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On the Open Geodetic Number of a Graph

A.P. Santhakumaran a and T. Kumari Latha b

Abstract. For a connected graph G of order n, a set S ⊆ V (G) is a geodetic set

of G if each vertex v ∈ V (G) lies on a x-y geodesic for some elements x and y in S.

The minimum cardinality of a geodetic set of G is defined as the geodetic number of
G, denoted by g(G). A geodetic set of cardinality g(G) is called a g-set of G. A set

S of vertices of a connected graph G is an open geodetic set of G if for each vertex
v in G, either 1) v is an extreme vertex of G and v ∈ S or 2) v is an internal vertex

of a x-y geodesic for some x, y ∈ S. An open geodetic set of minimum cardinality

is a minimum open geodetic set and this cardinality is the open geodetic number,
og(G). The open geodetic numbers of certain standard graphs are determined.

Connected graphs with open geodetic number 2 are characterized. For positive

integers r, d and l > 2 with r < d 6 2r, there exists a connected graph of radius
r, diameter d and open geodetic number l. It is proved that for a tree T of order

n and diameter d, og(T ) = n − d + 1 if and only if T is a caterpillar. Also for

integers n, d and k with 2 6 d < n, 2 6 k < n and n− d− k + 1 > 0, there exists
a graph G of order n, diameter d and open geodetic number k. It is also proved

that og(G)− 2 6 og(G′) 6 og(G) + 1, where G′ is the graph obtained from G by

adding a pendant edge to G.

1. Introduction

By a graph G = (V,E) we mean a finite, undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m respectively.
For basic graph theoreotic terminology we refer to Harary [6]. The distance d(u, v)
between two vertices u and v in a connected graph G is the length of a shortest u-v
path in G. An u-v path of length d(u, v) is called an u-v geodesic. It is known that this
distance is a metric on the vertex set V (G). For any vertex v of G, the eccentricity e(v)
of v is the distance between v and a vertex farthest from v. The minimum eccentricity
among the vertices of G is the radius, rad G and the maximum eccentricity is its
diameter, diam G of G. The neighborhood of a vertex v is the set N(v) consisting of
all vertices which are adjacent with v. A vertex v is an extreme vertex of G if the
subgraph induced by its neighbors is complete.For a cut vertex v in a connected graph
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G and a component H of G − v, the subgraph H and the vertex v together with all
edges joining v and V (H) is called a branch of G at v. A geodetic set of G is a set
S ⊆ V (G) such that every vertex of G is contained in a geodesic joining some pair of
vertices in S. The geodetic number g(G) of G is the cardinality of a minimum geodetic
set. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P and x is called an
internal vertex of P if x 6= u, v. If x is an internal vertex of an u− v geodesic, we also
use the notation x ∈ I(u, v). A set S of vertices of a connected graph G is an open
geodetic set if for each vertex v in G, either (1)v is an extreme vertex of G and v ∈ S
or (2) v is an internal vertex of a x-y geodesic for some x, y ∈ S. An open geodetic
set of minimum cardinality is a minimum open geodetic set and this cardinality is
the open geodetic number, og(G). Certainly, every open geodetic set is a geodetic set
and so g(G) 6 og(G). The geodetic number of a graph was introduced in [1, 4, 7]
and further studied in [2, 3]. The open geodetic number of a graph was introduced
and studied in [5, 8] in the name open geodomination in graphs. Throughout the
following, G denotes a connected graph with at least two vertices.

The following theorems are used in the sequel.

Theorem 1.1. [6] A vertex v of a connected graph G is a cut vertex of G if and
only if there exist vertices u and w distinct from v such that v lies on every u-w path
of G.

Theorem 1.2. [5] If a nontrivial connected graph G contains no extreme vertices,
then og(G) > 4.

2. Open geodetic number of a graph

Definition 2.1. [5] A set S of vertices in a connected graph G is an open geodetic
set if for each vertex v in G, either (1) v is an extreme vertex of G and v ∈ S or (2)
v is an internal vertex of an x-y geodesic for some x, y ∈ S. An open geodetic set of
minimum cardinality is a minimum open geodetic set and this cardinality is the open
geodetic number og(G) of G.

