SCIENTIA Series A: *Mathematical Sciences*, Vol. 21 (2011), 17–24 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2011

Approximate Amenability of Matrix Algebras

A. Jabbari ^a and H. Hossein Zadeh ^b

ABSTRACT. In this paper, we study approximate amenability of matrix algebras. We show that every derivation from $M_n(\mathcal{A})$ into $M_n(E^{(m)})$ is the sum of an inner derivation and a derivation induced by a derivation from \mathcal{A} into $E^{(m)}$, where \mathcal{A} is a Banach algebra and E is a Banach \mathcal{A} -bimodule. By using this, we provide many results in approximate and permanent weak amenability of these algebras.

1. Introduction

The notion of an approximate amenability of Banach algebras was defined by Ghahramani and Loy in [7] and developed in [3, 4, 5, 8, 9]. Let \mathcal{A} be a Banach algebra, and suppose that X is a Banach \mathcal{A} -bimodule such that the following statements hold $\|a.x\| \leq \|a\| \|x\|$ and $\|x.a\| \leq \|a\| \|x\|$

for all $a \in \mathcal{A}$, and $x \in X$. We can define right and left actions of \mathcal{A} on dual space X^* of X via,

$$\langle x, \lambda.a \rangle = \langle a.x, \lambda \rangle \qquad \text{ and } \qquad \langle x, a.\lambda \rangle = \langle x.a, \lambda \rangle,$$

for all $a \in \mathcal{A}, x \in X$ and $\lambda \in X^*$.

Similarly, the second dual X^{**} of X become a Banach $\mathcal A\text{-bimodule}$ under the following actions

$$\langle \lambda, a.\Lambda \rangle = \langle \lambda.a, \Lambda \rangle$$
 and $\langle \lambda, \Lambda.a \rangle = \langle b.\lambda, \Lambda \rangle$,

for all $a \in \mathcal{A}, x \in X, \lambda \in X^*$, and $\Lambda \in X^{**}$.

Throughout, if \mathcal{A} is a Banach algebra we write \mathcal{A}^{\sharp} for the unitization of \mathcal{A} . Suppose that X is a Banach \mathcal{A} -bimodule. A derivation $D : \mathcal{A} \to X$ is a linear map which satisfies D(ab) = a.D(b) + D(a).b for all $a, b \in \mathcal{A}$. The derivation δ is said to be inner if there exist $x \in X$ such that $\delta(a) = \delta_x(a) = a.x - x.a$ for all $a \in \mathcal{A}$. Denoting the linear space of bounded derivations from \mathcal{A} into X by $Z^1(\mathcal{A}, X)$ and the linear subspace of inner derivations by $N^1(\mathcal{A}, X)$, we consider the quotiont space $H^1(\mathcal{A}, X) = Z^1(\mathcal{A}, X)/N^1(\mathcal{A}, X)$, called the first Hochschild cohomology group of \mathcal{A} with coefficients in X. The Banach algebra \mathcal{A} is said to be amenable if $H^1(\mathcal{A}, X^*) = \{0\}$ for all Banach \mathcal{A} -bimodule X. Banach algebra \mathcal{A} is said to be

²⁰⁰⁰ Mathematics Subject Classification. Primary 46H20; Secondary 43A20.

Key words and phrases. amenability, approximate amenability, ℓ^1 -Munn algebra.

n-weakly amenable if every continuous derivation from \mathcal{A} into the *n*-th dual space $\mathcal{A}^{(n)}$ is inner. The Banach algebra \mathcal{A} is said to be permanently weakly amenable if it is *n*-weakly amenable for all $n \in \mathbb{N}$.

Let \mathcal{A} be a Banach algebra. The Banach algebra \mathcal{A} is called approximately amenable, if for every Banach \mathcal{A} -bimodule X and every bounded derivation $D : \mathcal{A} \to X^*$ there exists a net (D_{α}) of inner derivations such that $\lim_{\alpha} D_{\alpha}(a) = D(a)$ for all $a \in \mathcal{A}$.

