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Universidad Técnica Federico Santa Maŕıa
Valparáıso, Chile
ISSN 0716-8446
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Exponential stability of nontrivial solutions of stochastic
differential equations

Tran Thi Thu Lan a and Nguyen Hai Dang b

Abstract. This paper is concerned with the exponential stability of nontrivial

solutions of stochastic differential equations. In this paper, we give new criteria

for the exponential stability for stochastic differential equations without the trivial
solution.

1. Introduction

Stability of stochastic differential equations is one of the most active and important
areas in stochastic analysis. Many mathematicians have paid attention to it. Normally,
in order to investigate stability for stochastic differential equations of the form

(1.1) dx(t) = f(x(t), t)dt + g(x(t), t)dB(t)

we always suppose that f(0, t) ≡ g(0, t) ≡ 0. Then we shall study the stability of
the trivial solution. However, it is known that there are many types of stochastic
differential equations whose all solutions tend to each other despite they do not have
the trivial solution. These equations are worth being interested since the solutions
with different initial value has similar large-time properties. In practice, it is there-
fore sufficient to consider any solution to approximate asymptotic properties of other
solutions. In addition, the rate of the convergence tell us how large the error of the
approximation is. For this reason, we should also pay attention to estimate decay
rate of the distance of two solution with given initial values. The most important
decay rate is the exponential one. In the case where f(0, t) ≡ g(0, t) ≡ 0, the expo-
nential stability of Equation 1.1 has received quite a lot of attention in the literature.
We here mention Arnold [1], [2], Arnold, Oeljeklaus and Pardoux [3], Has’minskii[4]
among others. We also cite [5] for a systematic review. In this paper, we will study
the exponential stability of nontrivial solution of Equation (1.1).
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2. Exponential stability of nontrivial solutions

Let (Ω,F , {Ft}t≥0, P) be a complete probability space with the filtration {Ft}t≥0

satisfying the usual conditions, i.e., it is increasing and right continuous while F0

contains all P−null sets. Let Bt = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian
motion on (Ω,F , {Ft}t≥0, P). We denote | · | is the Euclidean norm in Rn. Throughout
this paper, we always suppose that Equation (1.1) satisfies a sufficient condition under
which there is some unique global solution to Equation (1.1) for any F0-adapted initial
value. We can take one of the conditions given by Has’minski in [4] and Narita in [7].
In this paper, we denote Xx is the solution to Equation (1.1) with the initial value
x ∈ Rn. Relying on the concept of the exponential stability of the trivial solution given
in [6], we define

Definition 2.1. The solution Xx(t) is said to be exponential stable if for any
y ∈ Rn,

lim sup
t→∞

1
t

ln |Xx(t)−Xy(t)| < 0 a.s.

Denote by C2,1(Rn ×R+; R+) the family of all function V (x, t) : Rn ×R+ → R+)
which are continuously twice differentiable in x and once in t. For V (x, t) ∈ C2,1(Rn×
R+; R+) we define LV by

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1
2
(
gT (x, t)Vxx(x, t)g(x, t)

)
where Vx =

( ∂V

∂x1
, . . . ,

∂V

∂xn

)
, Vxx =

(
∂2V

∂xi∂xj

)
n×n

and Vt =
∂V

∂t
.

Since we consider the difference between two solution of Equation (1.1), we need
to introduce a new operator. For any U ∈ C2,1(Rn × R+; R+) we define LU : Rn ×
Rn × R+ → R+ by

LU(x, y, t) =Ut(x− y, t) + Ux(x− y, t)
(
f(x, t)− f(y, t)

)
1
2
trace

((
g(x, t)− g(y, t)

)T
Vxx(x, t)

(
g(x, t)− g(y, t)

))
If f(x, t) ≡ g(x, t) ≡ 0, a sufficient conditions for exponential stability is derived from

Theorem 2.2 (see[6]). Assume that there exists a non-negative function V ∈
C2,1(Rn × R+; R+) and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0 such that for all x 6= 0
and t ≥ 0,

(1) c1|x|p ≤ V (x, t),
(2) LV (x, t) ≤ c2V (x, t),
(3) |Vx(x, t)g(x, t)|2 ≥ c3V

2(x, t).
Then

lim sup
t→∞

1
t

ln |Xx0(t)| ≤ −c3 − 2c2

p
a.s.

for all x0 ∈ Rn. In particular, if c3 > 2c2, the trivial solution of Equation (1.1) is
almost surely exponentially stable.

