. Since each $f^{-1}(K) \cap M_{\lambda}$ is separable, $f^{-1}(K)$ is separable. This proves that f is a cs-mapping.

For an *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$, necessary and sufficient conditions such that f is a compact-covering (sequence-covering, pseudo-sequence-covering, sequentially-quotient) mapping have been obtained by means of certain double pointstar covers in [1]. In the next, we state a necessary and sufficient condition such that f is an 1-sequence-covering (resp., 2-sequence-covering) mapping by means of double point-star *wsn*-covers (resp., double point-star *so*-covers).

THEOREM 3.1. Let $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ be an ls-Ponomarev-system. Then the following are equivalent.

(1) f is an 1-sequence-covering (resp., 2-sequence-covering) mapping.

(2) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star wsn-cover (resp., double pointstar so-cover) for X.

PROOF. (1) \Rightarrow (2). Let f be an 1-sequence-covering mapping. For each $x \in X$, there exists $a_x \in f^{-1}(x)$ such that whenever $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X there exists a sequence $\{a_n : n \in \mathbb{N}\}$ converging to a_x in M with each $a_n \in f^{-1}(x_n)$. Let $a_x \in M_\lambda$ for some $\lambda \in \Lambda$. If $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to x in X, then there exists a sequence $\{b_n : n \in \mathbb{N}\}$ converging to a_x in M with each $b_n \in f^{-1}(y_n)$. Since M_λ is open in M, $\{b_n : n \in \mathbb{N}\} \cup \{a_x\}$ is eventually in M_λ . It implies that $\{y_n : n \in \mathbb{N}\} \cup \{x\}$ is eventually in X_λ . Then X_λ is a sequential neighborhood of x.

For each sequence $\{x_n : n \in \mathbb{N}\}$ converging to x in X_{λ} , there exists a sequence $\{a_n : n \in \mathbb{N}\}$ converging to a_x in M with each $a_n \in f^{-1}(x_n)$. Since M_{λ} is open, there exists $n_0 \in \mathbb{N}$ such that $\{a_n : n \ge n_0\} \subset M_{\lambda}$. For each $n < n_0$, since $x_n \in X_{\lambda}$, there exists some $a'_n \in M_{\lambda} \cap f^{-1}(x_n)$. Put $b_n = a'_n$ if $n < n_0$, and $b_n = a_n$ if $n \ge n_0$. Then $\{b_n : n \in \mathbb{N}\}$ is a sequence in M_{λ} converging to a_x with each $b_n \in f_{\lambda}^{-1}(x_n)$. It implies that f_{λ} is an 1(x)-sequence-covering mapping in X_{λ} . Then each $\mathcal{P}_{\lambda,n}$ is a *wsn*-cover at x in X_{λ} by Proposition 2.1.

By the above, $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star *wsn*-cover for X.

For the parenthetic part, let f be a 2-sequence-covering mapping. By Lemma 2.2, $\{X_{\lambda} : \lambda \in \Lambda\}$ is an so-cover for X, and each $f_{\lambda} = f|_{M_{\lambda}}$ is a 2-sequence-covering mapping. It follows from Corollary 2.1 that each $\mathcal{P}_{\lambda,n}$ is an so-cover for X_{λ} . Then $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star so-cover for X.

