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An upper bound on the second fiber coefficient of the fiber
cones

Guangjun Zhu

Abstract. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0, I an

m-primary ideal of R and K an ideal containing I. When depth G(I) ≥ d− 1 and
r(I|K) < ∞, we present an upper bound on the second fiber coefficient f2(I, K)

of the fiber cones FK(I), and also provide a characterization, in terms of f2(I, K),

of the condition depth FK(I) ≥ d− 2.

1. Introduction

Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0 having infinite
residue field. Let I be an m-primary ideal of R and K an ideal containing I. The fiber
cone of I with respect to K is the standard graded algebra FK(I) =

⊕
n≥0

In

KIn . The

graded algebra FK(I) for K = m is called the fiber cones of I. For K = I, FK(I) =
G(I), the associated graded ring of I. For every n ≥ 0, we denoted by H0

K(I, n) :=
λ( In

KIn ) the Hilbert function of FK(I), where λ denotes the length function. The
higher iterated Hilbert function of FK(I) are defined as for every n ≥ 0

Hi
K(I, n) =


H0
K(I, n) : i = 0
n∑
j=0

Hi−1
K (I, j) : i > 0

It is well known [2, Corollary 4.1.8] that for every i ≥ 0, Hi
K(I, n) coincides with a

polynomial for n� 0. Let the corresponding polynomial be denoted by

P iK(I, n) =
d+i−1∑
j=0

(−1)jfj(I,K)
(
n+ d+ i− j − 2
d+ i− j − 1

)
.

We call fi(I,K) the i-th fiber coefficient of FK(I).
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The objective of this paper is to explore some connections between the fiber coef-
ficients and depth of the fiber cone FK(I).

The relation between Hilbert coefficients and depth has been a subject of several
papers in the context of the associated graded rings and Rees algebras of ideals. That
conditions on Hilbert coefficients could force high depth for the associated graded
rings was first observed by Sally in [14]. Since then numerous conditions have been
proved for the Hilbert coefficients so that the associated graded ring of I, G(I), is
either Cohen-Macaulay or has almost maximal depth, i.e. the grade of the maximal
homogeneous ideal of G(I) is at least d− 1.

Let J be a minimal reduction of I. Huckaba and Marley [8] gave a lower bound
and an upper bound for the first Hilbert coefficient e1(I), and they also provided
necessary and sufficient conditions on e1(I) so that G(I) is Cohen-Macaulay and has
almost maximal depth. They showed that:

(i) e1(I) ≤
∞∑
n=1

λ(In/JIn−1) with equality if and only if depth G(I) ≥ d− 1;

(ii) e1(I) ≥
∞∑
n=1

λ(In+J/J) with equality if and only if G(I) is Cohen-Macaulay.

Corso, Polini and Rossi [4] gave an upper bound on e2(I) which is reminiscent of
a similar bound on e1(I) due to Huckaba and Marley [8]. They showed that

e2(I) ≤
∞∑
n=2

(n− 1)λ(In/JIn−1)

for any minimal reduction J of I. Furthermore, equality holds for some minimal
reduction J of I if and only if depth G(I) ≥ d− 1.

Little is known about that translating information from the fiber coefficients into
good depth properties of fiber cone FK(I). When d ≥ 2, a1, . . . , ad is a joint reduction
of (I [d−1]|K) such that a∗1, . . . , a

∗
d−1 is a G(I)-regular sequence and rL(I|K) < ∞

where L = (a1, . . . , ad). Zhu ([15],[16],[17]) proved that

(i) f1(I,K) ≤
∞∑
n=1

λ( KIn

(a1,...,ad−1)KIn−1+adIn )−λ(RK ); if equality holds, then depth

FK(I) ≥ d− 2.

(ii) f1(I,K) ≥
∞∑
n=1

λ(KI
n+L
L ) − λ(RK ). if equality occurs, then depth FK(I) ≥

d− 1.
(iii) If K =

⋃
k≥1

(KIk : Jk), then f2(I,K) ≥
∑
n≥2

(n− 1)λ(KI
n+L
L ) + λ(RK ).