Example 2.1. For the graph G in Figure 2.1, it is easily checked that neither a 2-
element subset nor a 3-element subset is an open geodetic set. Since S = {v1, v2, v3, v5}
is a minimum open geodetic set of G, og(G) = 4. Also, S = {v1, v2, v3, v5}, S′ =
{v1, v2, v3, v4} and S′′ = {v1, v2, v3, v6} are minimum open geodetic sets. Thus, there
can be more than one minimum open geodetic set for a connected graph.
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Remark 2.1. For the graph G given in Figure 2.1, S = {v1, v3} is a minimum
geodetic set so that g(G) = 2. Thus the geodetic number and the open geodetic number
of a graph are different.

Theorem 2.1. For any connected graph G of order n, 2 6 og(G) 6 n.

Proof. An open geodetic set needs at least two vertices and so og(G) > 2. Also
the set of all vertices of G is an open geodetic set of G so that og(G) 6 n. Thus
2 6 og(G) 6 n. �

Remark 2.2. The bounds in Theorem 2.1 are sharp. For the complete graph
Kn(n > 2), og(Kn) = n. The set of two end vertices of a path Pn(n > 2) is its unique
minimum open geodetic set so that og(Pn) = 2. Thus the complete graph Kn has
the largest possible open geodetic number n and that the nontrivial paths have the
smallest open geodetic number 2.

The following theorem is obvious from the definition of open geodetic set.

Theorem 2.2. Every open geodetic set of a graph G contains its extreme vertices.
Also, if the set S of all extreme vertices of G is an open geodetic set, then S is the
unique minimum open geodetic set of G.

Corollary 2.1. For the complete graph Kn(n > 2), og(Kn) = n.

Remark 2.3. If og(G) = n for a connected graph G of order n, then it is not
true that G is complete. It is clear that for the cycle C4, og(C4) = 4. Also for the
house graph G given in Figure 2.2 and for the graph G given in Figure 2.3, og(G) = 5
and og(G) = 6 respectively. It is to be noted that for a graph G of order n, we have
g(G) = n if and only if G = Kn.
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Theorem 2.3. For the complete bipartite graph Km,n(2 6 m 6 n),
og(Km,n) = 4.

Proof. Let G = Km,n. Let U = {u1, u2, . . . , um} and W = {w1, w2, . . . , wn} be
the partite sets of G. Since G contains no extreme vertices, by Theorem 1.2, og(G) > 4.
Let S be any set of four vertices formed by taking two vertices from each of U and W.
Then it is clear that S is an open geodetic set of G and so og(G) = 4. �
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Theorem 2.4. For the wheel Wn = K1 + Cn−1(n > 5), og(Wn) = n− 1.

Proof. Let Wn = K1 + Cn−1(n > 5) with x the vertex of K1 and V (Cn−1) =
{v1, v2, . . . , vn−1}. It is clear that x does not belong to any minimum open geodetic
set of Wn. If S is a subset of V (Cn−1) of cardinality at most n−2, let vi(1 6 i 6 n−1)
be such that vi /∈ S and vi+1 ∈ S. Then vi+1 is not an internal vertex of any geodesic
joining a pair of vertices in S. Hence S is not an open geodetic set of Wn. Since
W = {v1, v2, . . . , vn−1} is an open geodetic set of Wn, it follows that W is the unique
minimum open geodetic set of Wn and so og(Wn) = n− 1. �

Theorem 2.5. For the cycle Cn(n > 4),

og(Cn) =
{

4 if n is even
5 if n is odd.

Proof. By Theorem 1.2, og(Cn) > 4. First, let n = 2k and the cycle be C2k :
v1, v2, . . . , vk, . . . , v2k, v1. It is clear that the set S = {v1, vk, vk+1, v2k} is a minimum
open geodetic set of C2k so that og(C2k) = 4. Now, let n = 2k + 1 and the cycle be
C2k+1 : v1, v2, . . . , vk, . . . , v2k, v2k+1, v1. Let S′ = {x, y, u, v} be a set of four vertices
of C2k+1. We consider two cases.
Case 1. S contains two antipodal vertices, say u, v. Then u /∈ I(t, v) and v /∈ I(t, u)
for t = x, y. Also, it is clear that either u /∈ I(x, y) or v /∈ I(x, y). Hence S′ is not an
open geodetic set of C2k+1.
Case 2. No two vertices of S are antipodal.

Let x′, x′′ be the antipodal vertices of x. Then x′, x′′ /∈ S′. Let P be the x-x′

geodesic and Q the x-x′′ geodesic in C2k+1. If y, u, v ∈ V (P ) or y, u, v ∈ V (Q), then S′

is not an open geodetic set of C2k+1. Let y ∈ V (P ) and u, v ∈ V (Q). Then y /∈ I(s, t)
for s, t ∈ S′ and so S′ is not an open geodetic set of C2k+1. Thus og(C2k+1) > 5. It is
clear that S = {v1, v2, vk+1, vk+2, vk+3} is a minimum open geodetic set of C2k+1 and
so og(C2k+1) = 5. �

Theorem 2.6. Let G be a connected graph with cut vertices. Then every open
geodetic set of G contains at least one vertex from each component of G.

