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On pseudo cyclic Ricci symmetric manifolds admitting
semi-symmetric metric connection

Absos Ali Shaikh and Shyamal Kumar Hui

Abstract. The object of the present paper is to investigate the applications

of pseudo cyclic Ricci symmetric manifolds admitting a semi-symmetric metric

connection to the general relativity and cosmology.

1. Introduction

A Riemannian manifold is Ricci symmetric if its Ricci tensor S of type (0, 2)
satisfies ∇S = 0, where ∇ denotes the Riemannian connection. During the last five
decades, the notion of Ricci symmetry have been weakened by many authors such
as Ricci-recurrent manifolds [11], Ricci semi-symmetric manifolds [14], pseudo Ricci
symmetric manifolds by M. C. Chaki [4]. A non-flat Riemannian manifold (Mn, g)
is said to be pseudo Ricci symmetric [4] if its Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

(1.1) (∇XS)(Y, Z) = 2A(X)S(Y, Z) + A(Y )S(X, Z) + A(Z)S(Y,X),

where A is a nowhere vanishing 1-form and ∇ denotes the operator of covariant dif-
ferentiation with respect to the metric tensor g. Such an n-dimensional manifold is
denoted by (PRS)n.

Extending the notion of pseudo Ricci symmetric manifold, recently the present
authors [13] introduced the notion of pseudo cyclic Ricci symmetric manifold. A
Riemannian manifold (Mn, g)(n > 2) is called pseudo cyclic Ricci symmetric manifold
if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y )(1.2)
= 2A(X)S(Y, Z) + A(Y )S(X, Z) + A(Z)S(Y,X),
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where A is a nowhere vanishing 1-form associated to the vector field ρ such that
A(X) = g(X, ρ) for all X. Such an n-dimensional manifold is denoted by (PCRS)n.
Every (PRS)n is (PCRS)n but not conversely [13].

Section 2 is concerned with preliminaries of semi-symmetric metric connection
along with its physical significance. In general relativity the matter content of the
spacetime is described by the energy-momentum tensor T which is to be determined
from the physical considerations dealing with the distribution of matter and energy.
Since the matter content of the universe is assumed to behave like a perfect fluid in
the standard cosmological models, the physical motivation for studying Lorentzian
manifolds is the assumption that a gravitational field may be effectively modeled by
some Lorentzian metric defined on a suitable four dimensional manifold M . The
Einstein equations are fundamental in the construction of cosmological models which
imply that the matter determines the geometry of the spacetime and conversely the
motion of matter is determined by the metric tensor of the space which is non-flat.

The present paper deals with (PCRS)n admitting a semi-symmetric metric con-
nection. A (PCRS)n admitting semi-symmetric metric connection is denoted by
[(PCRS)n, ∇̃]. In section 3 we investigate the applications of [(PCRS)n, ∇̃] to the gen-
eral relativity and cosmology. It is shown that a viscous fluid spacetime obeying Ein-
stein’s equation with a cosmological constant is a connected Lorentzian [(PCRS)4, ∇̃].
Consequently [(PCRS)4, ∇̃] can be viewed as a model of the viscous fluid spacetime.
Also it is observed that in a viscous fluid [(PCRS)4, ∇̃] spacetime none of the isotropic
pressure and energy density can be a constant and the matter content of the spacetime
is a non-thermalised fluid under a certain condition.

The physical motivation for studying various types of spacetime models in cos-
mology is to obtain the information of different phases in the evolution of the universe,
which may be classified into three phases, namely, the initial phase, the intermediate
phase and the final phase. The initial phase is just after the Big Bang when the effects
of both viscosity and heat flux were quite pronounced. The intermediate phase is that
when the effect of viscosity was no longer significant but the heat flux was till not
negligible. The final phase, which extends to the present state of the universe when
both the effects of viscosity and heat flux have become negligible and the matter con-
tent of the universe may be assumed to be perfect fluid. The study of [(PCRS)4, ∇̃]
is important because such spacetime represents the third phase in the evolution of the
universe. Consequently the investigations of [(PCRS)n, ∇̃] helps us to have a deeper
understanding of the global character of the universe including the topology, because
the nature of the singularities can be defined from a differential geometric stand point.

