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On Centres Of h-Purity in QTAG-Modules

M. Zubair Khan* Gargi Varshney™*

ABSTRACT. Different concepts and decomposition theorems have been done for
QTAG-modules by a number of authors. The purpose of this paper is essentially
to study centers of h-purity and their characterizations. We have further studied
subsocles and their interesting properties about range and heights establishing
various facts about the same.

1. Introduction and Preliminaries

Following [8], a unital module My is called QTAG-module if it satisfies the fol-
lowing condition:
(1) Any finitely generated submodule of any homomorphic image of M is a direct sum
of uniserial modules.

The structure theory of such modules has been developed by various authors.
Analogous to centres of purity we have defined centres of n-h-purity and obtain a
characterization (Theorem 4.4). For any uniform element z € M, heights of x denoted
as Hps(x) is defined as sup{d(yR/xzR)/x € yR and y is a uniform element in M }. For
any non-negative integer n > 0,H,(M) = {&# € M/Hp(z) > n}. A submodule
N of M is called h-pure in M if H,(N) = NN H,(M) for all n > 0, and N is
called h-neat if H1(N) = N N Hy(M). For any submodule N of M, the submodule
H"(N) = {z € M/d(zR/(xRN N)) < n} has been introduced in [1] and various
related properties have been studied. For any submodule N of M, we denote Hy (0)
by soc™(N). For other basic concepts of QTAG-modules one may see [2,3,4,5,7,8].

2. Centre of h-Purity

Definition: Let M be a QTAG-module and N be a submodule of M then N is called
centre of h-purity in M if every complement of N in M is h-pure submodule of M.
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Theorem 7 in [4] shows that every submodule of M is centre of h-purity. Also
Corollary 10 in [4] shows that for any k > 1, Hi(M) is centre of h-purity in M.

Firstly we restate the following:

Proposition 2.1 [2, Lemma 1]:

(i) For any uniform elements = and y € M with « € yR,d(yR/xR) = m if and
only if H,,(yR) = zR.
(ii) If z and y are predecessors of a uniform element z, then there is an isomor-
phism ¢ : xR — yR such that o is identity on zR.
(ii) For any uniform elements z and y € M, z —y € soc(M) if and only if

Now using the similar technique we can easily prove the following:

Proposition 2.2: If M is a QTAG-module and z,y are uniform elements in M then
following hold.

(i) z —y € soc™(M) if and only if H,(xR) = H,(yR).

(ii) For every element ¢ € soc(M), Hi((z +t)R) = H1(zR).

Now we prove the following theorem which generalizes [6, Theorem 2.1]

Theorem 2.3 : If M is a QTAG-module and N is a submodule of M. Then there
exists a submodule K of M such that K is maximal with respect to K " N = 0 and
K is not h-pure in M if and only if the following condition is satisfied.

(%) there exists uniform element v € N and v € M such that v+ v is uniform and
(i) e(v) >e(u) =1

(ii) H(v) = H(u) < H(u+ )

(ii) vRNN =0

Proof : Let K be a submodule of M maximal with respect to K "N =0 and K be
not h-pure in M. Let n be the least positive integer such that K N H,, (M) # H,(K)
then appealing to [4, Proposition 4] we have n > 2. Let x be a uniform element in
K N H, (M), then there exists a uniform element y € M such that y ¢ K,z € yR and
d(yR/xzR) = n. Let zR/xzR be a submodule of yR/xR such that d(zR/xR) = 1, then
d(yR/zR) = n—1. By h-neatness of K, there exists a uniform element ¢ € K such that
x € tR and d(tR/xR) = 1. Hence, there exists an isomorphism o : zR — tR which is
the identity on zR. Trivially e(z—0o(2)) < 1, s0 2—0(z) = u+w where u € soc(N) and
w € soc(K). It is easy to see that u and w are uniform. Let H(u) > n—1 then we can
find a uniform element s € M such that d(sR/uR) =n—1. Now z—u =w+o(z) € K
and z —u € Hy,_1(M),s0 z—u=w+o(z) € KNH,_1(M) = H,_1(K). Since
(w+0(z))R is homomorphic image of zR, w+o(z) is an uniform element. Now we can
find a uniform element w’ € K such that w+ o(z) € w'R and d(w'R/(w + o(2))R) =
n — 1 Trivially d(w + o(2))R > 1, so we can find a submodule gR C (w + o(2))R
such that d((w + o(2))R/gR) = 1. Now appealing to proposition (1.1) and (1.2) we
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get Hi(zR) = xR, H((w 4+ o(2))R) = gR = Hi(0(2)R) = Hy(2R) = xR, which in
turn gives x € H,(K), a contradiction. Hence H(u) < n — 1. Let v = w + o(z) then
e(v) > e(u) =1 and H(u) = Hv) < H(z) = H(u + v), since v € K, yRN N = 0.
Therefore the conditions of the theorem are satisfied.