Proof. Let v be a cut vertex of G. Let G1, G2, . . . , Gk (k > 2) be the components
of G− v. Let S be an open geodetic set of G. Suppose that S contains no vertex from
a component say Gi(1 6 i 6 k). Let u be a vertex of Gi. Then by Theorem 2.2, u is
not an extreme vertex of G. Since S is an open geodetic set of G, there exist vertices
x, y ∈ S such that u lies on a x-y geodesic P : x = u0, u1, u2, . . . , u, . . . , ul = y such
that u 6= x, y. By Theorem 1.1, the x-u subpath of P and the u-y subpath of P both
contain v. Hence it follows that P is not a path, contrary to assumption. �

Corollary 2.2. Let G be a connected graph with cut vertices and let S be an
open geodetic set of G. Then every branch of G contains an element of S.

Theorem 2.7. Let G be a connected graph with cut vertices and S a minimum
open geodetic set of G. Then no cut vertex of G belongs to S.
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Proof. Let S be any minimum open geodetic set of G. Let v ∈ S. We prove that
v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let G1, G2, . . . , Gk

(k > 2) be the components of G − v. Then v is adjacent to at least one vertex of
each Gi for 1 6 i 6 k. Let S′ = S − {v}. We show that S′ is an open geodetic set
of G. Let x be a vertex of G. If x is an extreme vertex of G, then x 6= v and so by
Theorem 2.2, x ∈ S′. If x is not an extreme vertex, then, since S is an open geodetic
set of G, x ∈ I(u, w) for some u, w ∈ S. If v 6= u, w, then u, w ∈ S′. If v = u, then
v 6= w. Assume without loss of generality that w ∈ G1. By Theorem 2.6, S contains
a vertex w′ from Gi (2 6 i 6 k). Then w′ 6= v. Since v is a cut vertex of G, we have
I(w, u) ⊆ I(w,w′). Hence x ∈ I(w,w′), where w,w′ ∈ S′. Thus S′ is an open geodetic
set of G. This contradicts that S is a minimum open geodetic set of G. �

Remark 2.4. If og(G) = n for a connected graph of order n, it follows from
Theorem 2.7 that G is a block.

We leave the following problem as an open question.

Problem 2.8. Characterize the class of graphs of order n for which og(G) = n.

Theorem 2.9. For any tree T, the open geodetic number og(T ) equals the number
of end vertices of T. In fact, the set of all end vertices of T is the unique minimum
open geodetic set of T.

Proof. This follows from Theorems 2.2 and 2.7. �

Theorem 2.10. For every pair, k, n of integers with 2 6 k 6 n, there exists a
connected graph G of order n such that og(G) = k.

Proof. For k = n, let G = Kn. Then the result follows from Corollary 2.1. For
2 6 k < n, let G be a tree of order n with k end vertices. Then the result follows from
the Theorem 2.9. �

Theorem 2.11. For a connected graph G, og(G) = 2 if and only if there exist
extreme peripheral vertices u and v such that every vertex of G is on a diametral path
joining u and v.

Proof. Let u and v be extreme peripheral vertices of G such that each vertex of
G is on a diametral path P joining u and v. Then S = {u, v} is an open geodetic set
of G and so og(G) = 2. Conversely, let og(G) = 2 and let S = {u, v} be a minimum
open geodetic set of G. Necessarily, both u and v are extreme vertices of G. We claim
that d(u, v) = d(G), where d(G) dentoes the diameter of G. If d(u, v) < d(G), then
let x and y be two vertices of G such that d(x, y) = d(G). Now, it follows that x and
y lie on distinct geodesics joining u and v. Hence

d(u, v) = d(u, x) + d(x, v)(2.1)

and d(u, v) = d(u, y) + d(y, v).(2.2)

By the triangle inequality,

(2.3) d(x, y) 6 d(x, u) + d(u, y).
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Since d(u, v) < d(x, y), (3) becomes

(2.4) d(u, v) < d(x, u) + d(u, y).

Using (4) in (1), we get d(x, v) < d(x, u) + d(u, y)− d(u, x) = d(u, y). Thus,

(2.5) d(x, v) < d(u, y).

