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The integrals in Gradshteyn and Ryzhik.
Part 17: The Riemann zeta function

Tewodros Amdeberhana, Khristo N. Boyadzhievb

and Victor H. Molla

Abstract. The table of Gradshteyn and Ryzhik contains some integrals that can
be expressed in terms of the Riemann zeta ζ(s) =

P∞
n=1 1/ns. In this note we

present some of these evaluations.

1. Introduction

The table of integrals [3] contains a large variety of definite integrals that involve
the Riemann zeta function

(1.1) ζ(s) =
∞∑

n=1

1
ns

.

The series converges for Re s > 1.
This is a classical function that plays an important role in the distribution of

prime numbers. The reader will find in [2] a historical description of the fundamental
properties of ζ(s). The textbook [4] presents interesting information about the major
open question related to ζ(s): all its non-trivial zeros are on the vertical line Re s = 1

2 .
This is the famous Riemann hypothesis.

In this section we summarize elementary properties of ζ that will be employed in
the evaluation of definite integrals.

The zeta function at the even integers. The values of ζ(s) at the even integers
are given in terms of the Bernoulli numbers defined by the generating function

(1.2)
u

eu − 1
=
∞∑

k=0

Bk

k!
uk.
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62 T. AMDEBERHAN, K. BOYADZHIEV AND V. MOLL

It turns out that B2n+1 = 0 for n > 1. The relation

(1.3) ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n

can be found in [1]. The sign of B2n is (−1)n−1, so we can write (1.3) as

(1.4) ζ(2n) =
(2π)2n

2(2n)!
|B2n|,

that looks more compact. The case of ζ(2n + 1) is more compicated. No simple ex-
pression, such as (1.4), is known.

There are other series that can be expressed in terms of ζ(s). We present here the
case of the alternating zeta series.

Proposition 1.1. Assume s > 1. Then

(1.5)
∞∑

n=1

(−1)n

ns
= (21−s − 1)ζ(s).

Proof. Split the sum (1.1) according to the parity of n. Then
∞∑

n=1

(−1)n

ns
=

∞∑
k=1

1
(2k)s

−
∞∑

k=1

1
(2k − 1)s

= 2−s
∞∑

k=1

1
ks

−

( ∞∑
k=1

1
ks

−
∞∑

k=1

1
(2k)s

)
.

The identity (1.5) has been established. �

Note 1.2. The expression (1.5), written as

(1.6) ζ(s) =
1

21−s − 1

∞∑
n=1

(−1)k

ks

provides a continuation of ζ(s) to 0 < Re s, with the natural exception at s = 1.

Proposition 1.3. Let a > 1. Then

(1.7)
∞∑

k=0

1
(2k + 1)a

=
2a − 1

2a
ζ(a).

Proof. This simply comes from
∞∑

k=0

1
(2k + 1)a

=
∞∑

k=1

1
ka

−
∞∑

k=1

1
(2k)a

.

�
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2. A first integral representation

The first integral in [3] that is evaluated in terms of the Riemann zeta function is
3.411.1:

(2.1)
∫ ∞

0

xs−1 dx

epx − 1
=

Γ(s)ζ(s)
ps

.

Here Γ is the gamma function defined by

(2.2) Γ(s) =
∫ ∞

0

ts−1e−t dt.

To verify (2.1) observe that the parameter p can be scaled out of the integral. Indeed,
the change of variables t = px shows that (2.1) is equivalent to the case p = 1:

(2.3)
∫ ∞

0

ts−1 dt

et − 1
= Γ(s)ζ(s).

To prove this, expand the integrand as

(2.4)
1

et − 1
=

e−t

1− e−t
=
∞∑

k=0

e−(k+1)t.

Therefore,

(2.5)
∫ ∞

0

xs−1 dx

ex − 1
=
∞∑

k=0

∫ ∞
0

ts−1e−(k+1)t dt.

The change of variables v = (1 + k)t yields the result.