2. Semi-symmetric metric connection

In 1924 Friedmann and Schouten [6] introduced the notion of semi-symmetric
linear connection on a differentiable manifold. Then in 1932 Hayden [7] introduced
the idea of metric connection with torsion on a Riemannian manifold. A systematic
study of the semi-symmetric metric connection on a Riemannian manifold has been
given by K. Yano in 1970 [15]. Semi-symmetric metric connection on Riemannian
manifolds is also studied by various authors such as ([1],[5],[8]).
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Semi-symmetric metric connection plays an important role in the study of Rie-
mannian manifolds. There are various physical problems involving the semi-symmetric
metric connection. For example, if a man is moving on the surface of the earth al-
ways facing one definite point, say Jerusalem or Mekka or the North Pole, then this
displacement is semi-symmetric and metric ([12], p.143). Again during the mathemat-
ical congress in Moscow in 1934 one evening mathematicians invented the “Moscow
displacement”. The streets of Moscow are approximately straight lines through the
Kremlin and concentric circles around it. If a person walk in the street always facing
the Kremlin, then this displacement is semi-symmetric and metric ([12], p.143).

Let (Mn, g) be an n-dimensional Riemannian manifold of class C∞ with the metric
tensor g and ∇ be the Riemannian connection of the manifold (Mn, g). A linear
connection ∇̃ on (Mn, g) is said to be semi-symmetric [6] if the torsion tensor τ of the
connection ∇̃ satisfies

(2.1) τ(X, Y ) = α(Y )X − α(X)Y

for any vector field X, Y on M and α is an 1-form associated with the torsion tensor
τ of the connection ∇̃ given by

α(X) = g(X, ρ),

ρ being the vector field associated with the 1-form α. The 1-form α is called the
associated 1-form of the semi-symmetric connection and the vector field ρ is called the
associated vector field of the connection. A semi-symmetric connection ∇̃ is called a
semi-symmetric metric connection [7] if in addition it satisfies

(2.2) ∇̃g = 0.

The relation between the semi-symmetric connection ∇̃ and the Riemannian connec-
tion ∇ of (Mn, g) is given by [15]

(2.3) ∇̃XY = ∇XY + α(Y )X − g(X, Y )ρ.

In particular, if the 1-form α vanishes identically then a semi-symmetric metric con-
nection reduces to the Riemannian connection. The covariant differentiation of an
1-form ω with respect to ∇̃ is given by [15]

(∇̃Xω)(Y ) = (∇Xω)(Y ) + ω(X)α(Y )− ω(ρ)g(X, Y ).

If R and R̃ are respectively the curvature tensor of the Levi-Civita connection ∇ and
the semi-symmetric metric connection ∇̃, then we have [15]

(2.4) R̃(X, Y )Z = R(X, Y )Z − P (Y,Z)X + P (X, Z)Y − g(Y, Z)LX + g(X, Z)LY,

where P is a tensor field of type (0,2) given by

(2.5) P (X, Y ) = g(LX, Y ) = (∇Xα)(Y )− α(X)α(Y ) +
1
2
α(ρ)g(X, Y )

for any vector fields X and Y . From (2.4), it follows that

(2.6) S̃(Y, Z) = S(Y, Z)− (n− 2)P (Y, Z)− ag(Y,Z),

where S̃ and S denote respectively the Ricci tensor with respect to ∇̃ and ∇, a =
trace P . The tensor P of type (0,2) given in (2.5) is not symmetric in general and hence
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from (2.6) it follows that the Ricci tensor S̃ of the semi-symmetric metric connection
∇̃ is not so. But if we consider that the 1-form α, associated with the torsion tensor
τ , is closed then it can be easily shown that the relation

