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c© Universidad Técnica Federico Santa Maŕıa 2012

Dynamics of a stochastic predator-prey model with
Beddington DeAngelis functional response

Hoang The Tuana, Nguyen Hai Dangb and Van Khu Vub

Abstract. This paper is concerned with a stochastic predator-prey model with
Beddington DeAngelis functional response. The existence of the global solution

and the ultimate boundedness of moments of the solution are proved. Moreover,

we also estimate the average in time of the solution.

1. Introduction

In recent years, there have been many attempts to investigate stochastic eco-
models. For a systematic review, we refer to L. J. S. Allen [1]. In [3] and [9], authors
gave lower and upper growth rate of the solution to the stochastic Lotka-Volterra
model

(1.1) x(t) = diag
(
x1(t), · · · , xn(t)

)((
b+Ax(t)

)
dt+ σx(t)dB(t)

)
,

where x(t) =
(
x1(t), · · · , xn(t)

)T
, b = (bi)1×n, A = (aij)n×n, σ = (σij)n×n. They also

estimated the average in time of the moment of the solution. Especially, the asymptotic
behavior of the classical predator-prey perturbed by white noise was studied more
detail in [4], [5] and [10].

On another direction, the deterministic predator-prey model with Beddington-
DeAngelis functional response

(1.2)


dx(t) = x(t)

(
A−Bx(t)− Cy(t)

α+ βx(t) + γy(t)

)
dt

dy(t) = y(t)
(
−D +

Ex(t)

α+ βx(t) + γy(t)

)
dt

have received many attention. Here, x(t) and y(t) respectively represent the densities
of the prey and the predator at time t, while A is the intrinsic growth rate of the prey,
D is the mortality rate of the predator,C is the feeding parameter, E is the conver-
sion efficiency parameter, B and F are the intraspecies interference parameters, β is a
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food weighting factor, that correlates inversely with the prey density at which feeding
saturation occurs and α is a normalization coefficient that relates the densities of the
predator and prey to the environment in which they interact. All these parameters
are positive.

In [2], [6] and [7], a complete classification of the global dynamics of this model
was done . However, so far there seems no study on the stochastic predator-prey model
with Beddington-DeAngelis functional response. Suppose the functional response is
perturbed by white noise, then Equations (1.2) becomes a stochastic differential equa-
tions
(1.3)

dx(t) = x(t)
(
A−Bx(t)− Cy(t)

α+ βx(t) + γy(t)

)
dt+

σx(t)y(t)

α+ βx(t) + γy(t)
dB(t)

dy(t) = y(t)
(
−D +

Ex(t)

α+ βx(t) + γy(t)

)
dt+

ρx(t)y(t)

α+ βx(t) + γy(t)
dB(t),

where σ and ρ are real constants. The goal of this paper is to prove that Equations
(1.3) have the following properties

(1) With probability 1, the solution with the initial value (x0, y0) ∈ R2
+ will

remain in R2
+.

(2) Every moment of the solution is ultimately bounded.
(3) The average in time of the total population density is lower and upper

bounded by positive constants, that is, there exist two positive constants
l and L such that,

l 6 lim inf
t→∞

1

t

∫ t

0

(
x(s) + y(s)

)
ds 6 lim sup

t→∞

1

t

∫ t

0

(
x(s) + y(s)

)
ds 6 L, a.s.

These results reveals the important role that environmental noise plays in population
dynamics. In [11], the authors show that the predator or both species will be extinctive
in some cases. But, in this paper, the authors proved that a tiny amount of stochastic
noise can make both species survive.

The paper is organized as follows. The first section, authors introduce the stochas-
tic predator-prey model with Beddington-DeAngelis functional response. The section
2, we study the non-explosion of the solution to (1.3) and moment estimation. Sec-
tion 3 give a estimation for a growth rate of the solution and illustrate this result by
numerical solution. Moreover, we also estimate the average in time of x(t) + y(t). In
section 4, we give some conclusions.

2. The non-explosion of the solution and moment estimation

Throughout this paper, we let (Ω,F , {Ft}t>0,P) with the filtration {Ft}t>0 satis-
fying the usual conditions, i.e., it is increasing and right continuous while F0 contains
all P−null sets. Let B(t), t > 0 is a scalar Brownian motion defined on this probability
space. Denote by R2

+ the set {(x, y) ∈ R2, x > 0, y > 0}. Obviously, the coefficients of
Equations (1.3) are locally Lipschitz continuous but do not satisfy the linear growth
condition. However, we have
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Theorem 2.1. For any given initial value (x(0), y(0)) ∈ R2
+, there is a unique

solution x(t) to Equations (1.3) on t > 0 and this solution will remain in R2
+ almost

surely.