When d ≥ 3, K =
⋃
k≥1

[(KIk + (a1, . . . , ad−3)) : Jk], KI + (a1, . . . , ad−3) =⋃
k≥1

[(KIk+1 + (a1, . . . , ad−3)) : Jk] and the above equality holds, then depth

FK(I) ≥ d− 1.
It is natural to consider whether the second fiber coefficient f2(I,K) has a similar
upper bound on the first fiber coefficient f1(I,K) due to Zhu ([15],[16]). Under the
condition that depth G(I) ≥ d − 1 and r(I|K) < ∞, we find a formula for f2(I,K),
which generalize the bound of e2(I) obtained by Corso. el [4]. Namely, we show
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that: Let a1, . . . , ad−1 ∈ I, ad ∈ K be a Rees-superficial sequence for I and K. Set
J = (a1, . . . , ad−1), L = (a1, . . . , ad). If depth G(I) ≥ d− 1, and rL(I|K) <∞. Then

f2(I,K) ≤
∞∑
n=2

(n − 1)λ( KIn

JKIn−1+adIn ) + λ(RK ). Furthermore, the upper is attained if

and only if depth FK(I) ≥ d− 2.

2. Preliminaries

We firstly recall some basic facts about reductions from [9]. An ideal J ⊆ I is
called a reduction of I if there exists a positive integer n such that In+1 = JIn. A
multiset of ideals consisting of m copies of an ideal I and n copies of an ideal K is
denoted by (I [m]|K [n]). A sequence of elements a1, . . . , ad−1 ∈ I, ad ∈ K is called a
joint reduction of (I [d−1]|K) if the ideal (a1, . . . , ad−1)K + adI is a reduction of IK.

It is well known (cf. [1]) that for large values of r and s, the function λ(R/KrIs)
coincides with a polynomial P (r, s) of total degree d in r and s. We write such a
polynomial P (r, s) as

P (r, s) =
∑
i+j≤d

eij(I|K)
(
r + i

i

)(
s+ j

j

)
,

where eij(I|K) are certain integers. When i + j = d, we set eij(I|K) = ej(I|K) for
j = 0, . . . , d, these integers are called the mixed multiplicities of I and K.

An element a ∈ I is called Rees-superficial for I and K if there exists a positive
integer r0 such that for all r ≥ r0 and all s ≥ 0, aR ∩ IrKs = aIr−1Ks. A sequence
of elements a1, . . . , ad−1 ∈ I, ad ∈ K is called a Rees-superficial sequence for I and K
if for all i = 1, . . . , d, ai is Rees-superficial for I and K, where “ ” denotes residue
classes in R/(a1, . . . , ai−1). In this case, a1, . . . , ad is a joint reduction of (I [d−1]|K)
and ed−1(I|K) = λ(R/(a1, . . . , ad)) by [13].

Let HS0
K(I, z) =

∑
n≥0

H0
K(I, n)zn be the Hilbert series of FK(I). For every i > 0,

the iterated Hilbert series of FK(I) is defined as

HSiK(I, z) :=
∑
n≥0

Hi
K(I, n)zn.

Since Hi
K(I, n)−Hi

K(I, n− 1) = Hi−1
K (I, n), it is easy to see that for every i ≥ 0,

HSiK(I, z) = (1− z)HSi+1
K (I, z).

As I is an m-primary ideal, there exists a unique polynomial h(z) ∈ Z[z] with
h(1) 6= 0 such that

HSiK(I, z) =
h(z)

(1− z)d+i
.

Clearly if h(z) = h0 + h1z + . . .+ hsz
s with hi ∈ Z, then

h0 = λ(
R

K
) and h1 = λ(

I

KI
)− dλ(

R

K
).
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Write

P iK(I, n) =
d+i−1∑
j=0

(−1)jf ′j(I,K)
(
n+ d+ i− j − 1
d+ i− j − 1

)
.