(∇Xα)(Y ) = (∇Y α)(X) for all vector fields X, Y

holds and hence the tensor P (X, Y ) is symmetric. Consequently, the Ricci tensor S̃
is symmetric. Conversely, if P (X, Y ) is symmetric then from (2.5) it follows that the
1-form α is closed. This leads to the following:

Proposition 2.1. [2] Let (Mn, g)(n > 2) be a Riemannian manifold admitting a
semi-symmetric metric connection ∇̃. Then the Ricci tensor S̃ of ∇̃ is symmetric if
and only if the 1-form α, associated with the torsion tensor τ is closed.

Contracting (2.6) with respect to Y and Z, it can be easily found that

(2.7) r̃ = r − 2(n− 1)a,

where r̃ and r denote respectively the scalar curvature with respect to ∇̃ and ∇.

Definition 2.1. A Riemannian manifold (Mn, g)(n > 2) is called pseudo cyclic
Ricci symmetric manifold admitting semi-symmetric metric connection if its Ricci
tensor S̃ of type (0,2) is not identically zero and satisfies the condition

(∇̃X S̃)(Y, Z) + (∇̃Y S̃)(Z,X) + (∇̃Z S̃)(X, Y )(2.8)

= 2Ã(X)S̃(Y,Z) + Ã(Y )S̃(Z,X) + Ã(Z)S̃(X, Y ),

where Ã is a nowhere vanishing 1-form and ∇̃ denotes the semi-symmetric metric
connection. Such an n-dimensional manifold is denoted by [(PCRS)n, ∇̃].

In view of (2.3) and (2.6), it follows from (2.8) that

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y )(2.9)

= 2[Ã(X)− α(X)]S(Y,Z) + [Ã(Y )− α(Y )]S(Z,X) + [Ã(Z)− α(Z)]S(X, Y )
+(n− 2)[(∇XP )(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) + {α(X)

−2Ã(X)}P (Y,Z) + {α(Y )− Ã(Y )}P (Z,X) + {α(Z)− Ã(Z)}P (X, Y )
−g(X, Y )P (Z, ρ)− g(Y,Z)P (X, ρ)− g(Z,X)P (Y, ρ)] + [da(X) + α(QX)

−2aÃ(X)]g(Y, Z) + [da(Y ) + α(QY )− aÃ(Y )]g(Z,X)

+[da(Z) + α(QZ)− aÃ(Z)]g(X, Y ),

where Q is the Ricci-operator, i.e., S(X, Y ) = g(QX,Y ).
If, in particular, the 1-form α vanishes identically, then (2.9) reduces to (1.2) with

Ã = A. Hence the manifold (PCRS)n is a particular case of [(PCRS)n, ∇̃]. Also the
manifold (PCRS)n could be a [(PCRS)n, ∇̃] when it admits a semi-symmetric metric
connection ∇̃ different from the Riemannian connection ∇.

We now prove the following Lemma.

Lemma 2.1. If in a [(PCRS)n, ∇̃], the 1-form α, associated with the torsion tensor
τ , is closed, then its Ricci tensor S̃ is of the form:

(2.10) S̃ = r̃γ ⊗ γ,
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where γ is a nowhere vanishing 1-form defined by γ(X) = g(X, µ), µ being a unit
vector field.

Proof. Interchanging X and Y in (2.8), we obtain

(∇̃Y S̃)(X, Z) + (∇̃X S̃)(Z, Y ) + (∇̃Z S̃)(Y,X)

= 2Ã(Y )S̃(X, Z) + Ã(X)S̃(Z, Y ) + Ã(Z)S̃(Y, X).

Since the 1-form α, associated with the torsion tensor τ , is closed, from Proposition 2.1,
it follows that the Ricci tensor S̃ is symmetric. Subtracting the last relation from (2.8),
we get

(2.11) Ã(X)S̃(Y, Z) = Ã(Y )S̃(X, Z).

