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Three dimensional generalized Weyl fractional calculus
pertaining to three-dimensional H-Transform

V. B. L. Chaurasia* and Monika Jain**

ABSTRACT. The aim of this paper is to evaluate certain triple integral relations
involving H-function and the multivariable H-function. Next, we give three Theo-
rems containing the product of H-function, with the help of our main findings and
using the Mellin integral transform. The results obtained here are quite general in
nature due to the presence of functions which are basic in nature. A large number
of new results have been obtained by proper choice of parameter.

1. Introduction

In this paper, we have made an attempt to derive a theorem on three-dimensional
H-transform having Weyl type three dimensional operators. The results obtained here
are basic in nature and include the results given earlier by Saigo, Saxena and Ram
[14], Saxena and Ram [17], Chaurasia and Srivastava [3], etc. A few interesting and
elegant results as special cases of our main results has also been recorded.

2. Fractional Integrals and derivatives

Useful and interesting generalization of both the Riemann-Liouville and Erdlyi-
Kober fractional integration operators is introduced by Saigo [10], [11] in terms of
Gauss’s hypergeometric function as given below.

Let o, 8 and n are complex numbers and let y € Ry (0, oo). Following [10], [11]
the fractional integral (Re(a) > 0) and derivative (Re(a) < 0) of the first kind of a
function f (y) on R4 are defined respectively in the forms

(2.1)
T ey a1 L) po
I, fF(a)/O (y—0)" 211 (OH—ﬂa n; ol y) f#®)dt; Re(a) > 0
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d™  _atn.p—nn-n
(2.2) = dy—nfo)y " f0<Re(a) + n<1(n=12,.)
where o F) (a, b; ¢; . ) is Gauss’s hypergeometric function. The fractional integral

(Re(a) > 0) and derivative (Re(«) < 0) of the second kind are given by

(2.3)
=g | TR (o g et = ) 1) Fe(e) > 0
(2.4) = (-1 A 77770 < Re(a) + n<1 (n=1,2,...)

dy™ v
The Riemann-Liouville, Weyl and Erdlyi-Kober fractional calculus operators follow as
special cases of the operators I and J as given below

y

o o qeam, 1 a1
(2.5) R f=1I fr(a)/o (y —t)* " f(t)dt, Re(a) > 0
(2.6) = C;;—nnR:_:"f,0<Re(a) +n<l(n=12,..)
2.7 W pm g L oct L r)dt, R 0
(2.7) = f—m)/y (t— )" F(t)dt, Re(a) >
(2.8) = (-1)”% :;”f,o<Re(a) +n<l(n=1.2,.)
(2.9) E" f:[o”j’" f= y;::)n / (y — )~ 47 f(t)dt, Re(a) > 0
(2.10) K“"’f—f'“’"f—ii /w(t— )T TN f(t)dy, Re(a) > 0
: yo0?! T “y00 - F(O[) ) Y Y,

Following Miller [9, p.82], we denote by wu; the class of functions f (x) on R which are
infinitely differentiable with partial derivatives of any order behaving as 0 ( | z|~*)when
x — oo for all €. Similarly by w2, we denote the class of functions f (x,y ) on Ry x
R,, which are infinitely differentiable with partial derivatives of any order behaving
as 0 (|| %" |y| **)when x — oo, y — oo for all & (i = 1,2).

On the same pattern by us, we denote the class of functions F(z,y, z) on Ry x Ry
x Ry, which are infinitely differentiable with partial derivatives of any order behaving
as 0 (| z| " |y] 7% | 2| 7®) when x — o0, y — 00, z — oo for all & (i = 1,2,3).