Conversely, suppose that the conditions are satisfied. Let for some natural number
n,Hv) < n < H(u+v) and T,, = soc(H,(M)). Since e(v) > e(u) = 1,e(v) > 2.
Let zR = soc(vR), then d(vR/zR) > 1 and we get zR C H;(vR). Also
Hi((u+v)R) = H1(vR) D zR, consequently z € T,,. Since vRNN =0,z ¢ N. Let
T, = S @& T, N soc(N),z € S. Also (ii) gives u ¢ T, N soc(N), so
soc(N) = T (T,Nsoc(N)),u € T. Now T, +soc(N) = S&T®(T,,Nsoc(N)). Similarly
we get soc(M) = L& (T, +soc(N)) for some subsocle L. Let Ty = L®S then soc(M) =
To®soc(N), with z € Ty. Let 7 be the projection of soc(M) onto soc(N) then 7(T,,) =
(T,Nsoc(N)). Let U = Ty + vR then soc(U) = Tp + soc(vR) = To + zR = Tp. There-
fore soc(U)Nsoc(N) = 0 and we get UNN = 0. Now we embed U into a complement
K of N. Let tR be a submodule of vR such that d(vR/tR) = 1. As Hi((v+u)R) =
Hy(vR) = tR we get H(t) > n+ 1. Now we show that Hx (t) < n. Let Hg(t) > n+1
then there exists a uniform element y € K such that ¢t € yR and d(yR/tR) = n + 1.
Let wR/tR be a submodule of yR/tR such that d(wR/tR) = 1 and d(yR/wR) = n.
Hence there exists an isomorphism ¢ : vR — wR which is the identity on ¢R. The map
n:vR — (v—0(v))R is an R-epimorphism with tR < Kern. Hence e(v — o(v)) < 1
and we get v — o(v) € soc(M). Since, H(u + v) > n,u+ v € H,(M). There-
fore, u + v — o(v) € H,(M), consequently u + v — o(v) € soc(M) N H,(M) = T,.
Alsov —o(v) € K,s0v —o(v) € KNsoc(M)=KnN(Ty+ soc(N)) = Ty. Therefore,
u=m(utv—o(v)) € n(T,) = T,Nsoc(N) and we get H(u) > nbut H(u) = H(v) < n.
Therefore, we reach at a contradiction. This shows that Hg (¢) < n. Therefore, K is
not h-pure in M.

Using the above theorem we prove the following, a generalization of [5, Theorem
1]. Tt may be noticed that the proof given below has similarity with the corresponding
proof in [5, Theorem 1].

Theorem 2.4: Let M be a QTAG-module and T, = soc(H,(M)),Ts = soc(M")
and Toot1 = Too42 = 0. Let N be a submodule of M then N is center of h-purity in
M, if and only if there exists k with 0 < k < oo such that Ty O soc(N) D Ti4o.

