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Fractional integral operators and the multiindex Mittag-LefHer
functions

S.D. Purohit ¢, S.L. Kalla ® and D.L. Suthar €

ABSTRACT. The aim of this paper is to study some properties of multiindex
Mittag-Leffler type function E1/p),(15) (z) introduced by Kiryakova [V. Kiryakova,
J. Comput. Appl. Math. 118 (2000), 241-259]. Here we establish certain theo-
rems which provide the image of this function under the Saigo’s fractional integral
operators. The results derived are of general character and give rise to a number
of known results in the theory of multiindex Mittag-Leffler functions.

1. Introduction

In 1903, Mittag-Leffler [10] defined a function, named after him, in terms of the
power series
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A further, two-index generalization of this function was given by Wiman [14] as
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Both are entire functions of order p = 1/« and type ¢ = 1. A detailed account of
these functions is available in Erdélyi et al. [2] and Dzrbashjan [1].

Kiryakova [7] has introduced and studied a multiindex Mittag-Leffler function as an
extension of the generalized Mittag-Lefler function considered by Dzrbashjan. The
multiindex Mittag-Leffler function is defined in Kiryakova [7] by means of the power
series:
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where m > 1 is an integer, R(p1), -+, R(pm) > 0 and pq,--- , 4y are arbitrary pa-
rameters.
Some important special cases of this function are enumerated below:

(i) If we set m =1, p; = £ and py = 3 then (1.3) yields the Mittag-Leffler function
given by (1.2).

(ii) For m = 2, (1.3) reduces to the generalized Mittag-Leffler function considered
by Dzrbashjan [1] denoted by @, ,,(2; i1, pt2) in the following form
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and shown to be an entire function of order p = (p‘; f;) and type
o = (p1/p)?/? (p2/p)?!*>.

(iii) Again, for m =2, p; = %, p2 = 1,1 = b and ps = 1, we have a special case of
(1.3) in the form

k

E(ﬁal),(b’l)( ) (5, b; Z ZW s (1.5)

with complex z,b0 € C and 8 € R, known as the Wright function [15]. When 3 = 4,
b=v+1 and z is replaced by —z, the function ¢(5,v + 1; —z) is denoted by J3(z) :

o Y
B wi1n)(—2) = J3(2) = (6,v + 1;—2) = Y F(51<:(+zzz)+1)k' , (1.6)
k=0 '

and such a function is known as the Bessel-Maitland function, or the Wright general-
ized Bessel function.

(iv) Also the function E(1/, y (4,)(2) has the forms:

/o) .u)(2) = 1\Ifm[ (ui,(?/;)j)?@ ;z} (1.7)
1, (0,1)
= H1’71n+1 |:_Z (O 1) (1 — i, 1/pj)m :| (18)

1—5 —z)%d
= / [T T 373 5 (2 40), (1.9)

where 19,,(.) and H%}n 41(.), respectively represent the Wright generalized hypergeo-
metric function and the Fox’s H-function. In the Mellin-Barnes type contour integral
representation (1.9), L is a suitable contour in C extending from —woo to woo in
such a way that the poles s = 0,—1,—2,--- of I'(s) lie to the left of L and the poles
s=0,1,2,--- of I'(1 — s) to the right of it.
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Besides the Riemann-Liouville definition of fractional operators, several other mod-
ifications and generalizations have been studied. Hypergeometric integral operators
have been defined and studied by Love [8], Saxena [12], Kalla and Saxena [3,4], Saigo
[11], McBride [9] etc. A detailed information is given in the book of Kiryakova [5]. In
this paper we consider hypergeometric fractional integral operators defined by Saigo
[11].

For complex numbers «, 8 and 7, we begin by considering the fractional integral
operator I&’f’" as: (Saigo [11])

zm=B
I'(a)

L5 f(2) = /Oz(z — )7 2P (a+ B~y 1 = t/2) f(t)dt (R(a) > 0),

(1.10)
where the 3F(.) function occurring in the right-hand side of (1.10) is the familiar
Gaussian hypergeometric function defined by

] S @a®
2F1 (a,b;c;z): 2F1 z :ZOW H (111)
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The operator I& ’Zﬁ ! contains both the Riemann-Liouville and the Erdélyi-Kober frac-
tional integral operators, and we have the following relationships:

RS f(2) = 107" f(2) = ﬁ / (e - 0 (), (112)

and
z—an

PRISE) = 21G) = Sy | =0 oo (113)

Another class of fractional integrals is defined, for complex numbers «, 3 and 7, by
(Saigo [11])

1 o
JELf(2) = m/ (t—2)*" 7P (a+ B, —n; a1 — 2/t) f()dt (R(a) > 0),
; a) /.
(1.14)
which unifies the Weyl and the corresponding Erdélyi-Kober fractional integral oper-
ators. Indeed we have

