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A simple evaluation of the quartic integral

Victor H. Molla and William Sean Hendartob

Abstract. The integral

I(a;m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1

is evaluated by elementary methods.

1. Introduction

The interest of the first author in the evaluation began with a statement from a
(former) graduate student saying that he was able to evaluate the integral

(1.1) I(a;m) =

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
,

with m ∈ N and a > −1. This story has been told in [8]. Obtaining the result stated
in (1.2) and (1.3) below, was a combination of good luck, ignorance of the field of
special functions and the perseverance of George Boros. The first proof of the identity

(1.2) I(a;m) =
π

2m+3/2(a+ 1)m+1/2
Pm(a)

appeared in [4]. Here

(1.3) Pm(a) = 2−2m
m∑

k=0

2k
(

2m− 2k

m− k

)(
m+ k

m

)
(a+ 1)k

is a polynomial in a of degree m. Since then many other proofs have appeared in the
literature [1, 2, 3, 5, 6].

The goal of this short note is to present a small modification of Hirschhorn’s proof
[7], perhaps the simplest to date, offering an alternative that might prove to be useful
to beginning students as well as instructors.
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2. The proof

Start with the factorization

(2.1)
1

(x4 + 2ax2 + 1)m+1
=

1

x2(m+1)
× 1

((x− 1/x)2 + 2(a+ 1))m+1
,

make the change of variables t = 1√
2(a+1)

(x− 1/x) and introduce the notation

b = (a+ 1)/2 to produce

(2.2) I(a;m) =
1

22m+2bm+1/2

∫ ∞
−∞

1√
1 + bt2(

√
bt+

√
1 + bt2)2m+1

dt

(t2 + 1)m+1
.

Then use the fact that

(2.3)
(√

bt+
√

1 + bt2
)
×
(
−
√
bt+

√
1 + bt2

)
= 1

to write (2.2) as

(2.4) I(a;m) =
1

22m+2bm+1/2

∫ ∞
−∞

(
−
√
bt+

√
1 + bt2

)2m+1

√
1 + bt2

dt

(t2 + 1)m+1
.

The change of variables t 7→ −t gives

(2.5) I(a;m) =
1

22m+2bm+1/2

∫ ∞
−∞

(√
bt+

√
1 + bt2

)2m+1

√
1 + bt2

dt

(t2 + 1)m+1
.

Adding (2.4) and (2.5) gives
(2.6)

2I(a;m) =
1

22m+2bm+1/2

∫ ∞
−∞

(√
bt+

√
1 + bt2

)2m+1

+
(
−
√
bt+

√
1 + bt2

)2m+1

√
1 + bt2

dt

(t2 + 1)m+1
.

Now expand the integrand in (2.6) to produce(√
bt+

√
1 + bt2

)2m+1

+
(
−
√
bt+

√
1 + bt2

)2m+1

= 2

m∑
k=0

(
2m+ 1

2k

)
bkt2k(1+bt2)m−k+1/2.

Expanding the power (1 + bt2)m−k leads to
(2.7)

I(a;m) =
1

2m+3/2(a+ 1)m+1/2

m∑
k=0

k∑
j=0

(
a+ 1

2

)k (
m− j
k − j

)(
2m+ 1

2j

)∫ ∞
−∞

t2k dt

(1 + t2)m+1
.

The next lemma gives the value of the integrals appearing in (2.7).

Lemma 2.1. Let m ∈ N and 0 6 k 6 m. Then

(2.8)

∫ ∞
−∞

t2k dt

(1 + t2)m+1
=

(2k)!(m− k)!

k!m!22m

(
2m− 2k

m− k

)
π.
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Proof. Integration by parts gives

(2.9)

∫ ∞
−∞

t2k dt

(1 + t2)m+1
=

2k(2k − 1)

4mk

∫ ∞
−∞

t2k−2 dt

(1 + t2)m
,

and iterating this identity yields

(2.10)

∫ ∞
−∞

t2k dt

(1 + t2)m+1
=

(2k)!(m− k)!

k!m!22k

∫ ∞
−∞

dt

(1 + t2)m+1−k .

The conclusion follows from Wallis’ formula

(2.11)

∫ ∞
−∞

dx

(1 + t2)m+1
=

π

22m

(
2m

m

)
.