Proof: Let for some n,T,, D soc(N) 2 T,12. Suppose N is not center of h-purity
in M. Now if n = oo then there does not exist any uniform element in soc(N)
satisfying condition (ii) of Theorem 2.3. Suppose n is finite. Let u € soc(N),v € M
be uniform elements satisfying conditions of Theorem 2.3. Let H(u) = k then as
u € Ty,n <k < H(u+v). Since e(v) > e(u) = 1 we can find a submodule tR of
vR such that d(vR/tR) = 1. Let w = u + v then H;((v +v)R) = Hi(vR) = tR.
Let zR = soc(vR) then as vR is totally ordered zR < tR. Hence H(z) > n + 2. This
shows that z € T,,12 D soc(N) and we get a contradiction to the fact that vRNN = 0.
Therefore, N is centre of h-purity in M.
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Conversely, suppose T;, 2 soc(N) 2 T,4o is not true for any n. Then soc(N) ¢
M?', so soc(N) ¢ T, for some m. Let k be the greatest natural number such that
s0c(N) C Tj. Then the maximality of k and the assumption yield soc(N) € Tyiq
and Tyy2 ¢ soc(N). Hence there exist uniform elements u € soc(N) and s € Tjio
such that H(u) = k and s ¢ soc(N). Now we can find a uniform element y € M
such that s € yR and d(yR/sR) = k 4+ 2. Let xR/sR be a submodule of yR/sR such
that d(xR/sR) = 1, then d(yR/zR) = k + l,e(xz) = 2 and we get H(z) > k+ 1.
Let v = z — u, then Hi((xr — w)R) = Hy(vR) = Hi(xR) = sR, consequently
s € (x —u)R. Hence s = (x — u)r for some r € R. If xr = 0 then ur = 0 oth-
erwise s € soc(N). Define ) : R — (x — u)R given as xr — (z — u)r then 7 is a well
defined onto homomorphism, consequently v = x — u is a uniform element. Trivially
H(w) =kand H(u+v) = H(z) > k+1. Since e(z) = 2 and e(u) = 1,e(v) = 2 > e(u).
Now suppose vR N N # 0 then there exists a uniform element 2’ € vR N N and
' = vr for some r € R. Now 2/ = vr = zr — wr. Trivially ar # 0, so either
xrR = xR or xrR = sR and in each case we get s € N which is a contradiction.
Therefore, vR " N = 0. Hence, by Theorem 2.3, N is not a center of h-purity in M.
This completes the proof of the theorem.

3. Height of Subsocles

Firstly we give the following definitions:

Definition: Let S be a subsocle of a QTAG-module M, then height of S is defined
as a non-negative integer k such that S C Hy(M) but S € Hy1(M) and we write
h(S) = k.

If no such k is possible then we write h(S) = oo, so S C M*.

Definition: A subsocle S of a QTAG-module M is called open if soc(H,(M)) C S
for some non-negative integer n.

Definition: If S is open subsocle of a QTAG-module M with h(S) = k then the
range of S is the least non-negative integer n such that soc(Hgyn(M)) C S and we
write range(S) = n.

Now from Theorem 2.4, it is evident that a subsocle S of finite height is center of
h-purity if and only if range(S) < 2.

Proposition 3.1: Let S be a subsocle of a QTAG-module M and n be any non-
negative integer then

(1) SN Hyp41(M) =0 if and only if soc(H,(M/S)) C soc(M)/S.
(2) S+ soc(H,(M)) = soc(M) if and only if soc(M)/S C H,(M/S).

Proof: (1) Let SNH,,11(M) =0and & € soc(H,(M/S)) = soc((H,(M)+S5)/S), then
x € H,(M) and H;(ZR) = 0 which in turn implies Hi(zR) C S, so
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Hy(zR) C SN Hy,1(M) = 0. Therefore, x € soc(M) and we get soc(H,(M/S)) C
soc(M)/S.

Conversely, suppose S N Hp41(M) # 0. Let x be a uniform element in
SN Hp1(M), then there is a uniform element y € M such that d(yR/xR) = n + 1.
Let zR/xR = soc(yR/xR), then d(yR/zR) = n and d(zR/xR) = 1, so z € H,(M)
and Hy(zR) = xR C S. Now H;(zZR) = 0, so we get z € soc(H,(M/S)) C soc(M)/8S,
which gives z € soc(M) but this is not possible. Therefore, SN Hy41(M) = 0.

(2) Let soc(M) = S+soc(Hp(M)) and T € soc(M)/S, then & = y+S,y € soc(H,(M)),
consequently z € H,(M/S).

Conversely if we take z € soc(M) then  + S = z + S where z € H,(M). Hence,
xr=z+s,s €S and we get soc(M) = S + soc(H,(M)).

Proposition 3.2: Let S be a subsocle of a QTAG-module M such that h(S) = k
and soc(Hp4p41(M)) € S for some integer n > 0. Then there exists a complementary
subsocle T' of S in soc(M) such that h(soc(M)/T) = k and soc(Hytn(M/T)) ¢
soc(M)/T.

Proof: Trivially S N soc(Hy1n11(M)) ; so¢(Hp4n+1(M)). Since soc(Hyyn+1(M))

is bounded, we shall have soc(Hgyni1(M)) = To @ S N soc(Hypqnt1(M)). Tt is easy
to see that Ty NS =0 and Ty C Hi41(M). As SN Hy1 (M) @ Ty C soc(Hg1(M)),
we can find a subsocle Ty such that soc(Hyy1(M)) = SN Hygpa(M) @ To @ Ty
Now using the definition of height of S, we will have S N Hyy1(M) ; S.