The three dimensional operator of Weyl type fractional integration of orders
Re(a) > 0, Re(d) > 0, Re(g) > 0 is defined in the class uz by
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a,b,c _d.,e,f _g,hk

o d o fpgr)]

_ p’qcr" e wu_ a=1 0 V4 (g — )9 Lt y—d—e =9
- r<a>r<d>r<g>/ / / (w=p)" (=g (w=r)

p q r

(2.11)
q

B (a+b,fc;a;1 - B) o Fy <d+e,ff;d;17 7) o F (ngh,fk;g;lf 1) J(u, v, w)dudvdw,
u v w

where b, e, h,c, f, k are real numbers. More generally, the operator [11] of Weyl type

fractional calculus in three variables is defined by the differ-integral expression as

(_1)r1 +ro+r3 pb q° rh gritraztra
T(a+r)T(d+1r2)T(g+1r3) Op™ dgr2 Orrs

{/ / / (u _ p)a+7‘1—1 (1} _ q)d+7'2—1 (’U} _ ,r)g-H‘a—l u—a—b ,U—d—e w—g—h
p q T

ol (a+b7 —cal— %) 2 F1 (d+e7—f;d;1— %) 2 F1 <g+h7—k;g;1— %)

a,b,c _d,e,f _g,h.k

(212) 2T T [f(pa,r)] =

q,00 T,00

flu,v, w)dudvdw}

for arbitrary real (complex) a, d and g, r1, ro, r3 = 0,1,...
In particular, if Re(a) < 0, Re(g) < 0 and rq, r9, 73 are positive integers such that
Re(a)+ r1 > 0, Re(d)+ r2 > 0, Re(g)+ r3 > 0, then (2.12) yields the partial fractional
derivative of f (p, q, r).
On the other hand if we set b = e = h = 0, (2.12) yields the Weyl type operators in
three dimensions as

a,c d,f 9,k a,0,c _d,0,f _g,0,f

(2.13) K K _K _[foar)=4J,J 0 J  [fpaer)

_ (_1)r1+r2+r3 p° qf rk gritra+rs -/Oc \/OC /oo (u _ p)a+r171
T(a+r)T(d+1re)T(g+13) Op™ dgm2 Ors . J, )

) (U _ q)d+r2—1 (’LU _ ,r,)g-‘rra—l u—a—b defe wfgfh f(u, v, w)dudvdw }
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3. Three-dimensional Laplace and H-Transforms

The Laplace transform ¢ (p,q,r) of a function F(z,y, 2) € ugz is defined as

(3.1) ((p,q,r)=alf(xy, 2);p,q,r / / / eTPPTTWTE f(xy, 2)drdydz

where Re (p) ¢ 0, Re (q) ¢ 0, Re (r) ; 0. Similarly, the Laplace transform of

flun/z2 — N H(z— M), vy/y2 — M2 H(y — X2), wy/22 — N3 H(z — \3)]

is defined by the Laplace transform of F(z,y, z) where
F(z,y,z) = fluyn/a? — N H(z — M), v/y? — A3 H(t — A\2), wy/22 — M3 H(z — \3)],

(3.2) T>AM>0,y>A >0, 2> A3 >0

and H (t) denotes Heaviside’s unit step function.
Definition. By three dimensional H-transform ¢ (p,q,r) of a function F'(z,y, z), we
mean the following repeated integral involving three different H-functions

M7y ,Ny; Mg,No; M3,N3

DD AT) =D ) s pa0y F (&Y, 2)50 B, 75 P,

///pwo‘lqy)ﬁl(TZ)

_ My,Np (ajsejiAj)1, Ny (@5,05) Ny 41, Pli|

H, . {(px)

M2, N2

5 k2
7 [ (ay)

(b5.85)1,0m 45 (b5.855 Bj) My 4+1,Qq

(ejsrjici)1,No» (¢ Rj)Noy41.Py }

(dj 7)1, Mo (d5:755D ) Mo+1.Qo

(ejspiBj)1,Ng» (€:Pj)Ng+1.Pg

(3.3) H {(7‘2’)k3

P3,Q3

z,y, z)drdydz
(Fj:%01, Mg (f5:%53F5) Mg +1.Qg :| f( Y ) y

Here we suppose that A\; > 0, Ay > 0, A3 > 0, k1 > 0, ke > 0, k3 > 0; ¢ (p,q,r)exists
and belongs to uz. Further suppose that