Example 2.1. The evaluation of 3.411.2:

(2.6)
∫ ∞

0

x2n−1 dx

epx − 1
= (−1)n−1

(
2π

p

)2n
B2n

4n

can be reduced to the case p = 1 by the scaling t = px and it follows from (1.3). Using
(1.4) we write it as

(2.7)
∫ ∞

0

x2n−1 dx

ex − 1
=

(2π)2n

4n
|B2n|.

Example 2.2. The evaluation of 3.411.3:

(2.8)
∫ ∞

0

xs−1 dx

epx + 1
=

(1− 21−s)Γ(s)
ps

ζ(s),

is first reduced, via t = px, to the case p = 1:

(2.9)
∫ ∞

0

ts−1 dx

et + 1
= (1− 21−s)Γ(s)ζ(s),

and this is evaluated expanding the integrand and integrating term by term to obtain

(2.10)
∫ ∞

0

ts−1

et + 1
dt =

1
Γ(s)

∞∑
k=0

(−1)k

(k + 1)s
.
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The result now follows from (1.5).

Example 2.3. The special case s = 2n in (2.8) yields

(2.11)
∫ ∞

0

t2n−1 dt

et + 1
= (1− 21−2n)

(2π)2n

4n
|B2n|.

The integral 3.411.4:

(2.12)
∫ ∞

0

x2n−1 dx

epx + 1
= (1− 21−2n)

(
2π

p

)2n |B2n|
4n

,

is reduced to (2.11) by the usual scaling.

3. Integrals involving partial sums of ζ(s)

In this section we consider in a unified form a series of definite integrals in [3]
whose values involve partial sums of the Riemann zeta function. We begin with the
evaluation of 3.411.6: expanding the integrand we obtain∫ ∞

0

xa−1e−βx

1− δe−γx
dx =

∞∑
k=0

δk

∫ ∞
0

xa−1e−x(β+γk) dx(3.1)

=
Γ(a)
γa

∞∑
k=0

δk

(
k +

β

γ

)−a

.

The sum is identified as the Lerch function defined by

(3.2) Φ(z, s, v) =
∞∑

n=0

(v + n)−szn.

Therefore

(3.3)
∫ ∞

0

xa−1e−βx dx

1− δe−γx
=

Γ(a)
γa

Φ (δ, a, β/γ) .

Integrals involving the Lerch Φ-function will be discussed in a future publication. Here
we simply observe that 3.411.22:

(3.4)
∫ ∞

0

xp−1 dx

erx − q
=

Γ(p)
rp

Φ(q, p, 1)

follows directly from (3.1) after writing

(3.5)
∫ ∞

0

xp−1 dx

erx − q
=
∫ ∞

0

xp−1e−rx dx

1− qe−rx
.

We now discuss several special cases of (3.1).

Example 3.1. The case δ = 1 in (3.1) is related to the Hurwitz zeta function
defined by

(3.6) ζ(z, q) =
∞∑

n=0

1
(n + q)z

.
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Replacing δ = 1 in (3.1) gives

(3.7)
∫ ∞

0

xa−1e−βx

1− e−γx
dx =

Γ(a)
γa

ζ(a, β/γ).

This appears as 3.411.7.

Example 3.2. We now consider the special case of (3.7) in which β/γ is a positive
integer, say, β = mγ. Then we obtain

(3.8)
∫ ∞

0

xa−1e−mγx dx

1− e−γx
=

Γ(a)
γa

∞∑
k=0

1
(m + k)a

.

Now observe that

(3.9)
∞∑

k=0

1
(m + k)a

=
∞∑

k=1

1
ka

−
m−1∑
k=1

1
ka

,

so that

(3.10)
∫ ∞

0

xa−1e−mγx dx

1− e−γx
=

Γ(a)
γa

(
ζ(a)−

m−1∑
k=1

1
ka

)
.

We restate the previous result.

Proposition 3.3. Let a, γ ∈ R+ and m ∈ N. Then

(3.11)
∫ ∞

0

xa−1e−mγx dx

1− e−γx
=

Γ(a)
γa

(
ζ(a)−

m−1∑
k=1

1
ka

)
.

Example 3.4. The value a = 2, γ = 1 and m = 1 in (3.10) give

(3.12)
∫ ∞

0

xe−x dx

ex − 1
=

π2

6
− 1,

suing Γ(2) = 1 and ζ(2) = π2/6. This appears as 3.411.9 in [3].