Hence, S = SN Hy11 (M) @ S’ for some subsocle S’'. Trivially S' C Hy(M) and
S" N Hiy1(M) = 0, since soc(Hp11(M)) @ S" C soc(Hp(M)), we get a subsocle T
such that soc(Hy(M)) = soc(Hp11(M)) @ S" @ T. Trivially SN (T & Th @ T) = 0.
Let soc(M) = soc(Hp(M)) & T3 and T = To & Ty @& To @ T5 then
soc(M) = soc(Hi(M)) & Ts = soc(Hpr1(M)) + 58"+ To + T3 = SN soc(Hygr1(M)) &
ToeoT S @Ta®T3 = S®T. Hence, (S+ T)/T = soc(M)/T C Hy(M)/T.
Now, since Ty # 0, T ﬂ Hk+n+1( ) # 0 and consequently by Proposition 3.1,
soc(Hk+n M/T)) ¢ soc(M /T Also as soc(M) # T + soc(Hp41(M)), appealing
to Proposition 3.1, we get soc(M)/T ¢ Hy41(M/T). Hence h(soc(M)/T) = k.

Theorem 3.3: Let S be a open subsocle of a QTAG-module M such that h(S) =k
and n be a non-negative integer. Then range(S) < n + 1 if and only if
range(soc(M)/T) < n, for every subsocle T' of M such that soc(M) =T @ S.

Proof: Let range(S) < n + 1 then soc(Hgint1(M)) € S C (Hp(M)). Trivially
TN Hgqpni1(M) = 0. Hence, by Proposition 3.1, soc(Hy1n(M/T)) C soc(M)/T.
It is trivial to see that soc(M) = soc(Hp(M)) + T, so by Proposition 3.1, we get
soc(M)/T C Hi(M/T). Therefore, range(soc(M)/T) < n.

Conversely, let range(soc(M)/T) < n. Now we show that soc(Hgyny1(M)) C S.
Let soc(Hytn+1(M)) ¢ S, then by Proposition 3.2, we find a subsocle T' such that
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soc(M) =T @ S such that h(soc(M)/T) = k and soc(Hy4n(M/T)) € soc(M)/T and
hence range(soc(M)/T) £ n. Which is a contradiction. Therefore, soc(Hj4y+1(M)) C
S and we get range (S) < n+ 1.

4. Centre of n-h-Purity

In this section we define a new concept of n-h-purity which generalizes the concept
of h-purity and obtain a characterization of center of n-h-purity.

Definition: A submodule N of a QTAG-module M is called n-h-pure in M if
N/soc™(N) is h-pure in M/soc™(N), where n is a non-negative integer.
It is evident that if n = 0 then n-h-purity is simply h-purity.

Definition: A subsocle S of a QTAG-module M is centre of n-h-purity if all comple-
ments of S in M are n-h-pure submodules of M.

Firstly we prove the following:

Theorem 4.1: If N is a submodule of a QTAG-module M, then there is a complement
of N which is h-pure in M.

Proof: It is sufficient to consider soc(N) # soc(M). Suppose every uniform element
of soc(M) is of infinite height then trivially N C M'. Now appealing to [3, Corollary
8] we get a complement K of N, which is h-pure in M. Now on the other hand if
there is a uniform element x € soc(M) such that « ¢ soc(N) and H(z) < co. As if
y € soc(M) such that y ¢ soc(N) and H(y) = oo, then H(x+y) = H(xz) < co. Hence,
appealing to [7, Lemma 1] we shall get a summand K such that soc(K) = (z + y)R
and K NN = 0. Hence, K is h-pure in M.

Theorem 4.2: S C soc(M) then there exists a h-neat submodule K of M which is
1-h-pure with soc(K) = S.

Proof: Applying Theorem 4.1 for M/S, we get a h-pure submodule K/S in M/S,
which is a complement of soc(M)/S. Since (K/S)N(soc(M)/S) = 0, for every uniform
element = € soc(K),z + S = 5, so x € S and hence, soc(K) = S. Therefore, K is
1-h-pure in M. Now we show that K is h-neat. Let z be a uniform element in
K N Hy (M), then we get a uniform element y € M such that d(yR/xzR) = 1. Now if
y € K we get K to be h-neat submodule. Let y ¢ K then (K+yR)/S) N (soc(M)/S)
# 0 implies k +y + S = z+ S for some z € soc(M),k € K. Hence, 0 = Hi(zR) =
Hi((k+y)R =0, so k+y € soc(M). Therefore, Hi(kR) = Hy1(yR) = =R and
x € Hi(K). Hence, K is h-neat.