1 1 1
(3.4) |argp™| < 3 T, |argd®| < §T27r, |argrs| < §T37r
where
M, Q1 Py
Z\@HZA% D IBiBl— D ey >0
Jj=1 M;+1 Jj=Ni1+1

Q2 Py

2 2
=) Il + Y Ciej— D Dl — Y w5 >0
j=1 j=1

My+1 j=Naz+1
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Ms N3 Qs Py
Ts = > |l + > Ejej— Y |fitsl = Y pj >0
Jj=1 j=1 Ms3+1 j=N3z+1

The H-function appearing in (3.3), introduced by Inayat-Hussain ( [6], see also [2]) in
terms of Mellin-Barnes type contour integral, is defined by

— M,N (aj,aj5A)1, N (aj,0)N+1,P _ 1 i 13
(3.5) H,q [z <b_7-,aj>17M,<bj,ﬂ,v;sj>M+1,Q} T omi /_ W (€) 2 dg
where
36) @ L2 T(b; = 8;€) TLLAT(1 = a; + a;€)}

H?:M+1{F(1 —b; + 3;€)Pi Hf:N+1 [(a; — a;€)
which contains fractional powers of some of the I'-functions. Here and throughout the
paper A; (j=1,...,P ) and B; (j =1,...,Q) are complex parameters, aj > 0
(G=1,...,P), 8j > 0 (j = 1,...,Q), (not all zero simultaneously) and the exponents A,
(G=1,...N)and B, (j = M+1,...,Q) can take on non-integer values. The contour
in (3.5) is imaginary axis Re () = 0. It is suitably indented in order to avoid the
singularities of the I'-functions and to keep these singularities on appropriate sides.
Again, for A; (j =1,...,N) not an integer, the poles of the I'-functions of the numerator
in (3.6) are converted to branch points. However, as long as there is no coincidence
of poles from any I'(b; — 5;¢), (j = 1, ..., M)andl'(1 — aj + «;€), (j= 1,...,N) pair the
branch cuts can be chosen so that the path of integration can be distorted in the usual
manner.
For the sake of brevity

M N Q P
(37) T = Z‘ﬂj| + ZAJ'O(]’— Z ‘Bjﬂﬂ — Z a; > 0
j=1 j=1 =M1 J=N+1

4. Relationship Between Three-Dimensional H-transforms in Terms of
Three-Dimensional operator of Weyl Type

~ To prove the theorem in this section, we need the following three-dimensional
H-transform ¢ (p,q,r) of F(x,y,z) defined by

_ Mj+1,Ny ; Mg+1,Ny ; M3+1,N3
01D ) =H, oy restiain (& 2)i05 8,75 po g, ]

= / w / w / w (p2)* (qy)° ()"

— My +2,Nq (ajﬂaj?Aj)l.Nl s (a-j’a-j)N1+1~P1 ,(1—a,ky), (a+btec—a+1,ky) i|

k1
’ HP1+2,Q1 +2 [(px)

(b—ata,ky), (e—a+1,k1), (b5.85)1,Mq(b5:85) My +1,Qq
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—~Ma2+2,No

k
2.0 42 [(qy) ’

(ej:r535C5)1, No (€5 RNy +1,Py (1=B:k2), (dfetf—B+1.k2) :|

(e=B+1,k1), (F=B+1,k2), (d,75)1, M5+ (dj, 75iD5) My+1,Q4

_ Mg3+2,Ng (T’Z)k
P3+2,Q3+2

where it is assumed that ¢; (p,q,r) exists and belongs to ug as well as k; > 0,
ko > 0, ks > 0 and other conditions on the parameters, in which additional parameters
a, b, d, e, g, h, ¢, f, k included correspond to those in (2.11).