Also by triangle inequality, we have

(2.6) d(x, y) 6 d(x, v) + d(v, y).

Now, using (2) and (5),(6) becomes d(x, y) < d(u, y)+d(v, y) = d(u, v). Thus, d(G) <
d(u, v), which is a contradiction. Hence d(u, v) = d(G) and since S = {u, v} is a
minimum open geodetic set of G, it follows that each vertex of G is on a diameteral
path joining u and v. �

Theorem 2.12. Let G be a non complete connected graph of order n. If G contains
a vertex of degree n− 1, then og(G) 6 n− 1.

Proof. Let x be a vertex of degree n − 1. Since G is not complete, x is not an
extreme vertex. Let S = V (G) − {x}. We show that S is an open geodetic set of
G. Since x is not extreme, there exist nonadjacent neighbors y and z of x. Hence it
follows that x ∈ I(y, z), where y, z ∈ S. Now, let u ∈ S. Suppose that u is not an
extreme vertex of G. If 〈N(u)〉 is complete in 〈S〉 , then 〈N(u) ∪ {x}〉 is complete in G
and so u is an extreme vertex of G, which is not so. Hence 〈N(u)〉 is not complete in
〈S〉 . This means that there exist nonadjacent neighbors v, w of u such that v, w ∈ S.
This, in turn, shows that u ∈ I(v, w) and hence S is an open geodetic set of G. Thus
og(G) 6 |S| = n− 1. �

Remark 2.5. The bound in Theorem 2.12 can be strict. For the graph G in Figure
2.4, S = {v2, v4, v5} is a minimum open geodetic set of G so that og(G) = 3 < 4.
Also, the bound in Theorem 2.12 is sharp. For the wheel Wn = K1 + Cn−1(n > 5),
og(Wn) = n− 1.
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Theorem 2.13. For any tree T of order n > 3, og(T ) = n − 1 if and only if T is
the star K1,n−1.

Proof. This follows from Theorem 2.9. �

In the following theorem, we construct a class of graphs G of order n for which
og(G) = n− 1.
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Theorem 2.14. Let Gi(1 6 i 6 k) be vertex disjoint connected graphs of order
ni, where k > 2. If og(Gi) = ni, then og(K1 + ∪Gi) =

∑
ni − 1.

Proof. Let G = K1 +∪Gi. Let K1 = {v}. By Theorem 2.12, og(G) 6
∑

ni − 1.
Suppose that og(G) <

∑
ni − 1. Let S be a minimum open geodetic set of G. Then

|S| 6
∑

ni − 2. Since v is a cut vertex of G, v /∈ S. Also, there exists a vi ∈ V (Gi)
such that vi /∈ S. Let Si = S ∩ V (Gi)(1 6 i 6 k). Then |Si| 6 ni − 1 for each i. We
show that Si is an open geodetic set of Gi. Let x ∈ V (Gi). Then x ∈ V (G). It is clear
that a vertex is extreme in Gi if and only if it is extreme in G. Hence, if x is extreme
in Gi, then x ∈ S and so x ∈ Si. If x is non-extreme in Gi, then, since S is an open
geodetic set of G, we have x ∈ IG(y, z) for some y, z ∈ S. Since d(y, z) = 2, it follows
that y, z ∈ V (Gi). Since x, y, z ∈ V (Gi), x ∈ IGi

(y, z) with y, z ∈ Si. Hence Si is an
open geodetic set of Gi, which is a contradiction to og(Gi) = ni. �

Now, we leave the following problem as an open question.

Problem 2.15. Characterize the class of graphs G of order n for which og(G) =
n− 1.

For every connected graph, rad G 6 diam G 6 2 rad G. Ostrand [9] showed
that every two positive integers a and b with a 6 b 6 2a are realizable as the radius
and diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be
extended so that the open geodetic number can also be prescribed, when a < b 6 2a.

Theorem 2.16. For positive integers r, d and l > 2 with r < d 6 2r, there exists
a connected graph G with rad G = r, diam G = d and og(G) = l.