Let \mathcal{A} be a Banach algebra. An approximate diagonal for \mathcal{A} is a net (M_i) in $\mathcal{A} \otimes \mathcal{A}$ such that, for each $a \in \mathcal{A}$,

$$a.M_i - M_i.a \to 0$$
 and $a\pi(M_i) \to a$.

Let \mathcal{A} be a Banach algebra. We say that \mathcal{A} is pseudo-amenable if it has an approximate diagonal.

In this paper, at first we study approximate and weak amenability of $M_n(\mathcal{A})$ and after that we consider approximate amenability of Munn-algebra $\mathfrak{LM}(\mathfrak{A}, P)$.

2. Approximate Amenability of Matrix Algebras

2.1. Approximate and Weak Amenability of $M_n(\mathcal{A})$.

In Example 6.2 of [7], approximate amenability of algebra M_n of $n \times n$ matrices studied. In this section we investigate approximate amenability of algebra $M_n(\mathcal{A})$, which \mathcal{A} is a Banach algebra and all elements of $M_n(\mathcal{A})$ are in \mathcal{A} . It is clear that $M_n(\mathcal{A})$ is operator space.

Let E be a unital Banach A-bimodule. $M_n(E)$ will be Banach $M_n(A)$ -bimodule with the following actions

$$(a.x)_{ij} = \sum_{s=1}^{n} a_{is}.x_{sj}$$
 and $(x.a)_{ij} = \sum_{s=1}^{n} x_{is}.a_{sj}$,

for each $a = (a_{ij}) \in M_n(\mathcal{A})$ and $x = (x_{ij}) \in M_n(E)$. We identify the dual of $M_n(E)$ with $M_n(E^*)$ and we have

$$(a.\Lambda)_{ij} = \sum_{s=1}^{n} a_{js}.\lambda_{is}, \quad (\Lambda.a)_{ij} = \sum_{s=1}^{n} \lambda_{sj}.a_{si} \quad \text{and} \quad \langle a,\Lambda \rangle = \sum_{i,j=1}^{n} a_{ij}.\lambda_{ij},$$

for each $a = (a_{ij}) \in M_n(\mathcal{A})$ and $\Lambda = (\lambda_{ij}) \in M_n(E^*)$. Let $D : \mathcal{A} \longrightarrow E^*$ be a continuous derivation, then D induces a derivation as a $\mathfrak{D} : M_n(\mathcal{A}) \longrightarrow M_n(E^*)$ by $\mathfrak{D}(a_{ij}) = (D(a_{ij}))$ or $\mathfrak{D}(a_{ij}) = (D(a_{ji}))$. E_{ij} is a $n \times n$ matrix, such that whose $(i, j)^{th}$ entry is 1 and other entries are 0. For each $a \in \mathcal{A}$, the matrix $a \otimes E_{ij}$ is a matrix whose $(i, j)^{th}$ entry is a and other entries are 0. The proof of the following Lemma is similar to the Theorem of [1].

LEMMA 2.1. Let \mathcal{A} be a unital Banach algebra, and E be a Banach \mathcal{A} -bimodule. Then every derivation from $M_n(\mathcal{A})$ into $M_n(E^{(m)})$ ($E^{(m)}$ is the m-th dual of E) is the sum of an inner derivation and a derivation induced by a derivation from \mathcal{A} into $E^{(m)}$.

PROOF. By above argument, we have

$$((\lambda_{ij})(a_{ij}))_{kl} = \sum_{s=1}^n \lambda_{sl} a_{sk} \quad and \quad ((a_{ij})(\lambda_{ij}))_{kl} = \sum_{s=1}^n a_{ls} \lambda_{ks},$$

for each $a = (a_{ij}) \in M_n(\mathcal{A})$ and $(\lambda_{ij}) \in M_n(E^*)$. Then by use of the above relations for each $\lambda \in E^*, (\Lambda_{ij}) \in M_n(E^{**}), (a_{ij}) \in M_n(\mathcal{A})$, and k and l, we have

$$\langle \lambda \otimes E_{kl}, (\Lambda_{ij}).(a_{ij}) \rangle = \langle (a_{ij}).(\lambda \otimes E_{kl}), (\Lambda_{ij}) \rangle = \langle \sum_{s=1}^{n} (a_{sl}.\lambda \otimes E_{kl}), (\Lambda_{ij}) \rangle$$
$$= \sum_{s=1}^{n} \langle a_{sl}.\lambda, \Lambda_{ks} \rangle = \langle \lambda, \sum_{s=1}^{n} \Lambda_{ks}.a_{sl} \rangle.$$