Then, comparing with the earlier notation, we get that f ′0(I,K) = f0(I,K) and
f ′i(I,K) = fi(I,K) + fi−1(I,K) for all i ≥ 1.

If we denoted by h(j)(z) the j-th formal derivative of h(z), then

f ′i(I,K) =
h(j)(1)
j!

=
s∑
k=j

(
k

j

)
hk

and f ′0(I,K) = h(1).

If g : Z → Z is a function, let ∆[g(n)] := g(n) − g(n − 1), and ∆i defined by
∆i[g(n)] := ∆i−1[∆[g(n)]]. By convention, ∆0[g(n)] = g(n). If a ∈ I is a Rees-
superficial element for I and K, then for large n, H0

K
(I, n) = ∆[H0

K(I, n)]. In partic-
ular, fi(I,K) = fi(I,K) for i = 1, . . . , d − 2, where “ ” denote the image modulo
(a).

For a ∈ I\KI, let a∗ denote its initial form in the associated graded ring G(I),
and a0 denote its initial form in the fiber cone of FK(I).

Proposition 2.1. ( [16, Proposition 2.2] ) There exist a1, . . . , ad−1 ∈ I, ad ∈
K such that a1, . . . , ad is a Rees-superficial sequence for I and K. Suppose that
depth G(I) ≥ d − 1, we can choose the above a1, . . . , ad such that a∗1, . . . , a

∗
d−1 is a

G(I)-regular sequence.

Throughout the paper, if depth G(I) ≥ d − 1, then we put any Rees-superficial
sequence a1, . . . , ad−1 ∈ I, ad ∈ K for I and K such that a∗1, . . . , a

∗
d−1 is a G(I)-regular

sequence, J = (a1, . . . , ad−1) and L = (a1, . . . , ad). Set νn = λ( KIn

JKIn−1+adIn ).

Definition 2.2. ([6, Definition 1.2]) Let a1, . . . , ad be a joint reduction of (I [d−1]|K).
If there exists an integer n such that KIn = JKIn−1 + adI

n, define rL(I|K) to be
the smallest such n, otherwise, rL(I|K) = ∞. The smallest of all rL(I|K), where L
is varying over joint reductions of (I [d−1]|K), is denoted by r(I|K).

Using the same arguments as in [10, Theorem 5.1] and [9, Theorem 2.9], we have

Proposition 2.3. Let a1, . . . , ad−1 ∈ I, ad ∈ K be a Rees-superficial sequence for
I and K, k a positive integer such that a∗1, . . . , a

∗
k is a G(I)-regular sequence. Then

depth (a0
1,...,a

0
k)FK(I) = k if and only if KIn∩ (a1, . . . , ak) = (a1, . . . , ak)KIn−1 for all

n ≥ 1.

Proposition 2.4. Let d = 1, a1 ∈ K be a Rees-superficial element for I and K
such that rL(I|K) <∞. Then

f2(I,K) =
∑
n≥2

(n− 1)λ(
KIn

a1In
) + λ(

R

K
).
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Proof . Note that for all n ≥ 0,

λ(
In

KIn
) = λ(

R

a1R
) + λ(

a1R

a1In
)− λ(

KIn

a1In
)− λ(

R

In
) = λ(

R

a1R
)− νn.

PutHS0
K(I, z) =

P
n≥0

hnz
n

1−z . Then we get that h0 = λ(RK ), h1 = λ( I
KI )−λ(RK ) = ν0−ν1,

hn = λ( In

KIn )− λ( In−1

KIn−1 ) = νn−1 − νn, n = 2, 3, . . . , and hn = 0 for n� 0.
Let h(z) =

∑
n≥0

hnz
n. Then h(z) = λ(RK ) +

∑
n≥1

[νn−1 − νn]zn. Differentiating the

above equality twice with respect to z, we get that h′(z) =
∑
n≥1

n[νn−1 − νn]zn−1 and

h′′(z) =
∑
n≥2

n(n− 1)[νn−1 − νn]zn−2.