(2) \Rightarrow (1). Let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a double point-star *wsn*-cover for *X*. For each $x \in X$, there exists $\lambda \in \Lambda$ such that X_{λ} is a sequential neighborhood of xand each $\mathcal{P}_{\lambda,n}$ is a *wsn*-cover at x in X_{λ} . It follows from Proposition 2.1 that f_{λ} is an 1(x)-sequence-covering mapping. Then there exists $a_x \in f_{\lambda}^{-1}(x)$ such that whenever $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X_{λ} there exists a sequence $\{a_n : n \in \mathbb{N}\}$ converging to a_x in M_{λ} with each $a_n \in f_{\lambda}^{-1}(x_n)$. For each sequence $\{y_n : n \in \mathbb{N}\}$ converging to x in X, there exists $n_0 \in \mathbb{N}$ such that $\{y_n : n \ge n_0\}$ is a sequence in X_{λ} . Then there exists a sequence $\{b_n : n \ge n_0\}$ converging to a_x in M_{λ} with $b_n \in f_{\lambda}^{-1}(y_n)$ for every $n \ge n_0$. For each $n < n_0$, pick some $b'_n \in f^{-1}(y_n)$, and put $c_n = b'_n$ if $n < n_0$ and $c_n = b_n$ if $n \ge n_0$. Then $\{c_n : n \in \mathbb{N}\}$ is a sequence converging to a_x in M with each $c_n \in f^{-1}(y_n)$. It implies that f is an 1-sequence-covering mapping.

For the parenthetic part, let $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ be a double point-star socover for X. For each $x \in X$, put $\Lambda_x = \{\lambda \in \Lambda : x \in X_{\lambda}\}$. We find that $f^{-1}(x) = \bigcup\{f_{\lambda}^{-1}(x) : \lambda \in \Lambda_x\}$. For each $a_x \in f^{-1}(x)$, there exists $\lambda \in \Lambda_x$ such that $a_x \in f_{\lambda}^{-1}(x)$. If $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X, there exists $n_0 \in \mathbb{N}$ such that $\{x_n : n \geq n_0\} \subset X_{\lambda}$. Since each $\mathcal{P}_{\lambda,n}$ is an so-cover for X_{λ}, f_{λ} is a 2-sequence-covering mapping by Corollary 2.1. Then there exists a sequence $\{a_n : n \geq n_0\}$ converging to a_x in M_{λ} with each $a_n \in f_{\lambda}^{-1}(x_n)$. For each $n < n_0$, pick some $a'_n \in f^{-1}(x_n)$. Put $b_n = a'_n$ if $n < n_0$ and $b_n = a_n$ if $n \geq n_0$. Then $\{b_n : n \in \mathbb{N}\}$ is a sequence in M

converging to a_x with each $b_n \in f^{-1}(x_n)$. It implies that f is a 2-sequence-covering mapping.

By Lemma 3.1, Proposition 3.1, and Theorem 3.1, we get the following.

COROLLARY 3.1. Let $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ be an ls-Ponomarev-system. Then the following are equivalent, where "1-sequence-covering" and "double point-star wsn-cover" can be replaced by "2-sequence-covering" and "double point-star so-cover", respectively.

- (1) f is an 1-sequence-covering s-mapping (resp., ss-mapping, cs-mapping, compact mapping).
- (2) $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-countable (resp., locally countable, compactcountable, point-finite) double point-star wsn-cover for X.

Next, we get a new characterization for 1-sequence-covering (2-sequence-covering) compact images of locally separable metric spaces.

COROLLARY 3.2. The following are equivalent for a space X.

- (1) X is an 1-sequence-covering (resp., 2-sequence-covering) compact image of a locally separable metric space.
- (2) X has a point-finite double point-star wsn-cover (resp., point-finite double point-star so-cover).