With a few small modification, we can obtain the following theorem.
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Theorem 2.3. Assume that there exists a function U ∈ C2,1(Rn × R+; R+) and
constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0 such that for all x 6= y and t ≥ 0,

(1) c1|x|p ≤ U(x, t),
(2) LU(x, y, t) ≤ c2U(x− y, t),
(3) |Ux(x− y, t)

(
g(x, t)− g(y, t)

)
|2 ≥ c3U

2(x− y, t).
Then

lim sup
t→∞

1
t

ln |Xx(t)−Xy(t)| ≤ −c3 − 2c2

p
a.s.

for all x, y ∈ Rn. In particular, if c3 > 2c2, any solution of Equation (1.1) is almost
surely exponentially stable.

We see that the theorem demands LU(x, y, t) and |Ux(x− y, t)
(
g(x, t)− g(y, t)

)
|2

can be estimated by the function of the difference x−y. It seems to be restrictive since
LU(x, y, t) and |Ux(x− y, t)

(
g(x, t)− g(y, t)

)
|2 may be depend not only on x− y but

also on |x| and |y|. In other words, there are many situation where the items (2) and
(3) of Theorem 2.3 can be satisfied only on each compact subset rather that the entire
space Rn. In order to weaken these conditions, we need an additional assumption. We
denote by K the family of all positive continuous functions µ : Rn → R+ such that
lim

|x|→∞
µ(x) = ∞.

Assumption 2.1. Assume that there exists a function µ(·) ∈ K and a constant
M > 0 such that for any x ∈ Rn,

lim sup
t→∞

1
t

∫ t

0

µ
(
Xx(s)

)
ds ≤ M a.s.

The following theorem gives a sufficient condition for the boundedness of the
average in time of µ(Xx(t)).

Theorem 2.4. Suppose that there exist functions V ∈ C2,1(Rn×R+; R+), µ(x) ∈
K and three positive numbers λ1, λ2 and c such that

(2.1) LV (x, t) + λ1

(
Vx(x, t)g(x, t)

)2 + λ2µ(x) ≤ c.

Then, lim sup
t→∞

1
t

∫ t

0
µ(Xx(s))ds ≤ c

λ2
a.s. for any x ∈ R.

Proof. By Itô formula, we have

(2.2)
V (Xx(t), t) =V (x, 0) +

∫ t

0

(
LV (Xx(s), s) + λ1

(
Vx(Xx(s), s)g(Xx(s), s)

)2
)
ds

−
∫ t

0

λ1

(
Vx(Xx(s), s)g(Xx(s), s)

)2
ds + M(t)

where M(t) =
∫ t

0
Vx(Xx(s), s)g(Xx(s), s)dB(s) is a continuous local martingale van-

ishing at t = 0. It follows from the exponential martingale inequality (see [6, Theorem
7.4]) that for any n ∈ N

P
{

sup
0≤t≤n

(
M(s)− λ1

∫ t

0

(
Vx(Xx(s), s)g(Xx(s), s)

)2
ds

)
>

lnn

λ1

}
≤ 1

n2
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An application of the Borel-Cantelli lemma yields that for almost all ω ∈ Ω, there a
random positive integer number n0 = n0(ω) such that for any n ≥ n0,

sup
0≤t≤n

(
M(t)− λ1

∫ t

0

(
Vx(Xx(s), s)g(Xx(s), s)

)2
ds

)
≤ lnn

λ1

In particular, for n− 1 ≤ t ≤ n,

M(t)− λ1

∫ t

0

(
Vx(Xx(s), s)g(Xx(s), s)

)2
ds ≤ lnn

λ1
a.s,

which implies that

M(t)
t

− λ1

∫ t

0

(
Vx(Xx(s), s)g(Xx(s), s)

)2
ds

)
≤ lnn

λ1(n− 1)
a.s.

