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INTEGRALS OF FUNCTIONS OF ROOTS OF x

ROBERT W. BENIM

Abstract. This note will show that the only integrals of the form
∫
f (xα) dx

that can be evaluated via the substitution t = xα followed by repeated integration
by parts are those where α is the reciprocal of a positive integer, α = 1

n
, and f is

an arbitrary function which can be antidifferentiated at least n times.

1. Motivation

Every student of mathematics in higher education has some familiarity with inte-
gration, and has likely had some exposure to integration tables. These can be found
in most Calculus textbooks, such as [H2018] and [S2017]. At least one instance of a
truly grand table of integrals can be found in [GR2015]. Despite this, we believe the
result presented in this note is new and may be of interest to some.

This note will derive a formula for
∫
f(x

1
n ) dx when we can antidifferentiate f at

least n times. Assuming α is a real number, these are the only integrals of the form∫
f (xα) dx that can be solved with the substitution t = xα followed by repeated

integration by parts for an arbitrary function f which is n times anitdifferentiable.
The derivation for this formula was motivated by the following integral, or ones like
it, which can be found in a number of texts, including [H2018] and [S2017]:∫

cos
(√
x
)
dx

To evaluate this integral, we can combine the techniques of substitution and inte-
gration by parts. Namely, let t =

√
x. It follows that dt = 1

2
√
x
dx. We can rearrange

and apply the substitution again to get 2t dt = dx. From this, we obtain the following
integral: ∫

cos
(√
x
)
dx =

∫
2t cos(t) dt.
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This problem, and ones like it, are of a typical type presented in Calculus 2 courses
on the topic of integration by parts. To that end, we will use the formula∫

u dv = uv −
∫
v du

where u = 2t and dv = cos(t) dt. This gives∫
2t cos(t) dt = 2t sin(t)−

∫
2 sin(t) dt

= 2t sin(t) + 2 cos(t) + C

= 2
√
x sin

(√
x
)

+ 2 cos
(√
x
)

+ C.

2. Finding a more general formula

We now attempt to generalize this method. First, note that we could easily replace
cosx with any function, f(x), where we can find a second antiderivative. Let f(x) be
such a function, and choose F (x) such that F ′′(x) = f(x). Similar to the above, we
have ∫

f
(√
x
)
dx =

∫
F ′′
(√
x
)
dx

= 2
√
xF
(√
x
)
− 2F ′

(√
x
)

+ C.

We generalize further, and in a more interesting direction, by answering the follow-
ing question: Given the integral

∫
f (xα) dx, for which values of α will we be able to

apply the substitution t = xα and then evaluate using repeated integration by parts ?
When we had α = 1

2 , we saw that

dt =
1

2
√
x
dx −→ dx = 2tdt.

Since the derivative of 2t was a constant, integration by parts successful in this
example. We can show that this idea can be extended if 2t is replaced by other
polynomials. We need to know what restriction this places on α. If t = xα then

dt = αxα−1dx −→ dx =
1

α
x1−αdt =

1

α
t

1
α−1dt.

The restriction is 1
α − 1 must be a positive integer. (We can safely omit the case

where 1
α − 1 = 0.) So, 1

α needs to be an integer greater than or equal to 2, which
means α needs to be the reciprocal of an integer which is greater than or equal to 2.

We now generalize the method of the original example to
∫
f
(
x

1
n

)
dx where n is

an integer at least 2 and we can find as many antiderivatives of f(x) as needed. We

apply the substitution t = x
1
n , which yields

dt =
1

n
x

1
n−1dx −→ dx =

n

x
1
n−1

dt = ntn−1dt.

This yields the following:
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∫
f
(
x

1
n

)
dx =

∫
ntn−1f(t)dt.

Choose F (t) such that F (n)(t) = f(t). We now apply tabular integration (repeated
integration by parts) with an initial choice of u = ntn−1 and dv = f(t)dt.

u dv

ntn−1 f(t) = F (n)(t)

n(n− 1)tn−2 F (n−1)(t)

n(n− 1)(n− 2)tn−3 F (n−2)(t)
...

...

n!t F ′′(t)

n! F ′(t)

0 F (t)

+

−

(−1)n

(−1)n+1

A term in the u column is multiplied by the entry in the dv column that is one row
lower. Then, these products will be combined via an alternating sum beginning with
addition. Lastly, we need to replace t with x

1
n . This yields the following formula:

Theorem 2.1. Let n be an integer greater than or equal to 2. Suppose f(x) can be
antidifferentiated n times and choose F (x) such that F (n)(x) = f(x). Then,∫

f
(
x

1
n

)
dx = C +

n∑
k=1

(−1)k+1n!

(n− k)!
x1− knF (n−k)

(
x

1
n

)
.

Applying the substitution u = ax + b and the theorem above proves the following
generalization.

Corollary 2.2. Let n be an integer greater than or equal to 2. Suppose f(x) can be
antidifferentiated n times and choose F (x) such that F (n)(x) = f(x). Then,

∫
f
(

(ax+ b)
1
n

)
dx = C +

n∑
k=1

(−1)k+1n!

a(n− k)!
(ax+ b)1− knF (n−k)

(
(ax+ b)

1
n

)
.

3. Examples

We illustrate our results with a few examples.

Example 3.1.∫
ex

1
5 dx = 5x

4
5 ex

1
5 − 20x

3
5 ex

1
5 + 60x

2
5 ex

1
5 − 120x

1
5 ex

1
5 + 120ex

1
5 + C
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=
(

5x
4
5 − 20x

3
5 + 60x

2
5 − 120x

1
5 + 120

)
ex

1
5 + C

Example 3.2. We consider the integral∫
1

1 + 4x
1
4 + 6x

1
6 + 4x

3
4 + x

dx =

∫
1(

1 + x
1
4

)4 dx.

This example requires antidifferentiating 1
(1+u)4 four times.

Then, the theorem gives:

∫
1

1 + 4x
1
4 + 6x

1
6 + 4x

3
4 + x

dx = C − 4

3

(
x

1
4

1 + x
1
4

)3

− 2

(
x

1
4

1 + x
1
4

)2

− 4

(
x

1
4

1 + x
1
4

)
+ 4 ln

(
1 + x

1
4

)
.

Example 3.3. We consider the integral
∫

1√
1−(4x+3)

2
3

dx. This example requires

antidifferentiating 1√
1−u2

three times.

Then, the corollary gives:∫
1√

1− (4x+ 3)
2
3

dx =
3

4

(
arcsin(4x+ 3)

1
3 − (4x+ 3)

1
3

√
1− (4x+ 3)

2
3

)
+ C
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