The reader will find in [9] a detailed discussion of this classic fiormula. �

Using the result of the Lemma in the formula (2.7) produces
(2.12)

I(a;m) =
π

m!(2
√

2(a+ 1))2m+1

m∑
i=0

i∑
k=0

(a+ 1)i

2i

(
m− k
i− k

)(
2m+ 1

2k

)
(2i)!

i!

(2m− 2i)!

(m− i)!
.

This proves (1.2) with the alternative expression

(2.13) Pm(a) =
1

m!22m

m∑
i=0

i∑
k=0

(a+ 1)i

2i

(
m− k
i− k

)(
2m+ 1

2k

)
(2i)!

i!

(2m− 2i)!

(m− i)!
.

The next section is devoted to proving that this polynomial is exactly the one
stated in (1.2).

3. The original expression for the polynomial Pm

The goal of this section is to produce a new expression for the polynomial Pm(a).
The identity (2.6) is written as

(3.1) I(a;m) =
1

2(
√

2(a+ 1))m+1

∫ ∞
−∞

Xm(a, t)
dt

(1 + t2)m+1
,

with Xm(a, t) = Ym

(√
a+1

2 t
)

and

(3.2) Ym(x) =
(x+

√
1 + x2)2m+1 + (−x+

√
1 + x2)2m+1

2
√

1 + x2
.

The first step is to establish a recurrence for Ym(x). Using this recurrence and
the initial values Y0(x) = 1 and Y1(x) = 1 + 4x2 it becomes clear that Ym(x) is a
polynomial in x. An expression for it is given in Theorem 3.1.

Lemma 3.1. The function Ym(x) satisfies the recurrence

(3.3) Ym+1(x) = 2(1 + 2x2)Ym(x)− Ym−1(x), for m > 1.
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Proof. The key point of the proof is the identity

(3.4) (x+
√

1 + x2)× (−x+
√

1 + x2) = 1.

Define Zm(x) = 2
√

1 + x2Ym(x), then the result follows from

Zm+1(x) + Zm−1(x) = (x+
√

1 + x2)2m+3 + (−x+
√

1 + x2)2m+3

+ (x+
√

1 + x2)2m−1 + (−x+
√

1 + x2)2m−1

= (x+
√

1 + x2)2(x+
√

1 + x2)2m+1

+(−x+
√

1 + x2)2(−x+
√

1 + x2)2m+1

+ (x+
√

1 + x2)−2(x+
√

1 + x2)2m+1

+(−x+
√

1 + x2)−2(−x+
√

1 + x2)2m+1

=
[
(x+

√
1 + x2)2 + (−x+

√
1 + x2)2

]
×[

(x+
√

1 + x2)2m+1 + (−x+
√

1 + x2)2m+1
]
.

The proof is complete. �

The recurrence (3.3) is now used to get a new expression for the polynomial Ym.

Theorem 3.1. The polynomial Ym(x) is given by

(3.5) Ym(x) =

m∑
k=0

(
m+ k

m− k

)
(2x)2k.

Proof. Assuming the result holds for m and m− 1 it follows that

2(1+2x2)Ym(x)−Ym−1(x) = 2(1+2x2)

m∑
k=0

(
m+ k

m− k

)
22kx2k−

m−1∑
k=0

(
m− 1 + k

m− 1− k

)
22kx2k.

Now separate on the right hand side with exponents 2m + 2, 2m and the constant
term to reduce it to

(3.6) 22m+2x2m+2 + (2m+ 1)22mx2m + 1

+

m−1∑
k=1

[
2

(
m+ k

m− k

)
+

(
m+ k − 1

m− k + 1

)
−
(
m− 1 + k

m− 1− k

)]
22kx2k.

The result now follows from the identity

(3.7) 2

(
m+ k

m− k

)
+

(
m+ k − 1

m− k + 1

)
−
(
m− 1 + k

m− 1− k

)
=

(
m+ 1 + k

m+ 1− k

)
,

which is easily verified. �

The next step is to replace the result in Theorem 3.1 in (3.1). A direct calculation,
using the evaluation in Lemma 2.1 agrees with (1.2) with the formula (1.3) for the
polynomial Pm(a). All the details of the proof are finally in place.
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