Contracting (2.11) with respect to Y and Z, we have

(2.12) r̃Ã(X) = Ã(Q̃X),

where Q̃ is the Ricci operator associated with the Ricci tensor S̃, i.e., S̃(X, Y ) =
g(Q̃X, Y ).
Setting Y = ρ in (2.11), we get

(2.13) S̃(X, Z) =
1

Ã(ρ)
Ã(X)Ã(Q̃Z),

which, in view of (2.12), yields

(2.14) S̃(X, Z) = r̃γ(X)γ(Z),

where γ(X) = g(X, µ) = 1√
Ã(ρ)

Ã(X), µ being a unit vector field associated with the

1-form γ. Hence the Lemma is proved.
Using (2.10) and (2.7) in (2.6), we obtain

(2.15) S(Y, Z) = ag(Y, Z) + [r − 2(n− 1)a]γ(Y )γ(Z) + (n− 2)P (Y, Z),

provided that the 1-form α, associated with the torsion tensor τ , is closed. The unit
vector field µ associated to the 1-form γ is called the generator of [(PCRS)n, ∇̃] and
P is known as the structure tensor of [(PCRS)n, ∇̃].

A non-zero vector V on a manifold M is said to be timelike (resp. non-spacelike,
null, spacelike) if it satisfies g(V, V ) < 0 (resp. > 0,= 0, > 0) ([3],[10]).

Since µ is a unit vector field on the connected and non-compact Riemannian
manifold M =[(PCRS)n, ∇̃] with metric tensor g, it can be easily shown ([10], p.148)
that g̃ = g−2γ⊗γ is a Lorentz metric on M . Also µ becomes timelike so the resulting
Lorentz manifold is time-orientable.

3. General relativistic viscous fluid [(PCRS)4, ∇̃] spacetime

A viscous fluid spacetime is a connected Lorentzian manifold (M4, g) with signa-
ture (-,+,+,+). In general relativity the key role is played by Einstein’s equation

(3.1) S +
(
λ− r

2

)
g = kT,
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where S is the Ricci tensor of type (0, 2), r is the scalar curvature, λ is the cosmological
constant, k is the gravitational constant and T is the energy-momentum tensor of type
(0, 2). Let us consider the energy-momentum tensor T of a viscous fluid spacetime to
the following form [9]:

(3.2) T = pg + (σ + p)γ ⊗ γ + P,

where σ, p are respectively the energy density, isotropic pressure and P denotes the
anisotropic pressure tensor of the fluid, µ is the unit timelike vector field, called flow
vector field of the fluid associated with the 1-form γ given by g(X, µ) = γ(X) for all
X. Then by virtue of (3.2), (3.1) can be written as

(3.3) S =
(r

2
+ kp− λ

)
g + k(σ + p)γ ⊗ γ + P,

which, in view of (2.15) shows that the spacetime under consideration is a [(PCRS)4, ∇̃]
with µ as the unit timelike flow vector field of the fluid and P as the anisotropic pres-
sure tensor, where the 1-form α, associated with the torsion tensor τ , corresponding to
the semi-symmetric metric connection ∇̃ is closed. Hence we can state the following:

Theorem 3.1. A viscous fluid spacetime obeying Einstein’s equation with a cos-
mological constant is a connected non-compact Lorentzian [(PCRS)4, ∇̃] with closed
1-form α, associated with the torsion tensor τ , corresponding to the semi-symmetric
metric connection ∇̃, the generator µ as the flow vector field of the fluid and the
structure tensor P as the anisotropic pressure tensor of the fluid.

By virtue of (3.3), (2.15) yields

(3.4)
(r

2
+ kp− λ− a

)
g + (kσ + kp + 6a− r)γ ⊗ γ + (k − 2)P = 0.