Thus

f2(I,K) =
h′′(1)

2!
− h′(1) + h(1)

=
∑
n≥2

n(n− 1)
2!

[νn−1 − νn]−
∑
n≥1

n[νn−1 − νn] + λ(
R

K
) +

∑
n≥1

[νn−1 − νn]

=
∑
n≥3

(
n(n− 1)

2!
− n+ 1)[νn−1 − νn] + λ(

R

K
)

=
∑
n≥3

(
n− 1

2

)
[νn−1 − νn] + λ(

R

K
)

=
∑
n≥2

(n− 1)λ(
KIn

a1In
) + λ(

R

K
).

2

Proposition 2.5. Let d = 2, a1 ∈ I, a2 ∈ K an Rees-superficial sequence for I
and K such that a∗1 is a G(I)-regular element and rL(I|K) <∞. Then

f2(I,K) =
∑
n≥2

(n− 1)λ(
KIn

a1KIn−1 + a2In
) + λ(

R

K
).

Proof . Consider the exact sequence

0 → R

(In : a1) ∩ (KIn−1 : a2)
ψ→ R

In
⊕ R

KIn−1

φ→ (a2, a1)
a2In + a1KIn−1

→ 0

where ψ(r′) = ((−ra1)′, (ra2)′), φ(x′, y′) = (xa2 + ya1)′ and here primes denote the
residue classes. We have

λ(
(a2, a1)

a2In + a1KIn−1
)− λ(

R

In
)− λ(

R

KIn−1
) + λ(

R

(In : a1) ∩ (KIn−1 : a2)
) = 0.

Hence

λ(
In

KIn
)−λ(

In−1

KIn−1
) = e1(I|K)−λ(

KIn

a2In + a1KIn−1
)+λ(

(In : a1) ∩ (KIn−1 : a2)
In−1

).



68 GUANGJUN ZHU

As a∗1 is a G(I)-regular element, we have In : a1 = In−1 for n ≥ 1. Thus

λ(
In

KIn
)− λ(

In−1

KIn−1
) = e1(I|K)− λ(

KIn

a2In + a1KIn−1
).

Set HS0
K(I, z) =

P
n≥0

hnz
n

(1−z)2 . Then we get that h0 = λ(RK ), h1 = λ( I
KI ) − 2λ(RK ),

hn = λ( In

KIn )− 2λ( In−1

KIn−1 ) + λ( In−2

KIn−2 ) = νn−1 − νn for n ≥ 2, and hn = 0 for n� 0.

Let h(z) =
∑
n≥0

hnz
n. Then h(z) = λ(RK ) + [λ( I

KI )− 2λ(RK )]z +
∑
n≥2

[νn−1 − νn]zn.

Differentiating the above equality twice with respect to z, we get that
h′(z) = [λ( I

KI )−2λ(RK )]+
∑
n≥2

n[νn−1−νn]zn−1, h′′(z) =
∑
n≥2

n(n−1)[νn−1−νn]zn−2.

Then

f2(I,K) =
h′′(1)

2!
− h′(1) + h(1)

=
∑
n≥2

n(n− 1)
2!

[νn−1 − νn]− [λ(
I

KI
)− 2λ(

R

K
)]−

∑
n≥2

n[νn−1 − νn]

+ λ(
R

K
) + [λ(

I

KI
)− 2λ(

R

K
)] +

∑
n≥2

[νn−1 − νn]

=
∑
n≥3

(
n(n− 1)

2!
− n+ 1)[νn−1 − νn] + λ(

R

K
)

=
∑
n≥3

(
n− 1

2

)
[νn−1 − νn] + λ(

R

K
)

=
∑
n≥2

(n− 1)λ(
KIn

a1KIn−1 + a2In
) + λ(

R

K
).

2

The following example shows that the assumption in Proposition 2.5 that depth
G(I) ≥ 1 cannot be dropped.