PROOF. (1) \Rightarrow (2). Let $f: M \longrightarrow X$ be an 1-sequence-covering compact mapping from a locally separable metric space M onto X. Since M is a locally separable metric space, $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ where each M_{λ} is a separable metric space by [4, 4.4.F]. Since each M_{λ} is a separable metric space, M_{λ} has a sequence of open countable covers $\{\mathcal{B}_{\lambda,n}: n \in \mathbb{N}\}$ such that, for each compact subset K of M_{λ} and each open subset U of M_{λ} with $K \subset U$, there exists $n \in \mathbb{N}$ satisfying $st(K, \mathcal{B}_{\lambda,n}) \subset U$ by [4, 5.4.E]. Let $\mathcal{C}_{\lambda,n}$ be a locally finite open refinement of each $\mathcal{B}_{\lambda,n}$. Then, for each $\lambda \in \Lambda$, $\{\mathcal{C}_{\lambda,n}: n \in \mathbb{N}\}$ is a sequence of locally finite open countable covers for M_{λ} such that, for each compact subset K of M_{λ} and each open subset U of M_{λ} with $K \subset U$, there exists $n \in \mathbb{N}$ satisfying $st(K, \mathcal{C}_{\lambda,n}) \subset U$. For each $\lambda \in \Lambda$ and $n \in \mathbb{N}$, $putX_{\lambda} = f(M_{\lambda})$ and $\mathcal{P}_{\lambda,n} = f(\mathcal{C}_{\lambda,n})$. We get following facts (a)-(e).

- (a) $\{X_{\lambda} : \lambda \in \Lambda\}$ is a cover for X.
- (b) Each $\mathcal{P}_{\lambda,n}$ is countable.
- (c) For each $\lambda \in \Lambda$, $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a point-star network for X_{λ} .

Let $x \in U$ with U open in X_{λ} , then $x \in V$ with V open in X and $V \cap X_{\lambda} = U$. Since f is compact, $f_{\lambda}^{-1}(x) = f^{-1}(x) \cap M_{\lambda}$ is a compact subset of M_{λ} and $f_{\lambda}^{-1}(x) \subset V_{\lambda}$ with $V_{\lambda} = f^{-1}(V) \cap M_{\lambda}$ open in M_{λ} . Then there exists $n \in \mathbb{N}$ such that $st(f_{\lambda}^{-1}(x), \mathcal{C}_{\lambda,n}) \subset V_{\lambda}$. It implies that $st(x, \mathcal{P}_{\lambda,n}) \subset f(f^{-1}(V) \cap M_{\lambda}) \subset V \cap X_{\lambda} = U$. Then $\{\mathcal{P}_{\lambda,n} : n \in \mathbb{N}\}$ is a point-star network for X_{λ} .

(d) $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-finite.

For each $x \in X$, since $f^{-1}(x)$ is compact, $f^{-1}(x)$ meets only finitely many M_{λ} 's. It implies that $\{X_{\lambda} : \lambda \in \Lambda\}$ is point-finite. (e) Each $\mathcal{P}_{\lambda,n}$ is point-finite.

For each $x \in X_{\lambda}$, since f is compact, $f_{\lambda}^{-1}(x) = f^{-1}(x) \cap M_{\lambda}$ is a compact subset of M_{λ} . Then $f_{\lambda}^{-1}(x)$ meets only finitely many members of $\mathcal{C}_{\lambda,n}$ by locally finiteness of $\mathcal{C}_{\lambda,n}$ for every $n \in \mathbb{N}$. It implies that x meets only finitely many members of each $\mathcal{C}_{\lambda,n}$. Therefore, $\mathcal{P}_{\lambda,n}$ is point-finite.

From (a)-(e) we find that $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-finite double point-star cover for X. Let $x \in X$, there exists $a_x \in M$ such that whenever $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X there exists a sequence $\{a_n : n \in \mathbb{N}\}$ converging to a_x in M with $a_n \in f^{-1}(x_n)$. We find that $a_x \in M_\lambda$ for some $\lambda \in \Lambda$. Since M_λ is open and $\mathcal{C}_{\lambda,n}$ is an open cover for M_{λ} for every $n \in \mathbb{N}, X_{\lambda}$ is a sequential neighborhood of x and $\mathcal{P}_{\lambda,n}$ is a *wsn*-cover for X_{λ} by Lemma 2.1.

For the parenthetic part, let f be a 2-sequence-covering compact mapping. Then the point-finite double point-star cover $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a double point-star so-cover for X by Lemma 2.2.