Proof. When r = 1, let G = K1,l. Then d = 2 and by Theorem 2.9, og(G) = l.
For r > 2, we construct a graph G with the desired properties as follows:

Let C2r : v1, v2, . . . , v2r, v1 be a cycle of order 2r and let Pd−r+1 : u0, u1, u2,
. . . , ud−r be a path of order d − r + 1. Let H be a graph obtained from C2r and
Pd−r+1 by identifying v1 in C2r and u0 in Pd−r+1. Let G be the graph obtained from
H by adding l − 2 new vertices w1, w2, . . . , wl−2 to H and joining each vertex wi

(1 6 i 6 l − 2) to the vertex ud−r−1 and also joining the edge vrvr+2. The graph G
is shown in Figure 2.5. Then rad G = r and diam G = d. The graph G has l − 1
end vertices. Let S = {w1, w2, . . . , wl−2, ud−r, vr+1}. Then S is the set of all extreme
vertices of G and it is clear that S is an open geodetic set of G and so by Theorem
2.2, og(G) = l.
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3. The open geodetic number and diameter of a graph

For a graph G of order n and diameter d, it is proved in [3] that g(G) 6 n−d+1.
However, in the case of og(G), it happens that og(G) < n− d + 1, og(G) = n− d + 1
and og(G) > n − d + 1. For the graph G given in Figure 3.1, it is clear that {v3, v6}
is a minimum open geodetic set of G and so og(G) = 2. Since n = 6 and d = 4, we
have n − d + 1 = 3 and so og(G) < n − d + 1. For the graph G given in Figure 3.2,
it is clear that {v1, v2, v3, v4} is a minimum open geodetic set of G and so og(G) = 4.
Since n = 5 and d = 2, we have n − d + 1 = 4 and so og(G) = n − d + 1. Also, for
the graph G given in Figure 3.3, it is clear that {v1, v2, v5, v6, v7} is a minimum open
geodetic set of G and so og(G) = 5. Since n = 7 and d = 4, we have n− d + 1 = 4 and
so og(G) > n− d + 1. s
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Theorem 3.1. For every nontrivial tree T of order n, og(T ) = n − d + 1 if and
only if T is a caterpillar.

Proof. Let T be a nontrivial tree. Let d(u, v) = d and P : u = v0, v1, v2, . . . ,
vd−1, vd = v be a diametral path. Let k be the number of end vertices of T and l the
number of internal vertices of T other than v1, v2, . . . , vd−1. Then n = d − 1 + k + l.
By Theorem 2.2, og(T ) = k and so og(T ) = n− d− l + 1. Hence og(T ) = n− d + 1 if
and only if l = 0, if and only if all the internal vertices of T lie on the diametral path
P, if and only if T is a caterpillar. �

Now, we prove the following realization result.

Theorem 3.2. If n, d and k are integers such that 2 6 d < n, 2 6 k < n and
n− d− k + 1 > 0, then there exists a graph G of order n, diameter d and og(G) = k.

Proof. Let Pd : u0, u1, u2, . . . , ud be a path of length d. First, let n−d−k+1 > 1.
Let Kn−d−k+1 be the complete graph with vertex set {w1, w2, . . . , wn−d−k+1}. Let H
be the graph obtained from Pd and Kn−d−k+1 by joining each vertex of Kn−d−k+1 to
ui for i = 0, 1, 2. Then we add k− 2 new vertices v1, v2, . . . , vk−2 to H by joining each
vertex vi(1 6 i 6 k − 2) to the vertex u1 of Pd and obtain the graph G of Figure 3.4.
Then G has order n and diameter d. Let S = {u0, ud, v1, v2, . . . , vk−2} be the set of
extreme vertices of G. Then it is clear that S is an open geodetic set of G and so by
Theorem 2.2, og(G) = k.
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For n− d− k + 1 = 0, let G be the tree given in Figure 3.5. Then it is clear that
G has diameter d, order d + k − 1 = n and og(G) = k.
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4. Open geodetic number and addition of a pendant edge

A fundamental question in graph theory concerns how the value of a parameter
is affected by making a small change in the graph. In this section, we study how the
open geodetic number of a graph is affected by the addition of a pendant edge.

Theorem 4.1. If G′ is a graph obtained by adding a pendant edge to a connected
graph G, then og(G)− 2 6 og(G′) 6 og(G) + 1.

Proof. Let G′ be the graph obtained from G by adding a pendant edge uv, where
u is not a vertex of G and v is a vertex of G. Let S′ be a minimum open geodetic set
of G′. Then og(G′) = |S′|. By Theorem 2.2 u ∈ S′ and by Theorem 2.7 v /∈ S′. We
consider two cases.
Case 1. v is an extreme vertex of G.