Proof. Since the coefficients of Equations (1.3) are locally Lipschitz continuous,
for any given initial value (x0, y0) ∈ R2

+, there is a unique local solution x(t) on
t ∈ [0, τe), where τe is the explosion time. The solution is global if τe =∞ a.s.
For each k ∈ N, we define the stopping time τk = inf{t > 0, x(t)∧y(t) < k−1 or x(t)∨
y(t) > k} with convention inf Ø =∞. τk is increasing, so we put τ∞ = lim

k→∞
τk. Denote

by V (x, y) the function x+ y − lnx− ln y. Obviously V (x, y) > 0 for all x > 0, y > 0.
By Ito formula,

dV (x(t), y(t) =
[(
x(t)− 1

)(
A−Bx(t)− Cy(t)

α+ βx(t) + γy(t)

)
+
(
y(t)− 1

)(
−D +

Ex(t)

α+ βx(t) + γy(t)

)
+

(
σy(t)

)2
+
(
ρx(t)

)2
2
(
α+ βx(t) + γy(t)

)2 ]dt
+
σ(x(t)− 1)y(t) + ρ(y(t)− 1)x(t)

α+ βx(t) + γy(t)
dB(t).

It is easy to show that, there exist two constants K1, K2 such that
(
x − 1

)(
A −

Cy

α+ βx+ γy

)
+
(
y−1

)(
−D+

Ex

α+ βx+ γy

)
6 K1(1+x), and

(
σy(t)

)2
+
(
ρx(t)

)2
2
(
α+ βx(t) + γy(t)

)2 6
K2 for all x > 0, y > 0. Thus, there exists K > 0 such that(

x− 1
)(
A−Bx− Cy

α+ βx+ γy

)
+
(
y − 1

)(
−D +

Ex

α+ βx+ γy

)
+(

σy(t)
)2

+
(
ρx(t)

)2
2
(
α+ βx(t) + γy(t)

)2 6 K1(x+ 1) +K2 − bx2 < K ∀(x, y) ∈ R2
+.

Consequently, for any t > 0, we have
(2.1)

EV (x(t ∧ τk), y(t ∧ τk)) =V (x(0), y(0)) + E
∫ t∧τk

0

[(
x(s)− 1

)(
A−Bx(s)− Cy(s)

α+ βx(s) + γy(s)

)
+
(
y(s)− 1

)(
−D +

Ex(s)

α+ βx(s) + γy(s)

)
+

(
σy(s)

)2
+
(
ρx(s)

)2
2
(
α+ βx(s) + γy(s)

)2 ]ds
6V (x(0), y(0)) + E

∫ t∧τk

0

Kds = V (x(0), y(0)) +KE(t ∧ τk).

Suppose τ∞ < ∞ with a positive probability. It implies the existence of two positive
constants ε and T > 0 such that P{τ∞ < T} > 2ε. Hence, there is k0 ∈ N such that
P{τk < T} > ε for any k > k0.
Put mk = (k − ln k) ∧ (k−1 + ln k), then mk → ∞ as k → ∞ and V (τk) > mk. By
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(2.1), mkε 6 mkP{τk < T} 6 EV (T ∧ τk) 6 KE(T ∧ τk) + V (x(0), y(0)) 6 KT +
V (x(0), y(0))∀k > k0. Let k → ∞ we get a contradiction ∞ 6 KT + V (x(0), y(0)).
Hence, τ∞ =∞ with probability 1. The proof is complete. �

Theorem 2.2. For any θ > 0, there exists Kθ > 0 such that for any given initial
value x(0) > 0, y(0) > 0, lim sup

t→∞
E
(
xθ(s) + yθ(s)

)
6 Kθ.

Proof. By Lyapunov’s inequality E|Xr| 1r 6 E|Xp|
1
p ∀ 0 < r < p, it is sufficient

to prove the theorem for θ > 2. Put V (x, y) = (Ex+Cy+ 1)θ. In view of Ito formula,
(2.2)

deθDtV (x(t), y(t)) = eθDs
(
LV (x(t), y(t)) + θDV (x(t), y(t))

)
dt

+ θeθDt
(
Ex(t) + Cy(t) + 1

)θ−1 (Eσ + Cρ)x(t)y(t)

α+ βx(s) + γy(s)
dB(t),

where

LV (x, y) = θ(Ex+Cy+1)θ−1
(

(EAx−EBx2−CDy)+
θ − 1

2(Ex+Dy + 1)

(Eσ + Cρ)2x2y2

(α+ βx+ γy)2

)
.

Note that
θ − 1

2(Ex+ Cy + 1)

(Eσ + Cρ)2x2y2

(α+ βx+ γy)2
6

θ − 1

2E

(Eσ + Cρ)2

γ2
x∀x > 0, y > 0.