Example 2.6. Let R = k[x, y]m, where k is an infinite field, x and y are indeter-
minate and m = (x, y). Let K = m, I = (x4, x3y, xy3, y4). Then it can be seen that
x4, y is an Rees-superficial sequence for I and m, rL(I|m) = 2 where L = (x4, y) and
Fm(I) = k[x4, x3y, xy3, y4]. Note that for all n ≥ 2, In = m4n, we have that

HS0
K(I, z) = 1 + 4z +

∞∑
n=2

(4n+ 1)zn =
1 + 2z + 2z2 − z3

(1− z)2
.

Then f2(I,m) = 0,
∑∞
n=2(n − 1)λ( mIn

x4mIn−1+yIn ) + λ(Rm ) = 1. This forces that
f2(I,m) =

∑
n≥2

(n− 1)λ( mIn

x4mIn−1+yIn ) + λ(Rm ) is not true. Since G(I)+ ⊆ ann(x2y2)∗,

depth G(I) = 0.
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3. Main Results and Examples

Theorem 3.1. Let a ∈ I be an Rees-superficial element for I and K such that a∗

is a G(I)-regular element. Then

(−1)d−1fd−1(I,K) = (−1)d−1fd−1(I,K)−
∑
j≥0

λ(
(KIj+1 : a) ∩ Ij

KIj
)

where “ ” denotes the image modulo (a). Furthermore the following facts are equiv-
alent:

(1) fd−1(I,K) = fd−1(I,K),
(2) fi(I,K) = fi(I,K) for all 0 ≤ i ≤ d− 1,
(3) a0 is an FK(I)-regular element,
(4) HSi

K
(I, z) = (1− z)HSiK(I, z).

Proof . Since a∗ is a G(I)-regular element, we have In ∩ (aR) = aIn−1 for all n ≥ 1.
For n ≥ 1, consider the exact sequence

0 → (KIn : a) ∩ In−1

KIn−1
→ In−1

KIn−1

µa→ In

KIn
→ I

n

KI
n → 0

where µa(x+KIn−1) = ax+KIn. It follows that

H0
K

(I, n) = H0
K(I, n)−H0

K(I, n− 1) + λ(
(KIn : a) ∩ In−1

KIn−1
).

It is easy to see that for all nonnegative integers n, i

Hi+1

K
(I, n) = Hi

K(I, n) +
n−1∑
j=0

(
n− j + i− 1

i

)
λ(

(KIj+1 : a) ∩ Ij

KIj
). (∗)

Hence for n� 0,
d+i−1∑
j=0

(−1)jfj(I,K)
(
n+ d+ i− j − 2
d+ i− j − 1

)
=

d+i−1∑
j=0

(−1)jfj(I,K)
(
n+ d+ i− j − 2
d+ i− j − 1

)

+
∑
j≥0

(
n+ i− j − 1

i

)
λ(

(KIj+1 : a) ∩ Ij

KIj
).

Since fj(I,K) = fj(I,K) for j = 0, . . . , d− 2, we get
d+i−1∑
j=d−1

(−1)jfj(I,K)
(
n+ d+ i− j − 2
d+ i− j − 1

)
=

d+i−1∑
j=d−1

(−1)jfj(I,K)
(
n+ d+ i− j − 2
d+ i− j − 1

)

+
∑
j≥0

(
n+ i− j − 1

i

)
λ(

(KIj+1 : a) ∩ Ij

KIj
).