Let S = (S′ − {u}) ∪ {v}. Then |S| = |S′| = og(G′). We show that S is an open
geodetic set of G. Let x be a vertex of G. Suppose that x is an extreme vertex of G.
If x = v, then x ∈ S. if x 6= v, then x is also an extreme vertex of G′ and so x ∈ S′.
Since x 6= u, v, we have x ∈ S. So, assume that x is not an extreme vertex of G. Then
x 6= v. Since S′ is an open geodetic set of G′, x ∈ I(y, z), where y, z ∈ S′. If u 6= y, z,
then x ∈ I(y, z) with y, z ∈ S. If u = y or u = z, say y = u, then, since x 6= v it
follows that x ∈ I(v, z), where v, z ∈ S. Thus S is an open geodetic set of G and so
og(G) 6 |S| = |S′| = og(G′).
Case 2. v is not an extreme vertex of G.

Then there exist nonadjacent neighbors v′, v′′ of v in G and it follows that v ∈
I(v′, v′′). Let S = (S′ − {u}) ∪ {v, v′, v′′}. Then |S| 6 |S′| + 2. We show that S is an
open geodetic set of G. Let x be a vertex of G such that x 6= v. Suppose that x is an
extreme vertex of G. Then x is also an extreme vertex of G′ and so x ∈ S′. Since x 6= u,
we have x ∈ S. So, assume that x is not an extreme vertex of G. Since x 6= u, it is clear
that x is also not an extreme vertex of G′ and so x ∈ I(y, z) with y, z ∈ S′. Then, as
in Case 1, S is an open geodetic set of G so that og(G) 6 |S| 6 |S′|+ 2 = og(G′) + 2.
Thus in both cases, og(G)− 2 6 og(G′).
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For the upper bound, let S be a minimum open geodetic set of G. Since u is an
extreme vertex of G′, S∪{u} is an open geodetic set of G′. Hence og(G′) 6 |S∪{u}| =
og(G) + 1. �

Remark 4.1. The bounds in Theorem 4.1 are sharp. For the graph G given in
Figure 4.1, it is easily seen that S = {v1, v3, v4, v5} is a minimum open geodetic set of
G so that og(G) = 4. Let G′ be the graph in Figure 4.2 obtained from G by adding
the pendant edge v5v6. Then S′ = {v3, v6} is a minimum open geodetic set of G′ so
that og(G′) = 3. Thus og(G) − 2 = og(G′). For any path G of length atleast 2, we
have og(G) = 2. Let G′ be the tree obtained from G by adding the pendant edge at
a cut vertex of G. Then og(G′) = 3. Thus og(G′) = og(G) + 1. r
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Figure 4.1 Figure 4.2

Theorem 4.2. If G′ is a graph obtained from a connected graph G by adding a
pendant edge uv, where u is not a vertex of G and v is a vertex of G and if og(G′) =
og(G) + 1, then v does not belong to any minimum open geodetic set of G.

Proof. Assume that v belongs to some minimum open geodetic set S of G. Let
S′ = (S − {v})∪ {u}. Then |S| = |S′|. We show that S′ is an open geodetic set of G′.
Let x ∈ V (G′). Suppose that x is an extreme vertex of G′. Then x 6= v. If x = u, then
by the definition of S′, we have x ∈ S′. If x 6= u, then x is an extreme vertex of G
and so x ∈ S. Hence it follows that x ∈ S′. If x is not an extreme vertex of G′, then
x 6= u. Hence x ∈ V (G). If x = v, then x ∈ I(y, u) for any y ∈ S with y 6= x. If x 6= v,
then, since S is an open geodetic set of G, x ∈ I(y, z), where y, z ∈ S. If v 6= y, z, then
y, z ∈ S′. If v = y or v = z, say y = v, then x ∈ I(v, z), where v, z ∈ S. Since v is a
cut vertex of G′, it follows that x ∈ I(u, z) with u, z ∈ S′. Thus S′ is an open geodetic
set of G′. Hence og(G′) 6 |S′| = |S| = og(G), which is a contradiction. �

Remark 4.2. The converse of Theorem 4.2 is false. For the graph G given in
Figure 4.3, it is easily seen that S = {v2, v4, v6, v8} is the unique minimum open
geodetic set so that og(G) = 4. Let G′ be the graph given in Figure 4.4, obtained from
G by adding the pendent edge v7v9. Then S′ = {v2, v4, v9} is the unique minimum
open geodetic set of G′ so that og(G′) = 3. Thus og(G′) 6= og(G) + 1 and v7 does not
belong to S.
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We leave the following problem as an open question.

Problem 4.3. Characterize the class of graphs G for which og(G′) = og(G) + 1,
where G′ is the graph obtained from G by adding a pendant edge to G.
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