Letting n →∞, we obtain

(2.3) lim sup
t→∞

(M(t)
t

− λ1

∫ t

0

(
Vx(Xx(s), s)g(Xx(s), s)

)2
ds

)
= 0 a.s

Combining (2.1), (2.2) and (2.3) yields

lim sup
t→∞

(V (Xx(t), t)
t

+
λ2

t

∫ t

0

µ(Xx(s))ds
)
≤ c a.s.

Since V (x, t) ≥ 0∀(x, t) ∈ Rn × R+, we get

lim sup
t→∞

1
t

∫ t

0

µ(Xx(s))ds ≤ c

λ2
a.s.∀x ∈ Rn.

�

We now give a criterion for the exponential stability.

Theorem 2.5. Let Assumption 2.1 holds. Assume that there exists a function
U ∈ C2,1(Rn×R+; R+) and two bounded continuous functions C2(r), C3(r) : R+ → R
and constants p > 0, c1 > 0, c2 > 0 such that for all x 6= y, |x| ∨ |y| ≤ r and t ≥ 0,

(1) C2(r) < c2 and C3(r) > 2C2(r)∀r > 0,
(2) c1|x|p ≤ U(x, t),
(3) LU(x, y, t) ≤ C2(r)U(x− y, t),
(4) |Ux(x− y, t)

(
g(x, t)− g(y, t)

)
|2 ≥ C3(r)U2(x− y, t).

Then there exist δ > 0 such that

lim sup
t→∞

1
t

ln |Xx(t)−Xy(t)| < −δ a.s.

for all x, y ∈ Rn.

Proof. Firstly, we note that if x 6= y, then Xx(t) 6= Xy(t)∀t ≥ 0 almost surely.
This claim is rather basic. It can be prove similarly to [6, Lemma 3.2]. Thus,
V (Xx(t) − Xy(t)) 6= 0∀t ≥ 0 with probability 1. To avoid complicated symbols,
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we denote HU(x, y, t) =
Ux(x− y, t)

(
g(x, t)− g(y, t)

)
U(x− y, t)

, for x 6= y. By Itô formula, for

t ≥ 0,

(2.4)

lnU(Xx(t)−Xy(t), t) = lnU(x− y, 0) +
∫ t

0

LU(Xx(s), Xy(s), s)
U(Xx(t)−Xy(t), t)

ds

− 1
2

∫ t

0

(
HU(Xx(s), Y y(s), s)

)2
ds

+
∫ t

0

HU(Xx(s), Y y(s), s)dB(s)

With the indication function 1(·), we note that

lim sup
t→∞

(
inf{µ(x) : |x| > R} ·

∫ t

0

1{|Xx(s)|>R}ds
)
≤ lim sup

t→∞

∫ t

0

µ(Xx(s) ≤ M.

Since inf{µ(x) : |x| > R} → ∞ as R → ∞ we imply that for any 0 < ρ < 1, there
exists an R > 0 such that

lim inf
t→∞

∫ t

0

1{|Xx(s)|>R}ds <
ρ

2
and lim inf

t→∞

∫ t

0

1{|Xy(s)|>R}ds <
ρ

2
.