Theorem 1. Let ¢ (p,q,r) be given by definition (3.3) then for Re(a) > 0, Re(d) > 0,
Re(g); 0, Ay > 0,20, A3,0,k >0, ks >0, ks > 0 there holds the formula

3 [P B, N5 (€5 Pj) Ng+1, Py (1=7:k3), (gt htk—y+1,k3)

(h=y+1,k3),(k=v+1,k3),(f5,%;)1, M5 (F5:%53F5) M3+1,Q3

] F(z,y,z)dzdydz,

a,b,c d,e, f g,h,k

(41) Jp,oo ']q,oo JT‘OOY [¢(p7qar)] = ¢1 (p7 Qar)

provided that ¢; (p,q,r) exists and belong to us.
Proof: Let Re(a) > 0, Re(d) > 0, Re(g) > 0 then in view of (2.11) and (3.3), we find
that

b e h
a,b,c _d,e,f _g,hk pqgrTr a 1 —1
J J J - -
p,00 q,00 T,00 [¢ (p,q,T)] a)T(d F / / / B U Q)

(w=r)? ety d e I By (a +b,—ca;l— 5) oy (d +e, —f;d;1— %)

-2k (9 +h,—k;g;1— 1) & (u, v, w)dudvdw
w

_ QY;;‘J(;}; / / / —asby—d=e =g=h (3 _ )@ (y — gy

(w—=7)""" R (a+b,—c;a;1— g) o Fh (d—l—e,—f;d;l— %)

= M1,N1 k1
H, {(ux)

(aj,05545)1, Ny (aj, Q)N1+1P1:|

(058501, 01+(b585) My +1,Q1

_ Mo ,Ng ko
H, o, [(vy)

(e rj3iC)1,No (i iR Ny+1,Py :|

(dj,75)1, M5 (dj, 75D ) My +1,Q4

(4.2) HET [(wZ)ka (ejpjiBi)1,N3-(5:Pj) Ny +1,P3

P3,Q3

] F(x,y, z)dxdydz,} dudvdw.

(fjﬂl)j)l,]yjfs7(fjﬂ~/’j;Fj)]v[3+1,Q3

On interchanging the order of integration which is permissible and on evaluating the
u, v and w-integrals through the integral formula
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oo

— —1 X
/ u Y (u—2)" oy (T,W;U;l—*)
® u
— M,N k |(ajejiA)1 N (ag.a5) N1, P
.H (au)™| 77 o du
P,Q (b5.85)1,M-(b5:8)M+1,Q

(4.3) _ I'(v) g [(ax)k

T P+2,Q+2

(aj,ajiA )1, N (aj,0) Ny1,psr(ptv—7,kil), (ptv—w,kil)

(p,k31), (ptv—7—w, k1), (b;.85)1 Mm-(b5.8) M+1,Q

where Re(v) > 0, Re (M+V+ M) > 0

Qj

k(1 —a; 1
Re (u +tv—T—w+ (aj)) > 0, |argz| < 3 Tm (Tisgivenin(20))
Qj

(4.3) can be established by means of the following formula [4, p.399].

1

/ 271 - x)p_l 2F1 (v, B35 v ) dw =

0

T T(y+p—a-p)
F(y+p—a)l(y+p—p)

For Re (7) 0, Re (p) ; 0, Re (y +p - a- B) (0.
The left hand side of (4.3) becomes

= / w / w / w (p2)* " (q9)° " ()"

_ Mi+2,Np (aj ;54501 N (@j.0i) Ny +1,Pp > (1=0,k1), (atbte—atl,ky) }

k1
’ HP1+2,Q1+2 [(px)

(b—a+1,ky), (c—at+l,k1), (b;.85)1, 01585 My +1,Q4

—~Ma2+2,N2

ko (Cj""j?cj)l,Ng v(cjv"‘j)Nz-f—l,PQ ,(1—-B,kg), (dte+f—B+1,ka)
° Py+2,Qo+2 (qy)