Thus for every $\lambda \in E^*$,

$$((\Lambda_{ij}).(a_{ij}))_{kl} = \sum_{s=1}^{n} \Lambda_{ks}.a_{sl},$$

and similarly for every $\lambda \in E^*$,

$$((a_{ij}).(\Lambda_{ij}))_{kl} = \sum_{s=1}^{n} a_{ks}.\Lambda_{sl}.$$

Similarly, the following inequalities hold for each positive integer number m, when m is odd and is even, respectively, for each $(a_{ij}) \in M_n(\mathcal{A})$ and $(\lambda_{ij}) \in M_n(E^{(m)})$

$$((\lambda_{ij})(a_{ij}))_{kl} = \sum_{s=1}^{n} \lambda_{sl} a_{sk} \quad \text{and} \quad ((a_{ij})(\lambda_{ij}))_{kl} = \sum_{s=1}^{n} a_{ls} \lambda_{ks}$$

$$(2.1)$$

and

$$((\lambda_{ij})(a_{ij}))_{kl} = \sum_{s=1}^n \lambda_{ks} \cdot a_{sl} \quad \text{and} \quad ((a_{ij})(\lambda_{ij}))_{kl} = \sum_{s=1}^n a_{ks} \lambda_{sl}.$$

Suppose that $\mathfrak{D}: M_n(\mathcal{A}) \longrightarrow M_n(E^{(m)})$ is a continuous derivation. For each i, j and k, l, define $D_{ij}^{kl}: \mathcal{A} \longrightarrow E^{(m)}$ by $D_{ij}^{kl}(a) := (\mathfrak{D}(a \otimes E_{ij}))_{kl}$, for each $a \in \mathcal{A}$. Let m be an odd positive number, for each $a, b \in \mathcal{A}$ and each $1 \leq t \leq n$, with easy calculations we have

$$(\mathfrak{D}(a \otimes E_{it})(b \otimes E_{tj}))_{kl} = \sum_{s=1}^{n} (\mathfrak{D}(a \otimes E_{it}))_{sl}(b \otimes E_{tj})_{sk}$$
$$= \sum_{s=1}^{n} D_{it}^{sl}(a) . b\delta_{ts}\delta_{jk} = D_{it}^{tl}(a) . b\delta_{jk}$$

and

$$((a \otimes E_{it})\mathfrak{D}(b \otimes E_{tj}))_{kl} = \sum_{s=1}^{n} (a \otimes E_{it})_{ls} (\mathfrak{D}(b \otimes E_{tj}))_{ks}$$
$$= \sum_{s=1}^{n} a \delta_{il} \delta_{ts} . D_{tj}^{ks}(b) = a \delta_{il} . D_{tj}^{kt}(b).$$

Then

$$D_{ij}^{kl}(ab) = a\delta_{il} D_{tj}^{kt}(b) + D_{it}^{tl}(a) . b\delta_{jk}.$$
(2.2)

Thus, D_{ij}^{kl} is a derivation from \mathcal{A} into $E^{(m)}$. From 2.1 and 2.2, the following equalities hold

$$D_{ij}^{jl}(a) = D_{ii}^{il}(1).a \quad (i \neq l), \qquad D_{ij}^{ki}(a) = a.D_{jj}^{kj}(1) \quad (j \neq k),$$

and by suitable choices of t in each case,

$$\begin{aligned} D_{jj}^{jj}(a) &= D_{ji}^{ij}(1).a + D_{ij}^{ji}(a) = D_{ji}^{ij}(1).a + D_{ll}^{li}(1).a + D_{lj}^{ll}(a) \\ &= D_{ji}^{ij}(1).a + D_{ll}^{li}(1).a + D_{ll}^{ll}(a) + a.D_{lj}^{jl}(1), \end{aligned}$$