As a result,

(2.5) lim inf
t→∞

1
t

∫ t

0

1{Xx(s)|∨|Xy(s)|≤R}ds > 1− ρ

Since C3(r) > 2C2(r)∀r ≥ 0 then LU(u, v, t) − 1
2
HU(u, v, t) < 0∀u 6= v. Hence,

puttingλ =
C3(R)

2
− C2(R) > 0, we have the estimate

(2.6)
1
t

∫ t

0

(LU(Xx(s), Xy(s), s)
U(Xx(s), Xy(s), s)

− 1
2
(
HU(Xx(s), Xy(s), s)

)2
)
ds

≤1
t

∫ t

0

1{|Xx(s)|∨|Xy(s)|≤R}

(LU(Xx(s), Xy(s), s)
U(Xx(s), Xy(s), s)

− 1
2
(
HU(Xx(s), Xy(s), s)

)2
)
ds

≤− λ

t

∫ t

0

1{|Xx(s)|∨|Xy(s)|≤R}ds.

Note that M(t) =
∫ t

0
HU(Xx(s), Xy(s), s) is a continuous local martingale with

M(0) = 0. Hence, employing the manner of the proof of (2.3), we have

(2.7)
lim sup

t→∞

1
t

(
M(t)− ε

2

∫ t

0

(
HU(Xx(s), Xy(s), s)

)2
)
ds

≤ lim sup
t→∞

M(t)− ε

2

∫ t

0

(
HU(Xx(s), Xy(s), s)

)2
ds ≤ 0.

On the other hand

(2.8)
ε

t

∫ t

0

LU(Xx(s), Xy(s), s)
U(Xx(s)−Xy(s), s)

ds ≤ εc2
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Combining (2.4), (2.5) (2.6), (2.7) and (2.8), we obtain

(2.9)

lim sup
t→∞

lnU(Xx(t)−Xy(t), t)
t

≤ lim sup
t→∞

1− ε

t

∫ t

0

(LU(Xx(s), Xy(s), s)
U(Xx(s)−Xy(s), s)

− 1
2
(
HU(Xx(s), Xy(s), s)

)2
)
ds

+ lim sup
t→∞

ε

t

∫ t

0

LU(Xx(s), Xy(s), s)
U(Xx(s)−Xy(s), s)

ds

+ lim sup
t→∞

1
t

(
M(t)− ε

2

∫ t

0

(
HU(Xx(s), Xy(s), s)

)2
)
ds

≤− (1− ε)(1− ρ)λ + εc2 a.s

Let ε → 0 we get

lim sup
t→∞

lnU(Xx(t)−Xy(t), t)
t

≤ −(1− ρ)λ a.s.

Since c1(Xx(t)−Xy(t))p ≤ U(Xx(t)−Xy(t), t), it is easy to see that

lim sup
t→∞

ln
∣∣Xx(t)−Xy(t), t

∣∣
t

≤ − (1− ρ)λ
p

a.s.

The proof is complete. �

Example 2.6. Let f(x) = (x + sinx)3 and consider the following equation
(2.10)

dX(t) =
(
a(t) +

b(t)
eX(t) + 1

+
α2

2
X(t)− c(t)f(X(t))

)
dt + (αX(t) + σ(t)

)
dB(t)

where a(t), b(t), c(t), σ(t) are bounded continuous functions, b̂ := inf{b(t) : t ≥ 0} >
0, ĉ := inf{c(t) : t ≥ 0} > 0 and α is a constant. Obviously, we can find out a positive
constant θ such that xf(x) ≥ θx4 ∀x ∈ R. Let V (x, t) = x2 and µ(x) = x2 also. We
have

(2.11)

LV (x, t) =2a(t)x +
2b(t)x
ex + 1

+ α2x2 − 2c(t)xf(x) +
(
αx + σ(t)

)2

=σ2(t) + 2
(
a(t) + ασ(t) +

b(t)
ex + 1

)
x + 2αx2 − 2c(t)xf(x)

=σ2(t) + 2
(
a(t) + ασ(t) +

b(t)
ex + 1

)
x + 2αx2 − 2c(t)xf(x) + 2α2x2

+
ĉθ

α2
x2

(
αx + σ(t))2 + x2

− ĉθ

4α2
4x2

(
αx + σ(t))2 − x2.
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Using the inequality c(t)xf(x) ≥ ĉθx4 ∀(x, t) ∈ Rn × R+, we imply that

M = sup
(x,t)∈Rn×R+

{
σ2(t) + 2

(
a(t) + ασ(t) +

b(t)
ex + 1

)
x + 2αx2

− 2c(t)xf(x) +
ĉ

α2
x2

(
αx + σ(t))2 + x2

}
< ∞.