Example 3.5. The case a = 3, γ = 1 and m ∈ N gives 3.411.14:

(3.13)
∫ ∞

0

x2e−mx

1− e−x
dx = 2

(
ζ(3)−

m−1∑
k=1

1
k3

)
.

Example 3.6. The case a = 4, γ = 1 and m ∈ N give 3.411.17:

(3.14)
∫ ∞

0

x3e−mx

1− e−x
dx =

π4

15
− 6

m−1∑
k=1

1
k4

.

Here we have used Γ(4) = 6 and ζ(4) = π4/90.

Example 3.7. Formula 3.411.25 is:

(3.15)
∫ ∞

0

x
1 + e−x

ex − 1
dx =

∫ ∞
0

xe−x dx

1− e−x
+
∫ ∞

0

xe−2x dx

1− e−x
.
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The first integral corresponds to a = 2, γ = 1, m = 1 and the second one to a =
2, γ = 1, m = 2. Therefore

(3.16)
∫ ∞

0

x
1 + e−x

ex − 1
dx = Γ(2) (ζ(2) + ζ(2)− 1) =

π2

3
− 1.

Example 3.8. The final example in this section is 3.411.21:

(3.17)
∫ ∞

0

xn−1 1− e−mx

1− ex
dx = (n− 1)!

m∑
k=1

1
kn

.

We now show that the correct formula is

(3.18)
∫ ∞

0

xn−1 1− e−mx

1− ex
dx = −(n− 1)!

m∑
k=1

1
kn

.

To establish this, we write

(3.19)
∫ ∞

0

xn−1 1− e−mx

1− ex
dx =

∫ ∞
0

xn−1e−(m+1)x

1− e−x
dx−

∫ ∞
0

xn−1e−x

1− e−x
dx.

The first integral corresponds to a = n, γ = 1 and m + 1 instead of m, so that

(3.20)
∫ ∞

0

xn−1e−(m+1)x

1− e−x
dx = Γ(n)

(
ζ(n)−

m∑
k=1

1
kn

)
.

The second integral corresponds to a = n, γ = 1 and m = 1. Therefore

(3.21)
∫ ∞

0

xn−1e−x

1− e−x
dx = Γ(n)ζ(n).

Formula (3.18) has been established.

4. The alternating version

The alternating version of (3.1) gives

(4.1)
∫ ∞

0

xa−1e−βx

1 + δe−γx
dx =

Γ(a)
γa

∞∑
k=0

(−1)kδk

(
k +

β

γ

)−a

,

that in the case δ = 1 provides

(4.2)
∫ ∞

0

xa−1 e−βx dx

1 + e−γx
=

Γ(a)
γa

∞∑
k=0

(−1)k(k + β/γ)−a.

In particular, if β = mγ, with m ∈ N, we have

(4.3)
∫ ∞

0

xa−1e−mγx dx

1 + e−γx
=

Γ(a)
γa

∞∑
k=0

(−1)k

(k + m)a
.

Using (1.5) we obtain the next proposition:
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Proposition 4.1. Let a, γ ∈ R+ and m ∈ N. Then

(4.4)
∫ ∞

0

xa−1e−mγx dx

1 + e−γx
=

(−1)mΓ(a)
γa

(
(21−a − 1)ζ(a)−

m−1∑
k=1

(−1)k

ka

)
.

The next examples come from (4.3).

Example 4.2. The case a = n, γ = 1 and m = p + 1 give 3.411.8:

(4.5)
∫ ∞

0

xn−1e−px dx

1 + ex
= (−1)pΓ(n)

[
(1− 21−n)ζ(n) +

p∑
k=1

(−1)k

kn

]
.

The reader will check that the answer can be written as

(4.6)
∫ ∞

0

xn−1e−px dx

1 + e−x
= (n− 1)!

∞∑
k=1

(−1)k−1

(p + k)n
.

Example 4.3. The case a = 2, c = 1 and m = 2 gives 3.411.10:

(4.7)
∫ ∞

0

xe−2x

1 + e−x
dx = 1− π2

12
.