Proposition 4.3: Let S be a subsocle of a QTAG-module M such that S is centre of
n-h-purity for n > 1. Then soc(M)/T is centre of (n — 1)-h-purity in M /T for every
complementary subsocle T of S in soc(M).
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Proof: Let K/T be a complement of soc(M)/T in M/T. Then trivially K N.S = 0.
Now we show that N NS # 0 for K % N. Let NNS = 0 then we show that

N/TN(S@T)/T =0. Let on contrary N/TN(S®T)/T #0,then c+T =s+T
where x € N,s € Sand we get t —s € T C K C N, consequently s € N NS =0 and
x + T = T, which is a contradiction. Therefore, K is a complement of S. Hence,
K/soc(K) is h-pure in M/soc™(K). Now we show that K/T/soc" Y (K/T) is
h-pure in M /T /soc™ V(K /T). Tt is easy to see that soc(K) = T and soc" V) (K /T) C
soc"(K)/T. Now for any uniform element x € soc™(K), let yR = soc(zR) then
H,_1(zR) = yR. Hence,

Therefore, soc™ V(K /T) = soc®(K)/T. Further, under the canonical isomorphism
M/T/soc™V(K/T) = M/T/soc"(K)/T = M/soc"(K), K/T/soc"V(K/T)
is mapped onto K/soc™(K). Hence K/T is (n — 1)-h-pure in M/T and we get the
result.

Now we prove the main result of this section:

Theorem 4.4: A subsocle S of a QTAG-module M is centre of n-h-purity for
some n > 0 if and only if either h(S) = oo, or S is open subsocle of M such that
range(S) < n+ 2.

Proof: Let S be a centre of n-h-purity and h(S) < co. Suppose h(S) = k, then we
show that soc(Hgtnt+2(M)) C S, which in turn will imply range(S) < n + 2. Let
soc(Hy4n42(M)) € S, then appealing to Proposition 3.2, we will find a subsocle T
such that soc(M) = S ® T, h(soc(M)/T) =k and soc(Hy4nt1(M/T) € soc(M)/T.
As remarked in section 3, for n = 0, range(S) < 2, so we use induction. How-
ever, appealing to Proposition 4.3, we get soc(M)/T as centre of (n — 1)-h-purity.
Therefore, range(soc(M)/T) < n— 142 = n+ 1, consequently, soc(Hyyn+1(M/T) C
soc(M) /T, which is a contradiction. Hence range(S) < n + 2.

Conversely, if h(S) = oo, then by [3, Corollary 8], S is centre of h-purity and hence
for n =0, S is centre of n-h-purity. Suppose range(S) < n+2 and soc(Hgynt2(M)) C
S C Hi(M). Let K be a complement of S in M. Now we prove that

s0¢(Hpt2(M/soc™(K)) C (soc(M) + soc™(K))/soc™ (K) C Hp(M/soc™(K)).

For any uniform element z € Hpio(M), Let T € soc(Hyy2(M/soc™(K)).
Then H;(ZR) = 0, hence, Hi(zR) C K, but due to [4, Proposition 4], K is h-neat
and so there is a uniform element ¢ € K such that Hy(zR) = H1(tR) = zR. Now as
x € Hypqo(M), there is a uniform element y € M such that d(yR/xzR) = k + 2, conse-
quently Hy3(yR) = Hi(tR) = zR and we get Hyy34,—1(yR) = H,(tR) = H,—1(2R),
but Hiini2(yR) = Hp(tR) € K N Hyypyo(M) = 0. Hence, t € soc™(K). Further, as
Hy(zR) = H1(tR), we get x — t € soc(M). Therefore,

z—t+soc™(K) =z + soc"(K) =7 € (soc(M) + soc"(K))/soc" (K)
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and we get the first inclusion. Trivially Hy(M/soc™(K)) = (Hp(M)+soc™(K))/soc"(K)
and as K is complement of S,soc(M) = S + soc(K). Therefore, the second in-
clusion also follows. Hence, range((soc(M) + soc™(K))/soc™(K)) < 2 and we get
(soc(M) + soc™(K))/soc™(K) as centre of h-purity in M/soc™(K). Further it is easy
to see that K/soc™(K) is complement of (soc(M) + soc™(K))/soc™(K) in M /soc™(K)
and hence K/soc"(K) is h-pure submodule of M/soc™(K). Therefore, S is centre of
n-h-purity.
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