(e—=B+1,k1), (f=B+1,k2), (dj,Tj)lez ,(d_j,Tj;Dj)M2+1yQ2

— M3+2,Ng (ejpjiBj)1,Ng (e Pj)Ng+1,Pg(1=7:k3),(g+h+k—v+1,k3)

k
P3+2,Q3+2 [(TZ) ° } F(:C,y,z)dxdydz

(hr—7+1,k3)1(k—’v+1,k3)=(fjJJ)J')LMB ,(fj,wj;Fj)MBH,QS

_ Mi+2,Ny ;Mg+2,No; M3g+2,N3
- HP1+21Q1+2;P2+21Q2 i P3+2,Q3 [F(:Ea Y, Z),Of, /67’Ya b,q, T’]

= ¢1(p7 q,T)

= R.H.S. of (4.2)
As far as the three dimensional Weyl type operators J::oc Jz’;’f Jf_i’kpreserves the class
us, it follows that ¢ (p,q,r) also belongs to us. ' '

It is interesting to note that the statement of Theorem 1 can easily be extended
for arbitrary real a, d, g by using the definition (3.3) for the generalized Weyl type
fractional calculus operators and differentiating under the signs of the integrals.
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5. Interesting special cases

Taking ¢ = f = k = 0 in Theorem 1, we have the following Theorem 1 (a).
Theorem 1(a). For Re(a) > 0, Re(d) > 0, Re(g);, 0, b ¢ 0,d; 0,{; 0, kg >0,
ka >0, ks > 0 and also let ¢ (p,q,r) be given by (3.3) then the following formula

a,b,0 _d,e,0 _g,h,0

(5.1) J o J T epgr)=é2(p,q,7)

P, q,30 ,00

provided that ¢2 (p,q,r) exists and belongs to uz where ¢o is represented by the

repeated integral
2 (P, g, / / / (p2)* " (q9)" " (r2)"”

— Mq+1,Nq (aj,aj;A;)1, Ny» (aj,a )N1+1 Py (a+b—a+1, k1>:|

P1+1,Q1+1 |:(p.’17)

_ Mg+1,No ( )kz
Py+1,Qa+1 qy

(b—a+1,k1), (b5,85)1,Mmq(b5:85) My +1,Q,

(¢j+r53C5)1,No (€5 R )Ny 41, Py (d+e—B+1, k2>:|

(e=B+1,k2), (dj 7)1, Mo (dj, 75 D) My +1,Q9

M3z +1,N3 (ej.pjiBj)1,Ng (€j:Pj)Ng+1,Pg:(9+h—7+1,k3)

(:2)  H0 [(rz)ks

For A; = Bj = 1, the H-function in (3.5) reduces to Fox’s H-function [5], [8] and then
Theorem 1 (a) reduces to

] F(z,y, z)dxdydz

(h=+1,k3),(£5,%5)1, M5 (F5:%53Fj) M3+1,Q3

a,b,0 _d,e,0 _g,h,0

(5.3) Jyo o o 10(0a7) =03 (D,g,7)

p,o0 q,00

provided that ¢3 (p,q,r) exists and belongs to ug, where ¢3 is represented by the

repeated integral
5 (p,q.7 / / / (p2)* " (gy)" " (r2)”
A3

L [P apy), (atb—atl, kl)}

(b—at1,k1), (bQ, BQ,)

— Mq+1,Nq k
s | @)

_ Mo+41,Ng ko
e ()

(epy kpy), (dte—B+1,k2) :|

(e=B+1.k2), (dQy:TQy)

(epg ppg),(g+h—+1,k3)

] F(x,y, z)dxdydz

(5.4) 1 e ()

P3+1,Q3+1

(h=7+1,k3),(fQ3 %Q3)