and so

$$D_{ji}^{ij}(a) = a.D_{ji}^{ij}(1) + D_{jj}^{jj}(a)$$

Therefore $D_{ll}^{ll}(1) = 0$, and hence $D_{ji}^{ij}(1) = -D_{ji}^{ij}(1)$ and consequently

$$D_{ij}^{ji}(a) = D_{il}^{li}(1).a - a.D_{jl}^{lj}(1) + D_{ll}^{ll}(a).$$

By relations 2.1 and 2.2, for each $(a_{rs}) \in M_n(\mathcal{A})$ we have

$$(\mathfrak{D}(a_{rs}))_{ij} = \sum_{k,l=1}^{n} D_{kl}^{ij}(a_{kl}) = \sum_{k=1}^{n} D_{ki}^{ij}(1)a_{ki} + \sum_{k=1}^{n} a_{jk} D_{jk}^{ij}(1) + D_{ij}^{ji}(a_{ji})$$
$$= \sum_{k=1}^{n} D_{kk}^{kj}(1)a_{ki} + \sum_{k=1}^{n} a_{jk} D_{kk}^{ik}(1) + D_{ij}^{ji}(a_{ji}),$$

and

$$(\mathfrak{D}(E_{kk}E_{ii}))_{ik} = \sum_{k=1}^{n} D_{kk}^{sk}(1)\delta_{si} + \sum_{k=1}^{n} \delta_{ks} D_{ii}^{is}(1) = D_{kk}^{ik}(1) + D_{ii}^{ik}(1) = 0.$$

This shows that $D_{kk}^{ik}(1) = -D_{ii}^{ik}(1)$. In this term we define $D_{kj} = D_{kk}^{kj}$. By above result we have

$$(\mathfrak{D}(a_{rs}))_{ij} = \sum_{k,l=1}^{n} D_{kj}(1)a_{kj} - \sum_{k=1}^{n} a_{jk}D_{ik}(1) + D_{ij}^{ji}(a_{ji})$$

= $((D_{rs}(1))(a_{rs}) - (a_{rs})(D_{rs}(1)))_{ij} + D_{ij}^{ji}(a_{ji}).$

Therefore proof is complete in the case that m is odd. Now let m be an even positive number

$$(\mathfrak{D}(a \otimes E_{it})(b \otimes E_{tj}))_{kl} = \sum_{s=1}^{n} (\mathfrak{D}(a \otimes E_{it}))_{ks}(b \otimes E_{tj})_{sl}$$
$$= \sum_{s=1}^{n} D_{it}^{ks}(a) \cdot b\delta_{ts}\delta_{jl} = D_{it}^{kt}(a) \cdot b\delta_{jl}$$

and

$$((a \otimes E_{it})\mathfrak{D}(b \otimes E_{tj}))_{kl} = \sum_{s=1}^{n} (a \otimes E_{it})_{ks} (\mathfrak{D}(b \otimes E_{tj}))_{sl}$$

$$=\sum_{s=1}^{n}a\delta_{ik}\delta_{ts}.D_{tj}^{sl}(b)=a\delta_{ik}.D_{tj}^{tl}(b),$$

for every $a, b \in \mathcal{A}$. Then

$$D_{ij}^{kl}(ab) = a\delta_{ik} D_{tj}^{tl}(b) + D_{it}^{kt}(a) b\delta_{jl}.$$
 (2.3)