We L f(z) = T f(2) = ﬁ / T e, (1.15)

and

K& f(z) = J%0f(z) = F’?;)/m(t — 2)2T AT f ()t (1.16)

Since the Mittag-Leffler function provides solutions to certain problems formulated
in terms of fractional order differential, integral and difference equations, it has recently
become a subject of interest for many authors in the field of fractional calculus and
its applications. Motivated by these avenues of applications, a number of workers
have made use of the fractional calculus operators in the theory of Mittag-Leffler
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functions. The aim of the present paper is to obtain certain properties of multiindex
Mittag-Leffler type function associated with Saigo’s fractional calculus operators.

2. Multiindex Mittag-Leffler type function and hypergeometric operators

In this section, we obtain the image of the multiindex Mittag-Leffler type function
under the hypergeometric fractional integral operators defined earlier by Saigo [11].

Theorem 2.1 Let m > 1 is an integer, R(p;) >0, p; (i =1,--- ,m) are arbitrary
parameters and I{i’zﬁ’n(.) be the Saigo’s left-sided fractional integral operator (1.10),
then the following result holds:

a,3, A—1 o
I A By, (u (a27)

_ z’\*B*Ii (az”)* LA+ ok)L(A+n— B +0k)
m )F(A—ﬁ+ok)r(A+a+n+ak)'
=1

(2.1)
k=0 [T D(uj +k/p;

j

The conditions for validity of (2.1) are

(i) a, B,m (R(a)) > 0) and a are any complex numbers
(ii) X and o are arbitrary such that R(A+ ok) > 0 and R(A+n— 0+ ok) > 0.

Proof. Using the definition (1.10) in the left hand side of (2.1), writing the func-
tions in the forms given by (1.3) and (1.11), interchanging the order of integration and
summations and evaluating the integral as beta integral, we easily arrive at the result
(2.1) under the valid conditions.

For A = py, 0 = 1/p1, p2 = p1 and pg = p1 + 1 — B the Theorem 2.1, yields to the
following result:

Corollary 2.1 Let m > 1 is an integer, R(a)) > 0, R(p;) >0, p; (i =1,---,m)
are arbitrary parameters, then the following result holds:

a,B,n p1—1 1/p1
IO,z {Z E(l/p1,1/p1,1/ps,~--,l/pm),(m,ernfB,/Ls,---’um)(az )

—B-1 1
=P E(l/ph1/p171/p37~~71/pm,),(H1—671L1+(1+7]7P‘37"‘»,an)(az /p1)’ (22)

where B,m and a are any complex numbers.

Using the known result due to Saxena, Kalla and Kiryakova [13, p. 369, eqn. (3.1)],
namely

r—1 h
z
2"E1 ) p), (witr/pi) (Z) = Ea/ps), (ui)(2) — - , (2.3)
(1/pi)s (itr/pi) (1/pi)s (pi) hZ:OHj=1F(,L‘j+h/pj)
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the result (2.2) reduces to the following corollary:

Corollary 2.2 Let m > 1 is an integer, R(a) > 0, R(p;) >0, u; (i =1,---,m)
are arbitrary parameters, then the following result holds:

B, -1 1
@ I3 T B 13 s L) s, e (027 }

—B-1—-1 1
= =P e {E(l/pl,1/p1,1/p3,'--,I/Pm)a(ﬂlfﬁfl/PlaH1+a+77*1/ﬂl’#«3*1/037"',#mfl/ﬁm)(az /pl)

1
T —B—1/p) (1 + o +1—1/p0)T (13 — 1/p3) - T(ttm — 1/ pm) } ;o (24)

where B,n and a # 0 are any complex numbers.

Theorem 2.2 Let m > 1 is an integer, R(p;) > 0, p; (i =1,--- ,m) are arbitrary
parameters and J;‘O%"() be the Saigo’s right-sided fractional integral operator (1.14),
then the following result holds:

Jg;&" {Z/\E(l/pi), (s )(az—a)}
= Zkfﬁi (az*U)k D(B—A+0k)'(n— X+ 0k) '
£=0 ] Dl + b/ ps) T(=A+ok)T(a+8+n—A+0k)

The conditions for validity of (2.5) are

(2.5)

(i) a, B,m (R(a)) > 0) and a are any complex numbers
(i) X and o are arbitrary such that R(8 — X+ ok) > 0 and R(n — A+ ok) > 0.

Proof. Using the definition (1.14) in the left hand side of (2.5), writing the func-
tions in the forms given by (1.3) and (1.11), interchanging the order of integration and
summations and evaluating the integral as beta integral, we easily arrive at the result
(2.5) under the valid condition.