On employing the identity

(ap,1)
(bg1)
We see that the three dimensional H-transform reduces to the corresponding three
dimensional G-transform 1 (p,q,r) defined by

(5.5) ' [3:

P,Q

} = G?:g [x

Mq,Nq1; Mo, ,No; M3,N3

V(0 ar) =G panireas (@1 2)i00 B, 5 pog, ]
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Mg, Ny

Gy {(qy)kz o ;QJ f(z,y, z)dedydz

provided that ¢3 (p,q,r) exists and belongs to class us, where ki1, ko and ks are positive
N

integers, A1 > 0, A2 > 04, A3 > 0, P1<Q1, P2<Q2, P3<Qs, largpht| < T12 ,
|argqh?| < TQ;”, largrks| < T3;7r withTT = 2N1+2M1—P,—Q1, T5 = 2Ny +2Mo—
Py— Qa, Ty = 2N3+ 2M3— P3— Q3 Gf;\,[] appealing in (5.6) and (5.7) represents
Meijer’s G-function whose detailed account is available from the monograph of Mathai
and Saxena [7].
Thus, we obtain the following Theorem 1 (b).

Theorem 1 (b). For Re(a) > 0, Re(d) >0, Re(g); 0,b; 0,d; 0, f; 0, k1, k2 and
k3 being positive integers and also let ¢ (p,q,r) be given by (5.7) then the following
formula

(5.6)

a,b,e _d,e,f _g,h

(5.7) T Wy gor) = v (pogr)

pP,o0 q,00
holds, provided that v (p,q,r) exists and belongs to class uz for other conditions
on the parameters, in which additional parameters a, b, ¢, d, e, f, g, h, k included
correspond to those in (5.7). Here

b1 (p,g,7) = k7% ky k3 ? / / / (p2)™ ()"~ (2"

My +2,Nq A (R 1—a), A(ky,atbte— a+1):|

Grlan, [(pw)

Mgz +2,Ng [( )k2

A(ky,b— a+1) A (ky,e—a+1),by,..., le

SRR cpy A (k2,1=8), Ak, d+etf—B+1)
Py+2,No

A(kg,e—B+1), A (kg, f—B+1),d1,..., dQ,

€1,y epg A (k3,1=7), A(kg,g+h+k—v+1)

(5.8) Gl [y

P3+2,N3

} F(z,y,z)dzdydz

A(kg,h—~+1), A (kg,k—y+1),f1,.--, an
and the symbol A (n,«) represents the sequence of parameters
a a+1 a+n-—1

’ 3y
n n n

On taking ¢ = f = k = 0, (5.8) becomes

a,b,0

(59) J N J 9 " W p,q,T ) ¢2 (p,qﬂ")

p,o0

provided o3 (p,q,r) exists and belongs to class uz, where 3 is represented by the

integral
o3 (0,07) = ki@ kg kg ? / / / (p2)™ " (qy) " (r2)""
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Mq+1,Np

Gl @)

Mg +1,Ng

Gl {(qy)kz

ag,..., upl,A(kl,a«i»bfa#»l) :|

A(kyb—at1),b1,..bg,

Clyeens cpy, Alkg,dte—F+1) }

€1y epgs Alkg,g+h—v+1)

(5.10) Gt [(m’%

"~ P3+1,Ng3

} F(z,y, z)dzdydz

A(kg,h—v+1), f1-0fQq

6. Two-Dimensional Analogue of Theorem 1

The following two dimensional analogue can be established on the similar lines as
given in Theorem 1. -
Theorem 2. Let ¢ (p,q) be the two-dimensional H transform of F (x,y) defined by

My ,Ny; Mg, Ny

(0:0) = bp o1 pyay F(@y)ie, B3p,4]

a—1 —1 FM1N k
- / / (p2)* " (qp)" T H, [(pﬂﬂ)1
A g

— Mg3+2,Ng

(6.1) LT {(qy)’”

provided that ¢ (p,q) exists and belongs to uy, where ky > 0, ky > 0, |argp®| <
%Tlﬂ', largqh?| < %Tzﬂ'and