Example 4.4. The case a = 2, c = 1 and m = 3 gives 3.411.11:

(4.8)
∫ ∞

0

xe−3x

1 + e−x
dx =

π2

12
− 3

4
.

Example 4.5. The case a = 2, c = 1 and m = 2n gives 3.411.12:

(4.9)
∫ ∞

0

xe−(2n−1)x

1 + e−x
dx = −π2

12
+

2n−1∑
k=1

(−1)k−1

k2
.

Example 4.6. The case a = 2, c = 1 and m = 2n + 1 gives 3.411.13:

(4.10)
∫ ∞

0

xe−2nx

1 + e−x
dx =

π2

12
+

2n∑
k=1

(−1)k

k2
.

Example 4.7. The case a = 3, c = 1 and m ∈ N gives 3.411.15:

(4.11)
∫ ∞

0

x2e−nx

1 + e−x
dx = (−1)n+1

(
3
2
ζ(3) + 2

n−1∑
k=1

(−1)k

k3

)
.

Example 4.8. The case a = 4, c = 1 and m ∈ N gives 3.411.18:

(4.12)
∫ ∞

0

x3e−nx

1 + e−x
dx = (−1)n+1

(
7π4

120
+ 6

n−1∑
k=1

(−1)k

k4

)
.

Example 4.9. Similar manipulations produces 3.411.26:

(4.13)
∫ ∞

0

xe−x 1− e−x

1 + e−3x
dx =

2π2

27
.
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5. The logarithmic scale

The integrals described in Section 4 can be transformed into logarithmic integrals
via the change of variables t = e−cx. For example (3.1) becomes

(5.1)
∫ 1

0

tβ−1 lna−1 t dt

1− δt
= (−1)a−1Γ(a)

∞∑
k=0

δk

(k + β)a

and the special case δ = 1 replaces (3.7) with

(5.2)
∫ 1

0

tβ−1 lna−1 t dt

1− t
= (−1)a−1Γ(a)

∞∑
k=0

1
(k + β)a

.

In the special case that m ∈ N, the formula (3.11) becomes

(5.3)
∫ 1

0

tm−1 lna−1 t dt

1− t
= (−1)a−1Γ(a)

(
ζ(a)−

m−1∑
k=1

1
ka

)
,

in particular, for m = 1, we have

(5.4)
∫ 1

0

lna−1 t dt

1− t
= (−1)a−1Γ(a)ζ(a).

Finally, the change of variables t = sγ in (5.2) produces

(5.5)
∫ 1

0

sβ−1 lna−1 s dt

1− sγ
= (−1)a−1Γ(γ)

∞∑
k=0

1
(γk + β)a

.

We now present examples of these formulas that appear in [3].

Example 5.1. Formula (5.4) appears in [3] only for a even. This is the case
where the value of ζ(a) reduces via (1.3). We find 4.231.2 for a = 2:

(5.6)
∫ 1

0

lnx dx

1− x
= −π2

6
,

and 4.262.2:

(5.7)
∫ 1

0

ln3 x dx

1− x
= −π4

15
,

that uses Γ(4) = 6 and ζ(4) = π4/90. The next example is 4.264.2:

(5.8)
∫ 1

0

ln5 x dx

1− x
= −8π6

63
,

that uses Γ(6) = 120 and ζ(6) = π6/945. The final example is 4.266.2:

(5.9)
∫ 1

0

ln7 x dx

1− x
= −8π8

15
,

that uses Γ(8) = 5040 and ζ(8) = π8/9450.
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Example 5.2. The choice a = 4 and m = n + 1 in (5.3) produces 4.262.5:

(5.10)
∫ 1

0

xn ln3 x

1− x
dx = −π4

15
+ 6

n∑
k=1

1
k4

.

Example 5.3. The choice a = 4, β = 2n + 1, and γ = 2 in (5.5) gives 4.262.6:

(5.11)
∫ 1

0

x2n ln3 x

1− x2
dx = −π4

16
+ 6

n∑
k=1

1
(2k + 1)4

.

In this calculation we have used (1.7) to produce the value

(5.12)
∞∑

k=0

1
(2k + 1)4

=
π4

96
.