If i = 0, one has

(−1)d−1fd−1(I,K) = (−1)d−1fd−1(I,K)−
∑
j≥0

λ(
(KIj+1 : a) ∩ Ij

KIj
).
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From the above formulas we can obtain the following equivalent facts. First of all
notice that fd−1(I,K) = fd−1(I,K) if and only if (KIj+1 : a) ∩ Ij = KIj for all
j ≥ 0, or equivalently, if and only if a0 is an FK(I)-regular element. From the above
equalities it is simple to see that (KIj+1 : a) ∩ Ij = KIj for all j ≥ 0 is also
equivalent to fi(I,K) = fi(I,K) for all 0 ≤ i ≤ d − 1. Thus (1),(2), and (3) are all
equivalent. Moreover, From (∗), (KIj+1 : a) ∩ Ij = KIj for all j ≥ 0 if and only if
Hi+1

K
(I, n) = Hi

K(I, n) for all nonnegative integers n, i, or equivalently, if and only if
HSi

K
(I, z) = (1− z)HSiK(I, z) for all i ≥ 0. Then (3) and (4) are equivalent. 2

Theorem 3.2. Let a1, . . . , ad−1 ∈ I, ad ∈ K be an Rees-superficial sequence for
I and K such that rL(I|K) <∞. If depth G(I) ≥ d− 1, then

f2(I,K) ≤
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
) + λ(

R

K
).

The equality occurs if and only if depth FK(I) ≥ d− 2.

Proof . If d = 1, 2, the result follows from Proposition 2.4 and Proposition 2.5.
If d = 3, then dim(R) = 2 where “ ” denotes the image modulo (a1). By

Theorem 3.1, we have

f2(I,K) = f2(I,K)−
∑
j≥0

λ(
(KIj+1 : a1) ∩ Ij

KIj
)

≤ f2(I,K)

=
∞∑
n=2

(n− 1)λ(
KI

n

JKI
n−1

+ a3I
n ) + λ(R/K)

≤
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + a3In
) + λ(

R

K
).

where the second equality holds by Proposition 2.5. The equality occurs if and only
if (KIj+1 : a1) ∩ Ij = KIj for all j ≥ 0 and KIn ∩ (a1R) = a1KI

n−1 for all n ≥ 2, if
and only if a0

1 is an FK(I)-regular element by Proposition 2.3, or equivalently, if and
only if depth FK(I) ≥ 1.

Now suppose that d > 3 and “ ” denote the image modulo (a1), then dim(R) =
d− 1, rL(I|K) <∞, λ(R/K) = λ(RK ), and λ( KI

n

JKI
n−1

+adI
n ) ≤ λ( KIn

JKIn−1+adIn ) for all
n ≥ 1. By inductive hypotheses, we have

f2(I,K) = f2(I,K)

≤
∞∑
n=2

(n− 1)λ(
KI

n

JKI
n−1

+ adI
n ) + λ(R/K)

≤
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
) + λ(

R

K
).
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The equality occurs if and only if depth FK(I) ≥ d−3 if and only if depth FK(I) ≥ d−2
by [10, Lemma 2.7]. 2

Corollary 3.3. Let a1, . . . , ad−1 ∈ I, ad ∈ K be an Rees-superficial sequence for
I and K such that rL(I|K) <∞. If depth G(I) ≥ d− 1 and

f2(I,K) ≥
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
) + λ(

R

K
)− 2,

then depth FK(I) ≥ d− 3.

Proof . Let “ ” and “ ˜ ” denote the image modulo (a1, . . . , ad−3) and (a1, . . . , ad−2)
respectively. Then dim(R) = 3, dim(R̃) = 2 and λ(R/K) = λ(R̃/K̃) = λ(R/K). By
Theorem 3.1, we have f2(I,K) ≤ f2(Ĩ , K̃) and

∞∑
n=2

(n− 1)λ(K̃Ĩn/(J̃K̃Ĩn−1 + ãdĨ
n)) ≤

∞∑
n=2

(n− 1)λ(KI
n
/(JKI

n−1
+ adI

n
))

≤
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
).