Thus, D_{ij}^{kl} is a derivation from \mathcal{A} into $E^{(m)}$. By 2.1 and 2.3, the following equalities hold

$$D_{ij}^{kj}(a) = D_{ii}^{ki}(1).a$$
 $(k \neq i),$ $D_{ij}^{il}(a) = a.D_{jj}^{jl}(1)$ $(j \neq l),$

$$\begin{split} D_{ii}^{ii}(a) &= D_{ji}^{ji}(a) + D_{ij}^{ij}(1).a = D_{ij}^{ij}(1).a + D_{jl}^{jl}(1).a + D_{li}^{li}(a) \\ &= D_{ij}^{ij}(1).a + D_{jl}^{jl}(1).a + D_{ll}^{ll}(a) + a.D_{li}^{li}(1), \end{split}$$

and so

$$D_{ji}^{ji}(a) = D_{ii}^{ii}(a) + D_{ji}^{ji}(1).a.$$

Therefore $D_{ij}^{ij}(1) = -D_{ji}^{ji}(1)$ and consequently

$$D_{ji}^{ji}(a) = D_{jl}^{jl}(1).a - a.D_{il}^{il}(1) + D_{ll}^{ll}(a).$$

By using of the relations 2.1 and 2.3, for $(a_{rs}) \in M_n(\mathcal{A})$, we have

$$(\mathfrak{D}(a_{rs}))_{ij} = \sum_{k,l=1}^{n} D_{kl}^{ij}(a_{kl}) = \sum_{k=1}^{n} D_{kj}^{ij}(1)a_{kj} + \sum_{k=1}^{n} a_{ik}D_{ik}^{ij}(1) + D_{ji}^{ij}(a_{ij})$$
$$= \sum_{k=1}^{n} D_{kk}^{ik}(1)a_{ki} + \sum_{k=1}^{n} a_{jk}D_{kk}^{kj}(1) + D_{ji}^{ij}(a_{ij})$$

and

$$(\mathfrak{D}(E_{kk}E_{ii}))_{ik} = \sum_{k=1}^{n} D_{kk}^{ks}(1)\delta_{is} + \sum_{k=1}^{n} \delta_{is} D_{ii}^{sk}(1) = D_{kk}^{ki}(1) + D_{ii}^{ik}(1) = 0.$$

This shows that $D_{kk}^{ki}(1) = -D_{ii}^{ik}(1)$. In this term we define $D_{kj} = D_{kk}^{kj}$. With above result we have

$$(\mathfrak{D}(a_{rs}))_{ij} = \sum_{k,l=1}^{n} D_{ik}(1)a_{ki} - \sum_{k=1}^{n} a_{jk}D_{jk}(1) + D_{ji}^{ij}(a_{ij})$$
$$= ((D_{rs}(1))(a_{rs}) - (a_{rs})(D_{rs}(1)))_{ij} + D_{ji}^{ij}(a_{ij}).$$

Therefore proof is complete.

LEMMA 2.2. Let $D: \mathcal{A} \longrightarrow E^{(m)}$ be a continuous derivation. The induced derivation $\mathfrak{D}: M_n(\mathcal{A}) \longrightarrow M_n(E^{(m)})$ from D is inner (approximately inner) when D is inner (approximately inner).

REMARK 2.3. If \mathcal{A} have not unit, we replace it by the forced unitization of \mathcal{A} and we show it with \mathcal{A}^{\sharp} . From Proposition 2.4 of [8], \mathcal{A} is approximately amenable if and only if \mathcal{A}^{\sharp} approximately amenable. For proof of the following Theorem we use this Proposition.

THEOREM 2.4. Let \mathcal{A} be a Banach algebra and M_n be a $n \times n$ matrix. $M_n(\mathcal{A})$ is approximately amenable if and only if \mathcal{A} is approximately amenable.

PROOF. Let $M_n(\mathcal{A})$ be approximately amenable and E be a Banach \mathcal{A} -bimodule. Let $D : \mathcal{A} \longrightarrow E^*$ be a continuous derivation. According above argument $M_n(E^*)$ is a Banach $M_n(\mathcal{A})$ -bimodule. Now suppose that $\mathfrak{D} : M_n(\mathcal{A}) \longrightarrow M_n(E^*)$ is a continuous derivation. Since $M_n(\mathcal{A})$ is approximately amenable, thus there exists a net $(\xi_\alpha) \subseteq M_n(E^*)$ such that

$$\mathfrak{D}(a) = \lim(a.\xi_{\alpha} - \xi_{\alpha}.a) \quad (a \in M_n(\mathcal{A})).$$