For A = 8 — 1, 0 = 1/p1, p2 = p1 and ps = py + n — B the Theorem 2.2, also
reduces to the following result:

Corollary 2.3 If m > 1 is an integer, R(a) > 0, R(p;) >0, p; (¢ =1,---,m) are
arbitrary parameters, then the following result holds:

5, - -1
J?,o[in{zﬂ HlE(l/Pl’l/Plv1/P3a"'71/Pm)a(IL17AL1+?7767/»¢3,~~,,um)(az /p1)}

- —1
=z ME(l/m,l/m,l/pg,w-,l/pm),(M1fﬁ,u1+a+mu3,---7um)(a2 /p1)7 (2.6)
where B,n and a are complex numbers.

On making use of the identity (2.3), the result (2.6) reduces to the following corol-
lary:
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Corollary 2.4 Let m > 1 is an integer, R(a) > 0, R(p;) > 0, p; (i =1,---,m)
are arbitrary parameters, then there holds the formula:

B, - 1
a J?,fa" {Zﬁ MYE(1p1,1/p1, 1/ ps, -+ 1/ pm)s (1, pa+1—B, s, -+, i ) (A2 /pl)}

1/p1
E(l/Ph 1/p1,1/p3, 1/ pm), (m1—B=1/p1, pr+a+n—1/p1, p3—1/p3, -, tm—1/pm )(az )

1
CT(u—B—1/p)T (1 +a+n—1/p1)T (s — 1/p3) - T(ttm — 1/pm) } - 27

where B,n and a # 0 are any complex quantities.

— ,—mtl/m {

3. Erdélyi-Kober operators with Mittag-Lefller type function

We now give images of the multiindex Mittag-Leffler type function under the frac-
tional integral operators of Erdélyi-Kober type. By taking 8 = 0 and making use of
the relations (1.13) and (1.16), we derive the following corollaries (3.1) to (3.6), of
the Theorems 2.1 and 2.2, and Corollaries 2.1 to 2.4 in terms of Erdélyi-Kober type
fractional calculus results involving the multiindex Mittag-LefHler function.

Corollary 3.1 Let m > 1 is an integer, R(a)) > 0, R(p;) >0, p; (i =1,---,m)
are arbitrary parameters and E{i 7(.) be the Erdélyi-Kober fractional integral operator
(1.13), then the following result holds:

By {2 By p, u(a2) ) = 2y —
k=0 H1 L(pj +k/pj
B

(az?)k F'(A+n+ok)
) FA+a+n+ok)’

(3.1)

where n and a are any complex numbers and R(\ + n + ok) > 0.

Corollary 3.2 Let m > 1 is an integer, R(a) > 0, R(p;) > 0, p; G =1,---,m)
are arbitrary parameters, then the following result holds:

Eg,;n {ZM_lE(l/pi), (B1+m, p2y s pom )(azl/m)} = Zﬂl_lE(l/m), (p1+o+n, pa, - ,um)(azl/pl)’
(3.2)
where 1 and a are complex numbers.

Corollary 3.3 If m > 1 is an integer, ®(a) > 0, R(p;) >0, 0,0 (i =1,--- ,m) are
arbitrary parameters, then the following result holds:

o By {2#1_1E<1/m>, (H14n, 2, fom )(azl/m)}

= zamlol/m {E(l/Pi)a (p4a+n=1/p1, p2—1/p2, -~,um—1/pm)(a21/pl)

1

T(pi4a+n—1/p0)T (2 — 1/p2) - Dlptm — 1/pm) }7 (3:3)
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where n and a # 0 are arbitrary complex quantities.
Corollary 3.4 Let m > 1 is an integer, R(p;) >0, pu; (i =1,--- ,m) are arbitrary

parameters and K21(.) be the Erdélyi-Kober fractional integral operator (1.16), then
the following result holds:

o0
«, A —0 A=
KL A B, ulaz )} =227y —
k=0 Hlf(uj +k/p;j
]:

(az=o)F I'(n— A+ 0ok)
) Fa+n—A+ok)

, (34)

where a, n and a (R(a) > 0) are complex numbers and R(n — X+ ok) > 0.

Corollary 3.5 Let m > 1 is an integer, f(a) > 0, R(p;) >0, u; (i =1,---,m)
are arbitrary parameters, then

Kg,go {Z_ulE(l/Pi)»(erna Ha, --wum)(az_l/m)} = Z_ulE(l/Pz‘), (u1+a+nyu2w“,um)(az_l/p1)7
(3.5)
where 1 and a are complex numbers.