By the above, $\{(X_{\lambda}, \{\mathcal{P}_{\lambda,n}\}) : \lambda \in \Lambda\}$ is a point-finite double point-star *wsn*-cover (resp., point-finite double point-star so-cover) for X.

 $(2) \Rightarrow (1)$. By Lemma 3.1 and Theorem 3.1.

For a Ponomarev-system $(f, M, X, \{\mathcal{P}_n\})$, the following is well-known.

LEMMA 3.2 ([18], Lemma 2.2). Let $(f, M, X, \{\mathcal{P}_n\})$ be a Ponomarev-system. Then f is a π -mapping.

Next, we prove a sufficient condition such that f is a π -mapping for an *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$.

PROPOSITION 3.2. Let $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ be an ls-Ponomarev-system. If $\bigcup \{\mathcal{P}_n :$ $n \in \mathbb{N}$ is a point-star network for X, where $\mathcal{P}_n = \bigcup \{\mathcal{P}_{\lambda,n} : \lambda \in \Lambda\}$ for every $n \in \mathbb{N}$, then f is a π -mapping.

PROOF. Let $x \in U$ with U open in X. Since $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a point-star network for $X, st(x, \mathcal{P}_n) \subset U$ for some $n \in \mathbb{N}$. For each $\lambda \in \Lambda$ with $x \in X_{\lambda}$ we find that $st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}$ where $U_{\lambda} = U \cap X_{\lambda}$. If $a = (\alpha_i) \in M_{\lambda}$ such that $d(f^{-1}(x), a) < 0$ $\frac{1}{2^n}, \text{ there exists } b = (\beta_i) \in f_{\lambda}^{-1}(x) \text{ such that } d_{\lambda}(a,b) < \frac{1}{2^n}, \text{ where } d \text{ and } d_{\lambda} \text{ are metrics on } M \text{ and } M_{\lambda}, \text{ respectively. Therefore, } \alpha_i = \beta_i \text{ if } i \leq n. \text{ It implies that } x \in P_{\alpha_n} = P_{\beta_n} \subset st(x, \mathcal{P}_{\lambda,n}) \subset U_{\lambda}, \text{ hence } a \in f^{-1}(P_{\alpha_n}) \subset f_{\lambda}^{-1}(U_{\lambda}). \text{ This proves that } f^{-1}(U_{\lambda}) = 0$ $d_{\lambda}(f_{\lambda}^{-1}(x),M_{\lambda}-f_{\lambda}^{-1}(U_{\lambda})) \geqslant \frac{1}{2^n}.$ Then $d(f^{-1}(x), M - f^{-1}(U)) = \inf\{d(a, b) : a \in f^{-1}(x), b \in M - f^{-1}(U)\}$ $= \min\left\{1, \inf\left\{d_{\lambda}(a, b) : a \in f_{\lambda}^{-1}(x), b \in M_{\lambda} - f_{\lambda}^{-1}(U_{\lambda}), \lambda \in \Lambda\right\}\right\} \ge \frac{1}{2^{n}} > 0.$

It implies that f is a π -mapping.

Finally, we give an example to prove that the inverse implication of Proposition 3.2 does not hold.

EXAMPLE 3.1. There exists an *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ such that the following hold.

- (1) f is a compact mapping.
- (2) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is not a point-star network for X.

PROOF. Let $X = \{x, y\}$ be a discrete space. Put $X_1 = X_2 = X$, and put $\mathcal{P}_{1,1} = \mathcal{P}_{2,2} = \{\{x\}, \{y\}\}$ and $\mathcal{P}_{1,n} = \{X\}$ if $n \ge 2$, $\mathcal{P}_{2,n} = \{X\}$ if $n \ne 2$. We find that $\bigcup \{\mathcal{P}_{1,n} : n \in \mathbb{N}\}$ is a point-star network for X_1 , and $\bigcup \{\mathcal{P}_{2,n} : n \in \mathbb{N}\}$ is a point-star network for X_2 . Then the *ls*-Ponomarev-system $(f, M, X, \{\mathcal{P}_{\lambda,n}\})$ exists, where $\{X_\lambda : \lambda \in \Lambda\} = \{X_1, X_2\}$.