Let $a \in \mathcal{A}$, and \mathfrak{a} be a matrix in $M_n(\mathcal{A})$ such that entire of first row and first column is a and others entire is zero. Then $(\xi_{\alpha})_{1,1} \in E^*$, and we have

$$D(a) = \mathfrak{D}(\mathfrak{a}) = \mathfrak{D}(a)_{1,1} = \lim_{\alpha} (a.\xi_{\alpha} - \xi_{\alpha}.a)_{1,1} = \lim_{\alpha} (a.(\xi_{\alpha})_{1,1} - (\xi_{\alpha})_{1,1}.a).$$

This show that \mathcal{A} is approximately amenable.

Conversely, Let \mathcal{A} be an approximately Banach algebra (see remark 2.3). Let $\mathfrak{D}: M_n(\mathcal{A}) \longrightarrow M_n(E^*)$ be a continuous derivation. From Lemmas 2.1 and 2.2, \mathfrak{D} is the sum of an inner derivation and a derivation induced by a derivation from \mathcal{A} into E^* . Therefore there are derivation $D: \mathcal{A} \longrightarrow E^*$ and inner derivation δ such that $\mathfrak{D} = D + \delta$. Since \mathcal{A} is approximately amenable, thus \mathfrak{D} is an approximately inner. \Box

THEOREM 2.5. Let \mathcal{A} be pseudo-amenable, then $M_n(\mathcal{A})$ is pseudo-amenable and if \mathcal{A} is pseudo-contractible, then $M_n(\mathcal{A})$ is too.

PROOF. Let (m_{α}) be an approximate diagonal for \mathcal{A} . For each α , define

$$M_{\alpha} = \sum_{i,j=1}^{n} E_{ij} \otimes E_{ji} \otimes m_{\alpha} \in M_n(\mathcal{A}) \widehat{\otimes} M_n(\mathcal{A})$$

With the above definition (M_{α}) is an approximate diagonal for $M_n(\mathcal{A})$.

THEOREM 2.6. Let $M_n(\mathcal{A})$ be pseudo-amenable and have a b.a.i., then \mathcal{A} is approximately amenable.

PROOF. Let $M_n(\mathcal{A})$ be pseudo-amenable and have a b.a.i., then $M_n(\mathcal{A})$ is approximately amenable by Theorem 2.3 of [9], and by Theorem 2.4, \mathcal{A} is approximately amenable.

COROLLARY 2.7. Let $M_n(\mathcal{A})^{**}$ be approximately amenable. Then $M_n(\mathcal{A})$ is approximately amenable.

THEOREM 2.8. Let \mathcal{A} be a permanently weakly amenable Banach algebra. Then $M_n(\mathcal{A})$ is a permanently weakly amenable.

PROOF. Let $\mathfrak{D}: M_n(\mathcal{A}) \longrightarrow M_n(\mathcal{A}^{(m)})$ be a continuous derivation for some $m \in \mathbb{N}$. According to Lemma 2.1, \mathfrak{D} is sum of the two derivations of which one is an inner derivation and the other is an induced derivation from \mathcal{A} into $\mathcal{A}^{(m)}$. Since \mathcal{A} is permanently weakly amenable, then $M_n(\mathcal{A})$ is too.

2.2. Approximate Amenability of ℓ^1 -Munn Algebras.

DEFINITION 2.9. Let \mathfrak{A} be a unital Banach algebra, I and J be arbitrary index sets and P be a $J \times I$ nonzero matrix over \mathfrak{A} such that $\sup\{\|P_{ij}\| : i \in I, j \in J\} \leq 1$. Let $\mathfrak{LM}(\mathfrak{A}, P)$ be the vector space of all $I \times J$ matrices \mathcal{A} over \mathfrak{A} such that $\|\mathcal{A}\|_{\infty} =$ $\sum_{i \in I, j \in J} \|\mathcal{A}_{ij}\| < \infty$. $\mathfrak{LM}(\mathfrak{A}, P)$ with the product $\mathcal{A} \circ \mathcal{B} = \mathcal{APB}$, $\mathcal{A}, \mathcal{B} \in \mathfrak{LM}(\mathfrak{A}, P)$ and the $\ell^1 - norm$ is a Banach algebra that is named ℓ^1 -Munn $I \times J$ matrix algebra over \mathfrak{A} with sandwich matrix P or briefly ℓ^1 -Munn algebra (see [6]).