Example 5.4. The choice a = 3 and m = n + 1 in (5.3) gives 4.261.12:

(5.13)
∫ 1

0

xn ln2 x

1− x
dx = 2

(
ζ(3)−

n∑
k=1

1
k3

)
.

Example 5.5. The choice a = 3, β = 2n + 1, and γ = 2 gives 4.261.13:

(5.14)
∫ 1

0

x2n ln2 x

1− x2
dx =

7ζ(3)
4

− 2
n−1∑
k=0

1
(2k + 1)3

.

6. The alternating logarithmic scale

There is a corresponding list of formulas for logarithmic integrals that produce
alternating series. For example (5.1) becomes

(6.1)
∫ 1

0

tβ−1 lna−1 t dt

1 + δt
= (−1)a−1Γ(a)

∞∑
k=0

(−1)kδk

(k + β)a

and the case δ = 1 gives

(6.2)
∫ 1

0

tβ−1 lna−1 t dt

1 + t
= (−1)a−1Γ(a)

∞∑
k=0

(−1)k

(k + β)a
.

In the special case that m ∈ N, we have

(6.3)
∫ 1

0

tm−1 lna−1 t dt

1 + t
= (−1)a+mΓ(a)

(
2a−1 − 1

2a−1
ζ(a) +

m−1∑
k=1

(−1)k

ka

)
,

in particular, for m = 1, we have

(6.4)
∫ 1

0

lna−1 t dt

1 + t
= (−1)a+1 2a−1 − 1

2a−1
Γ(a)ζ(a).

Finally (5.5) produces

(6.5)
∫ 1

0

sβ−1 lna−1 s ds

1 + sγ
= (−1)a−1Γ(a)

∞∑
k=0

(−1)k

(γk + β)a
.

We now present examples of these formulas that appear in [3].
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Example 6.1. The choice a = 2 in (6.4) produces 4.231.1:

(6.6)
∫ 1

0

lnx

1 + x
dx = −π2

12
.

The table contains formulas that use (6.4) only for a even, in that form, the integrals
are expressible as powers of π. For example, 4.262.1:

(6.7)
∫ 1

0

ln3 x

1 + x
dx = −7π4

120
,

using Γ(4) = 6 and ζ(4) = π4/90. Similarly, 4.264.1:

(6.8)
∫ 1

0

ln5 x

1 + x
dx = −31π6

252

uses Γ(6) = 120 and ζ(6) = π6/945. The final example of this form is 4.266.1:

(6.9)
∫ 1

0

ln7 x

1 + x
dx = −127π8

240
,

that employs Γ(8) = 5040 and ζ(8) = π8/9450. The next cases in this list would be

(6.10)
∫ 1

0

ln9 x

1 + x
dx = −511π10

132
,

and

(6.11)
∫ 1

0

ln11 x

1 + x
dx = −1414477π12

32760
,

that do not appear in [3].

Example 6.2. The choice a = 2n + 1 in (6.4) gives 4.271.1:

(6.12)
∫ 1

0

ln2n x

1 + x
dx =

22n − 1
22n

(2n)! ζ(2n + 1).

Example 6.3. The choice a = 2n in (6.4) gives 4.271.2:

(6.13)
∫ 1

0

ln2n−1 x

1 + x
dx = −22n−1 − 1

22n−1
(2n− 1)! ζ(2n),

and using (1.3) gives

(6.14)
∫ 1

0

ln2n−1 x

1 + x
dx = −22n−1 − 1

2n
|B2n|π2n.
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7. Integrals over the whole line

The change of variables x = 1
pe−t in (2.1) gives entry 3.333.1:

(7.1)
∫ ∞
−∞

e−sx dx

exp(e−x)− 1
= Γ(s)ζ(s).

The same change of variable in (2.8) gives entry 3.333.2:

(7.2)
∫ ∞
−∞

e−sx dx

exp(e−x) + 1
= (1− 21−s)Γ(s)ζ(s).

The exceptional case

(7.3)
∫ ∞
−∞

e−x dx

exp(e−x) + 1
= ln 2

mentioned in entry 3.333.2, is elementary.
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