As a result,

LV ≤ M − ĉ

2α2
4x2

(
αx + σ(t))2 − x2.

It follows from this inequality that this equation satisfies the Has’minskii condition

(see [4]). Moreover, applying Theorem 2.4 yields
1
t

∫ t

0

(
Xx(s)

)2
ds ≤ Ma.s∀x ∈ R2.

Now, we calculate

(2.12)
(
HV (x, y, t)

)2

= 4α2 ∀x 6= y, t ≥ 0,

and

(2.13)
LV (x, y, t) =2b(t)(x− y)

( 1
ex + 1

− 1
ey + 1

)
+ α2(x− y)2

− 2c(t)(x− y)
(
f(x)− f(y)

)
+ α2(x− y)2.

Since x2f(x) is a non-decreasing function, −2c(t)(x − y)
(
f(x) − f(y)

)
≤ 0∀x, t. We

also have

2b(t)(x− y)
( 1
ex + 1

− 1
ey + 1

)
= −2

(x− y)(ex − ey)
ex + ey

≤ 0.

Hence,
LV (x, y, t) ≤ 2α2V (x− y, t)∀x 6= y, t ≥ 0.

However, we are able to choose a constant c2 < 2α2 such that LV (x, y, t) ≤ c2V (x−
y, t)∀x 6= y, t ≥ 0. Indeed, since (2k + 1)π, k = 0,±1, . . . are stationary points of f(x),
for each ε > 0, there exist δ = δ(k, ε) > 0 such that

f
(
(2k + 1)π + δ

)
− f

(
(2k + 1)π

)
≥ −εδ.

On the other hand,

lim
y→+∞

(x− y)(ex − ey)
(ex + 1)(ey + 1)

= lim
y→+∞

l(ey+l − ey)
(ey+l + 1)(ey + 1)

= 0.

For this reason, we are unable to prove the exponential stability of this equation by
employing Theorem 2.3 for V (x, t) = x2. However, for any r > 0, applying the mean
value theorem, there exists an αr > 0 such that

−2b(t)
(x− y)(ex − ey)
(ex + 1)(ey + 1)

≤ −2b̂
(x− y)(ex − ey)
(ex + 1)(ey + 1)

≤ −αr(x− y)2 ∀|x| ∨ |y| ≤ r.

Consequently, for any x, y such that |x| ∨ |y| ≤ r,

LV (x, y, t) ≤ (−αr + 2α2)(x− y)2,

while (
HV (x, y, t)

)2 = 4α2 ∀x 6= y, t ≥ 0.
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Thus, it follows from Theorem 2.5 that the solution Xx(t) is exponential stable for
any x ∈ R.

We now give another criterion for the exponential stability.

Theorem 2.7. Suppose there is a function µ ∈ K satisfying Assumption 2.1. If
there exists a function V (x, t) ∈ C2,1(Rn × R+; R+) and a constant cr > 0 for each
r > 0 such that

(2.14)
LU(x, y, t)
U(x− y, t)

− 1
2
(
HU(x, y, t)

)2 ≤ −cr.

where HU(x, y, t) is defined in the proof of Theorem 2.5. Moreover, there is a C > 0
such that

(2.15)
(
HU(x, y, t)

)2 ≤ C
(
µ(x) + µ(y)

)
.

Then any solution Xx(t) of Equation 1.1 is exponential stable.