THEOREM 2.10. Let $\mathfrak{LM}(\mathfrak{A}, P)$ has a bounded approximate identity. Then $\mathfrak{LM}(\mathfrak{A}, P)$ is approximately amenable if and only if \mathfrak{A} is approximately amenable, I and J are finite and P is invertible.

PROOF. Let $\mathfrak{LM}(\mathfrak{A}, P)$ be approximately amenable, then by Lemma 3.7 of [6], I and J are finite and P is invertible. Since $\mathfrak{LM}(\mathfrak{A}, P)$ is isometrically algebraic isomorphic to $\mathfrak{LM}_m \widehat{\otimes} \mathfrak{A}$ (Lemma 3.3 of [6]), where m = |I| = |J|. Thus $\mathfrak{LM}_m \widehat{\otimes} \mathfrak{A}$ is approximately amenable and therefore by Theorem 2.4, \mathfrak{A} is approximately amenable. The converse of proof by Theorem 2.4 is clear.

When I = J and P is the identity $J \times J$ matrix over \mathfrak{A} , $\mathfrak{LM}(\mathfrak{A}, P)$ denoted by $\mathcal{M}_J(\mathfrak{A})$. Similarly Theorem 2.5, if \mathfrak{A} has an approximate diagonal then $\mathcal{M}_J(\mathfrak{A})$ has too. If I and J are finite and $\mathfrak{LM}(\mathfrak{A}, P)^{**}$ is approximately amenable, then \mathfrak{A} is approximately amenable.

References

- R. Alizadeh and G. Esslamzadeh, The structure of derivations from a full matrix algebra into its dual, Iranian J. Sci. Tec, Trans. A, 32 (2008), 61-64.
- [2] Y. Choi, F. Ghahramani, Approximate amenability of Schatten classes, Lipschitz algebras and second duals of Fourier algebras, Quart. J. Math., 62 (1) (2011), 39-58.
- [3] Y. Choi, F. Ghahramani and Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal., 256 (2009), 3158-3191.
- [4] H. G. Dales, A. T.- M. Lau and D. Strauss, Banach Algebras on Semigroups and their Compactifications, Memoirs of the Amer. Math. Soc., 205 (2010), no. 966.
- [5] H. G. Dales, R. J. Loy, and Y. Zhang, Approximate amenability for Banach sequence algebras, Studia Math., 177 (1) (2006), 81-96.
- [6] G. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, J. Funct. Anal., 161 (1999), 364-383.
- [7] F. Ghahramani and R. J. Loy, Genarlized notions of amenability, J. Funct. Anal., 208 (2004), 229-260.
- [8] F. Ghahramani, R. J. Loy and Y. Zhang, Genarlized notions of amenability II, J. Funct. Anal., 7 (2008), 1776-1810.
- F. Ghahramani and Y. Zhang, *Pseudo-contractible Banach algebras*, Math. Proc. Camb. Phil. Soc., 142 (2007), 111-123.
- [10] B. E. Johnson, Cohomology in Banach algebras, American Mathematical Society, Providence, R.I., 1972.
- [11] B. E. Johnson, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc., 31 (5) (1999), 569-573.
- [12] V. Runde, Lectures on Amenability, Voluom 1774, Springer, New York, 2002.

A. JABBARI AND H. HOSSEIN ZADEH

Received 10 04 2010, revised 10 03 2011

^a Young Researchers Club, Ardabil Branch Islamic Azad University, Ardabil, Iran. *E-mail address*: jabbari_al@yahoo.com

 $^{\rm b}$ Department of Mathematics, Ardabil Branch Islamic Azad University, Ardabil, Iran. $$E\text{-mail}$ address: hasan_hz2003@yahoo.com$