(1). f is a compact mapping.

For each $x \in X$, we find that $f_1^{-1}(x) = (\alpha_n)$ where $\alpha_1 = \alpha$ and $\alpha_n = \gamma$ for $n \ge 2$, and $f_2^{-1}(x) = (\alpha_n)$ where $\alpha_2 = \alpha$ and $\alpha_n = \gamma$ for $n \ne 2$. Then $f^{-1}(x) = f_1^{-1}(x) \cup f_2^{-1}(x)$ is a compact subset of M. On the other hand, $f_1^{-1}(y) = (\beta_n)$ where $\beta_1 = \beta$ and $\beta_n = \gamma$ for $n \ge 2$, and $f_2^{-1}(y) = (\beta_n)$ where $\beta_2 = \beta$ and $\beta_n = \gamma$ for $n \ne 2$. Then $f^{-1}(y) \cup f_2^{-1}(y)$ is a compact subset of M. It implies that f is a compact mapping.

(2). $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is not a point-star network for X.

We find that $\mathcal{P}_1 = \mathcal{P}_2 = \{\{x\}, \{y\}, X\}$, and $\mathcal{P}_n = \{X\}$ if $n \ge 2$. Then $st(x, \mathcal{P}_n) = X$ for every $n \in \mathbb{N}$. This proves that $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is not a point-star network for X. \Box

REMARK 3.1. Since every compact mapping from a metric space is a π -mapping, Example 3.1 shows that the inverse implication of Proposition 3.2 does not hold.

Acknowledgment. The author would like to thank Prof. Y. Ge for giving him useful references to do this paper.

References

- [1] T. V. An and N. V. Dung, *ls-Ponomarev-systems and compact images of locally separable metric spaces*, Methods Funct. Anal. Topology **15** (2009), no. 4, 391 400.
- [2] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115 162.
- [3] N. V. Dung, On sequence-covering msss-images of locally separable metric spaces, Lobachevskii J. Math. 30 (2009), no. 1, 67 - 75.
- [4] R. Engelking, General topology, Sigma series in pure mathematics, vol. 6, Heldermann Verlag, Berlin, 1988.
- [5] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107 115.
- [6] Y. Ge, Weak forms of open mappings and strong forms of sequence-covering mappings, Mat. Vesnik 59 (2007), 1-8.
- [7] Y. Ge and S. Lin, On Ponomarev-systems, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), 455 – 467.
- [8] Y. Ikeda, C. Liu, and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), 237 – 252.

- [9] Z. Li, Q. Li, and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15 21.
- [10] S. Lin, On a generation of Michael's theorem, Northeastern Math. J. 4 (1988), 162 168.
- [11] S. Lin, On sequence-covering s-mappings, Adv. Math. (China) 25 (1996), 548 551.
- [12] S. Lin, *Point-countable covers and sequence-covering mappings*, Chinese Science Press, Beijing, 2002.
- [13] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301 314.
- [14] S. Lin and P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolin. 44 (2003), no. 2, 295 – 306.
- [15] E. Michael, \aleph_0 -spaces, J. Math. Mech. 15 (1966), 983 1002.
- [16] Z. Qu and Z. Gao, Spaces with compact-countable k-networks, Math. Japonica 49 (1999), 199 -205.
- [17] Y. Tanaka, Theory of k-networks II, Questions Answers in Gen. Topology 19 (2001), 27 46.
- [18] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32 (2006), no. 1, 99 – 117.

Received 16 02 2009, revised 16 10 2009

MATHEMATICS FACULTY, Dongthap University, Caolanh City, Dongthap Province, Vietnam

E-mail address: nvdung@dthu.edu.vn