(aj,a5345)1, N (2 05) Ny +1,P, i|

(658501, 0M4 (55853 B5) My +1,Qq

(e r33iC)1,Ng(Cj RNy +1,Py

} F(z,y)dzdy

(dj>7m5)1, Mo (d5, 75 D) My +1,Q5

F(x,y)zf[a 22— N H(z—\),c yQ—AgH(y—/\g)} x>A >0,y > X >0

and H (t) denotes Heaviside’s unit step function.
Then for Re(a) > 0, Re(d) >0, Ay >0, A2 ; 0, k; > 0, ka > 0 and let ¢; (p,q) be
defined as

b1 (p,q) = / oo / w ()" (g)®"

_ Mi+2,N; ( >7~C1
P1+2,Q1+2 px

(aj oiA5)1,N s (@505 Ny +1,Py s (A—e k1), (atbte—atlky) :|

(b—a+1,k1), (C—a+1>k1)y(b]‘,ﬁj)1,1v]1 (5,855 Bj)M1+11Q1

_ Mo+2,No ko
T Py +2,Q0+2 (ay)

then the following formula

(Cj,Nj;cj)lyMzY(ijﬁj)Nz_H,PQ , (1—8,kg),(d+e+f—B+1,kg)

(e=B+1,k2),(f=B+1,k2), (d;s75)1, Mo (dj, 75D5) My+1,Q4

} F(z,y)dzdy

a,b,c =d,e,f

(6.2) J T 6 (0,9)] = 1 (pg)
holds, provided that ¢1(p,q) exists and belongs to class us.

=d,e,f

—abic b e oo oo _ 1 —a—b —dee
Here J, = J' " [f(p,0)] = i@ fp fq (u—p)* o —q) tumabyd
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B <a+b,—c;a;1— %) o F (de,—f;d;l— %) f(u,v)dudv

7. Special Case

For A; = B; = 1, the H-function in (3.5) reduces to Fox’s H-function and then
(6.2) gives us the result obtained by Saigo, Saxena and Ram [14, p.67].

8. One dimensional Analogue of Theorem 1

Similar proof with Theorem 1 can be developed for the following one-dimensional

analogue -
Theorem 3. Let ¢ (p) be the one dimensional H-transform of F (x) defined by

M,N

¢ (p) = ¢, [F(x); pl

oo

sy = o [

(aj ej5A5)1 N> (a,05)N+1,P ]
’ ' F(x)dx
(bj:85)1,0m> (05853 Bj)M41,Q ( )

provided that ¢ (p) exists and belongs to class u;, where k; > 0 , |argB*| < %Tﬂ',

(8.2) F(z) = f(ay/22 = A2) H(z — \y)

For Re(a) > 0, Ay > 0, and let ¢1 (p) be defined as

oo

. a—1 =M+2,N (aj,aj5A)1, N (aj,a;)N41,pr (1=, k1), (atbte—atl,ky)

¢1 (p) - [ (pl’) 13'13-%-2>Q+2 |:(b—a+1,k'1)w (e—a+1,k1),(b;,85)1,M+(b;,85iB;) M+1,Q F(I)dl’
Then the following formula

—a,be
(8.3) J 1o®)]=¢1(p)
holds, prov1ded that (p) exists and belongs to class uq
Here Jp)x [f(p fp ) Luma=b,Fy (a-i—b7 —ca;l— %) f(z)dx

a,be
=" [f ().

Special Case

For A; = B; = 1, the H-function in (3.5) reduces to Fox’s H-function and then
(8.3) reduces to the result obtained by Saigo, Saxena and Ram [14, p.70]. On account
of the most general character of the H-function, numerous interesting special cases
of the results established in this paper can be obtained by suitably specializing the
parameters of the H-function.
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