Corollary 3.6 If m > 1 is an integer, R(a) > 0, R(p;) >0, u; (i =1,---,m) are
arbitrary parameters, then the following result holds:

a K25 {Z_ME(l/mL (1+m, 2y s fom )(az_l/pl)}

=z mtn {E(l/m% (mi+at+n—1/p1, pu2—1/p2, -, ptm—1/pm )(azil/pl)

- ! } , (3.6)

C(u +a+n—1/p1)0(pg —1/p2) - T(ptm — 1/pm)
where n and a # 0 are any complex numbers.

4. Special cases

Special values of the parameters reduces the Saigo’s operators to some well known
classical operators. For example if we set o + 3 = 0, in Theorems 2.1 and 2.2, we get
the following results (4.1) to (4.6) involving Riemann-Liouville operators of fractional
calculus.

Corollary 4.1 Let m > 1 is an integer, R(p;) >0, p; (i =1,--- ,m) are arbitrary
parameters and Rg ,(.) be the Riemann-Liouville fractional integral operator (1.12),
then the following result holds:

o - - ol (az7)* (A + ok)
Ry . {Z)\ 1E(1/pi), (ui) (a2 )} = et Z m A+ a+ok)’ 1)
k=0 Hlf(uj +k/pj)
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where o and a (R(a) > 0) are complex numbers and R(\ + ok) > 0.

Corollary 4.2 Let m > 1 is an integer, R(a) > 0, R(p;) > 0, p; (i =1,---,m)
are arbitrary parameters, then we obtain the following result due to Saxena, Kalla and
Kiryakova [13, p. 372, eqn. (4.1)]:

0> {melE(l/m,w)(azl/pl)} = 2B, o, ) (@217, (42)

where a is any complex number.

Corollary 4.3 For ®(a) > 0, R(p;) > 0, p; (i = 1,--- ,m) are arbitrary parame-
ters, we obtain the following result given by Sazena, Kalla and Kiryakova [153, p. 873,

eqn. (4.6)]:
a B, {Z“HE(l/m, (a4, iz, A..,,tm)(a,zl/m)}

= ghtesiol/m {E(l/m%(u1+a—1/p17u2—1/p2, 7"'7#m—1/p'm,)(azl/p1)

1
_F(ul +a—1/p1)T(u2 —1/p2) Tt — 1/pm) }v (4.3)

where m = 1 is an integer and a # 0 is any complexr number.

Corollary 4.4 Let m > 1 is an integer, R(p;) > 0, u; (i = 1,--- ,m) are arbi-
trary parameters and W7, (.) be the Weyl fractional integral operator (1.15), then the
following result holds:

A -0 A—
W oo (A Eq/p)), (uiy(az77)} = 2 52 _
k=0 IT Tlp +k/p;)
=

(az=7)k T(ck—a—A\)
L(ck —\)

L (44

where o (R(a) > 0) and a are complex numbers and R(ck —a — A) > 0.

Corollary 4.5 Let m > 1 is an integer, R(a) > 0, R(p;) > 0, p; (i =1,---,m)
are arbitrary parameters, then there holds the formula:
Wzojoo {ZﬁaimE(l/Pi)v (lh‘)(azil/m)} - ZimE(l/Pi)v (1o, pa, s m )(azil/pl)v (4'5)

where a is any complex number.

We may mention that (4.5) is a known result due to Saxena, Kalla and Kiryakova
[13, p. 374, eqn. (4.9)].

Corollary 4.6 If m > 1 is an integer, R(a) > 0, R(p;) > 0, p; (i = 1,---,m)
are arbitrary parameters, then we get the following result given by Sazena, Kalla and
Kiryakova [13, pp. 375-876, eqn. (4.10)]:

a W2 o {=7 7 By u (0277 }

— —Hit1l/p { Zfl/pl)

E1/ps), (mi+a—1/p1, 12-1/p2, -+, ptm—1/pm ) (@
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1
—F(Ml +a+n—1/p1) (2 — 1/p2) - T(porm — 1/Pm)}7 (4.6)

where 1 and a # 0 are any complex quantities.

5. Concluding Remark

The Multiindex Mittag-Leffler functions due to Kiryakova [7] is an elegant unification
of the various special functions viz. the Mittag-Leffler function (1.2), the generalized
Mittag-Leffler function (1.4), the Wright function (1.5) and the Bessel-Maitland func-
tion (1.6). By making suitable specialization of the parameters p;, p; (i =1,2,--+ ,m)
and m, one can deduce numerous fractional calculus results involving the various types
of Mittag-Leffler functions as an application of the theorems and corollaries of the
preceding sections. Hence, the results obtained in this paper are useful in preparing
some tables of Riemann-Liouville operator, Weyl operator, Erdélyi-Kober operators
and Saigo’s operators of fractional integration involving various types of Mittag-Lefller
functions. Results obtained here may be useful in solution of certain fractional integro-
differential equations.
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