Proof. By Itô formula, for x 6= y, we have

(2.16)

lnU(Xx(t)−Xy(t), t) = lnU(x− y, 0)

+
∫ t

0

(
LU(Xx(s), Xy(s), s)
U(Xx(s)−Xy(s), s)

− 1
2

(
HU(Xx(s), Xy(s), t)

)2
)

ds

+
∫ t

0

HU(Xx(s), Xy(s), s)dB(s).

It follows from (2.7) and (2.15) that, for any ε > 0,

lim sup
t→∞

1
t

∫ t

0

HU(Xx(s), Xy(s), s)dB(s)

≤ lim sup
t→∞

εC

t

∫ t

0

(
µ(Xx(s)) + µ(Xy(s))

)
ds ≤ εCM a.s.

Let ε → 0, we get

(2.17) lim sup
t→∞

1
t

∫ t

0

HU(Xx(s), Xy(s), s)dB(s) ≤ 0 a.s.

On the other hand, employing the inequality (2.14) and the estimation (2.4), we
conclude that, there exists ρ < 1 and R > 0 such that
(2.18)

lim sup
t→∞

1
t

∫ t

0

(
LU(Xx(s), Xy(s), s)
U(Xx(s)−Xy(s), s)

− 1
2

(
HU(Xx(s), Xy(s), t)2

))
ds ≤ −(1− ρ)cR.

Combining (2.16), (2.17) and (2.18) we get the assertion of this theorem.
�

Example 2.8. We consider the following equation

(2.19)
dX(t) =

(
a(t)− α sgn(X(t)) ln

(
1 + |X(t)|

))
dt

+
(
b(t)X2(t) + c(t)X(t) + σ(t)

)
dB(t)
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where a(t), b(t), c(t), σ(t) are bounded continuous functions, b̂ := inf{b(t) : t ≥ 0} > 0
and α is a constant. Let V (x, t) = ln(1 + x2). We have

LV (x, t) = −2α
|x| ln(1 + |x|)

1 + x2
+

2xa(t)
1 + x2

+
(1− x2)

(
b(t)x2 + c(t)x + σ(t)

)2

(1 + x2)2

value x(0), there is a unique solution to Equation (2.10). Since b(t) ≥ b̂ ∀t ≥ 0,

sup
(x,t)∈R×R+

{ (1− x2)
(
b(t)x2 + c(t)x + σ(t)

)2

(1 + x2)2
− b̂2x2

}
< ∞.

Consequently, there exists two positive constant K1,K2 such that

(2.20) LV (x, t) ≤ K1 + V (x, t) ∀(x, t) ∈ R× R+

and

(2.21) LV (x, t) +
b̂2

2
x2 +

1
8

( 2x

1 + x2

(
b(t)x2 + c(t)x + σ(t)

))2

≤ K2 ∀(x, t) ∈ R×R+.

The inequality (2.20) guarantees the existence and uniqueness of global solution to
Equation (2.19). Meanwhile, it follows from Theorem 2.4 and the inequality (2.21)
that

1
t

∫ t

0

(
Xx(s)

)2
ds ≤ 2K2

b̂2
a.s ∀x ∈ R.

Now we let U(x, t) = x2 and get

LU(x, y, t)
U(x− y, t)

= −2α
sgn x ln(1 + |x|)− sgn y ln(1 + |y|)

x− y
+ b2(t)(x + y)2

and (HU(x, y, t)
U(x− y, t)

)2 = 4b2(t)(x + y)2 ≤ 8 sup
t≥0

{b2(t)}(x2 + y2).

It is easy to show that for any r > 0, there exists a cr > 0 such that for any x 6= y
and max{|x|, |y|} ≤ r,

sgn x ln(1 + |x|)− sgn y ln(1 + |y|)
x− y

≥ cr.

Hence,
LU(x, y, t)
U(x− y, t)

− 1
2
(
HU(x, y, t)

)2 ≤ −2αcr.

Employing Theorem 2.7, we conclude that Xx(t) is exponential stable for all x ∈ R.
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