From (3.4), we obtain by virtue of (2.7) that

(3.5) σ =
1
2k

[3r̃ − 2λ + 4a− 2(k − 2)b],

where b = P (µ, µ). Again (3.4) yields by virtue of (2.7) that

(3.6) p =
1
6k

[6λ− 3r̃ − 2(k + 4)a− 2(k − 2)b].

This leads to the following:

Theorem 3.2. In a viscous fluid [(PCRS)4, ∇̃] spacetime, with closed 1-form
α, associated with the torsion tensor τ , corresponding to the semi-symmetric metric
connection ∇̃, obeying Einstein’s equation with a cosmolgical constant λ none of the
isotropic pressure and energy density can be a constant.

We assume that p > 0. Then since σ > 0, we have from (3.5) and (3.6) that

λ <
3r̃ + 4a− 2(k − 2)b

2
and λ >

3r̃ + 2(k + 4)a + 2(k − 2)b
6

and hence

(3.7)
3r̃ + 2(k + 4)a + 2(k − 2)b

6
< λ <

3r̃ + 4a− 2(k − 2)b
2
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and

(3.8) r̃ >
k − 2

3
(a + 4b).

This leads to the following:

Theorem 3.3. In a viscous fluid [(PCRS)4, ∇̃] spacetime, with positive isotropic
pressure and closed 1-form α, associated with the torsion tensor τ , corresponding to
the semi-symmetric metric connection ∇̃, obeying Einstein’s equation, the cosmolgical
constant λ satisfies the relation (3.7) and the scalar curvature r̃ satisfies the rela-
tion (3.8).

We now investigate whether a viscous fluid [(PCRS)4, ∇̃] spacetime with µ is the
unit timelike flow vector field can admit heat flux or not. Therefore, if possible, let
the energy-momentum tensor T be of the following form [9]

T (X, Y ) = pg(X, Y ) + (σ + p)γ(X)γ(Y ) + γ(X)η(Y ) + γ(Y )η(X),

where η(X) = g(X, V ) for all vector fields X; V being the heat flux vector field; σ, p
are the energy density and isotropic pressure respectively. Thus we have g(µ, V ) = 0,
i.e., η(µ) = 0. Hence by virtue of the last relation, (2.7) and (2.15), (3.1) yields

2P (X, Y ) +
(

λ− r̃

2
− kp− 2a

)
g(X, Y ) + [r̃(3.9)

−k(p + σ)]γ(X)γ(Y )− k[γ(X)η(Y ) + γ(Y )η(X)] = 0.

Setting Y = µ in (3.9), we obtain

(3.10) 2P (X, µ) +
(

λ− 3
2
r̃ + kσ − 2a

)
γ(X) + kη(X) = 0.

Putting X = µ in (3.10), we obtain

2b−
(

λ− 3
2
r̃ + kσ − 2a

)
= 0.

Using the last relation in (3.10), we obtain

(3.11) η(X) = −2
k

[P (X, µ) + bγ(X)], since k 6= 0.

Thus we can state the following:

Theorem 3.4. A viscous fluid [(PCRS)4, ∇̃] spacetime, with closed 1-form α,
associated with the torsion tensor τ , corresponding to the semi-symmetric metric con-
nection ∇̃, obeying Einstein’s equation with a cosmolgical constant λ admits heat flux
given by (3.11) unless P (X, µ) + bγ(X) 6= 0 for all X.

From (3.11), it follows that

V = −2
k

(N + bI)µ,

where P (X, Y ) = g(NX,Y ) for all vector fields X, Y . This implies that V = 0 if and
only if −b is the eigenvalue of P corresponding to the eigenvector µ. Hence we can
state the following:
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Theorem 3.5. A viscous fluid [(PCRS)4, ∇̃] spacetime, with closed 1-form α, as-
sociated with the torsion tensor τ , corresponding to the semi-symmetric metric connec-
tion ∇̃, can not admit heat flux if and only if −b is the eigenvalue of P corresponding
to the eigenvector µ.
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