If f2(I,K) = f2(Ĩ , K̃), then depth FK(I) ≥ 1 by Theorem 3.1. Hence depth FK(I) ≥
d− 2 by [10, Lemma 2.7]. If

∞∑
n=2

(n− 1)λ(K̃Ĩn/(J̃K̃Ĩn−1 + ãdĨ
n)) =

∞∑
n=2

(n− 1)λ(KI
n
/(JKI

n−1
+ adI

n
)),

then f2(I,K) = f2(Ĩ , K̃), and as before, depth FK(I) ≥ d− 2. If
∞∑
n=2

(n− 1)λ(K̃Ĩn/(J̃K̃Ĩn−1 + ãdĨ
n)) 6=

∞∑
n=2

(n− 1)λ(KI
n
/(JKI

n−1
+ adI

n
)),

then
f2(I,K) ≤ f2(Ĩ , K̃)− 1.

It follows that
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
) + λ(

R

K
)− 2

≤ f2(I,K) = f2(I,K)

≤ f2(Ĩ , K̃)− 1

=
∞∑
n=2

(n− 1)λ(K̃Ĩn/(J̃K̃Ĩn−1 + ãdĨ
n)) + λ(R̃/K̃)− 1

≤
∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
) + λ(

R

K
)− 2.
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Hence we obtain that
∞∑
n=2

(n− 1)λ(K̃Ĩn/(J̃K̃Ĩn−1 + ãdĨ
n)) =

∞∑
n=2

(n− 1)λ(
KIn

JKIn−1 + adIn
)− 1,

which implies that λ(K̃Ĩ2/(J̃K̃Ĩ + ãdĨ
2)) = λ( KI2

JKI+adI2
)− 1 and λ( KIn

JKIn−1+adIn ) =

λ(K̃Ĩn/(J̃K̃Ĩn−1 + ãdĨ
n)) for all n ≥ 3. Hence

f1(I,K) = f1(Ĩ , K̃) =
∞∑
n=1

λ(K̃Ĩn/(J̃K̃Ĩn−1+ãdĨn))−λ(R̃/K̃) =
∞∑
n=1

λ( KIn

JKIn−1+adIn )−

λ(RK )− 1, from which it follows that depth FK(I) ≥ d− 3. 2

The following example provide an instance that the bound of f2(I,K) in Theorem
3.2 can be attained.

Example 3.4. Let k be a field and R = k[[x, y, z]] the power series ring. Put
I = m3 where m is the unique maximal ideal of R. It is easily seen that both the
fiber cone Fm(I) and the associated graded ring G(I) are Cohen-Macaulay. It is easy
to see that x3, y3 ∈ I, z ∈ m is an Rees-superficial sequence for I and m such that
rL(I|m) = 2 where L = (x3, y3, z). The Hilbert series of Fm(I) is

HS0
m(I, z) =

∑
n≥0

(
3n+ 2

2

)
zn =

∑
n≥0

[9
(
n+ 2

2

)
− 9

(
n+ 1

1

)
+ 1]zn =

1 + 7z + z2

(1− z)3
.

We also have that f2(I,m) =
∞∑
n=2

(n− 1)λ( mIn

(x3,y3)mIn−1+zIn ) + λ(Rm ) = 1.

We observe that in Theorem 3.2 the assumption on depth G(I) ≥ d − 1 cannot
be weakened. The following example shows that depth FK(I) ≥ 1 does not imply the
upper bound of f2(I,K) can be attained.

Example 3.5. Let R be the three-dimensional local Cohen-Macaulay ring

k[[X,Y, Z, U, V,W ]]/(Z2, ZU, ZV,UV, Y Z − U3, XZ − V 3),

with k a field and X,Y, Z, U, V,W indeterminates. Let x, y, z, u, v, w denote the corre-
sponding images of X,Y, Z, U, V,W in R, I = m = (x, y, z, u, v, w) and K = m. Then
Fm(I) = G(m). One has that depth G(I) = 1. Indeed, we checked that the Hilbert
series of Fm(I) is

HS0
m(I, z) =

1 + 3z + 3z3 − z4

(1− z)3
.

Thus f2(I,m) = 1. Let J = (x, y, w), we can obtain λ(m2/Jm) = 2, λ(m3/Jm2) = 2

and m4 = Jm3. Thus
∞∑
n=2

(n− 1)λ(mn/Jmn−1) + λ(R/m) = 3.
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