Therefore, M1 > 0 can be found such that for all x > 0, y > 0,

(2.3)

θDV (x, y) + LV (x, y) =θ(Ex+ Cy + 1)θ−1
(

(E(A+D)x− EBx2 +D)

+
θ − 1

2(Ex+ Cy + 1)

(Eσ + Cρ)2x2y2

(α+ βx+ γy)2

)
6M1.

Define the stopping times tk = inf{t : x(t) ∨ y(t) > k}, k ∈ N. By virtue of (2.3),
taking expectations on both sides of (2.2) yields

EeθD(t∧tk)V (x(t ∧ tk), y(t ∧ tk)) 6 V (x0, y0) +
M1

θD
E
(
eθD(t∧tk) − 1

)
Let k →∞, we get

eθDtEV (x(t), y(t)) 6 V (x0, y0) +
M1

θD
(eθDt − 1),

or

EV (x(t), y(t)) 6 V (x0, y0)e−θDt +
M1

θD
(1− e−θDt),

which implies

lim sup
t→∞

EV (x(t), y(t)) 6
M1

θD.

By combining this with the inequality xθ + yθ 6 (E−θ + C−θ)V (x, y), the proof
is complete. �

The following result is a direct corollary of this theorem.
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Corollary 2.1. Equations (1.3) is stochastically ultimately bounded in the sense
that for any ε > 0, there is a positive constant H = H(e) such that for any initial value
(x(0), y(0)) ∈ R2

+, the solution has the property that lim sup
t→∞

P{x(t) + y(t) > H} < ε.

3. Pathwise estimation

In this section, we always denote by (x(t), y(t)) the solution to Equations (1.3)
with the initial value (x(0), y(0)) ∈ R2

+. The following theorem give a estimation for
the growth rate of the solution.

Theorem 3.1.

lim sup
t→∞

Ex(t) + Cy(t)

ln t
6

(Eσ + Cρ)2

EBγ2
.

Proof. Let 0 < θ < D and put V (x, y) = Ex+ Cy. In view of Ito formula,
(3.1)

eθtV (x(t), y(t)) =V (x(0), y(0)) +

∫ t

0

eθs
(
Ex(s)

(
A+ θ −Bx(s)

)
− C(D − θ)y(s)

)
ds

+

∫ t

0

eθs
(Eσ + Cρ)x(s)y(s)

α+ βx(s) + γy(s)
dB(s).

Put M(t) =
∫ t

0
eθs

(Eσ + Cρ)x(s)y(s)

α+ βx(s) + γy(s)
dB(s). It is also known that M(t) is a real-

valued continuous local martigale vanishing at t = 0 with quadratic form

〈M(t),M(t)〉 =

∫ t

0

e2θs
(
(Eσ + Cρ)x(s)y(s)

)2(
α+ βx(s) + γy(s)

)2 ds.

For each λ > 0, it follows from the exponential martigale inequality that

P
{

sup
06t6k

M(t)− λe−θk〈M(t),M(t)〉 > eθk

λ
ln k
}
6 k−2.

By the Borel-Cantelli lemma, there exists an Ω0 ⊂ Ω with P(Ω0) = 1 such that for
any ω ∈ Ω0, there exists a k0 = k0(ω) ∈ N satisfying

M(t)− λe−θk〈M(t),M(t)〉 < eθk

λ
ln k ∀ 0 6 t 6 k, k > k0.

On the other hand, for any 0 6 t 6 k,

e−θk〈M(t),M(t)〉 6
∫ t

0

eθs
(
(Eσ + Cρ)x(s)y(s)

)2(
α+ βx(s) + γy(s)

)2 ds 6
∫ t

0

eθs(Eσ + Cρ)2

γ2
x2(s)ds,

which results in

(3.2) M(t) 6
∫ t

0

eθsλ(Eσ + Cρ)2

γ2
x2(s)ds+

eθk

λ
ln k ∀ 0 6 t 6 k, k > k0.
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It is easy to show that for λ <
EBγ2

(Eσ + Cρ)2
,

(3.3) Kλ = sup
(x,y)∈R2

+

Ex(A+ θ −Bx)− (D − θ)y + λ
(Eσ + Cρ)2

γ2
x2 <∞.

Thus, from (3.1), (3.2) and (3.3) we have

eθtV (x(t), y(t)) 6 V (x0, y0) +Kλ

∫ t

0

eθsds+
eθk

λ
ln k ∀ 0 6 t 6 k, k > k0.

Consequently, for all k > k0 and 0 6 t 6 k,

V (x(t), y(t)) 6 V (x0, y0)e−θt +
Kλ

θ
(1− e−θt) +

eθ(k−t) ln k

λ
.

Obviously, if k > k0 and k − 1 6 t 6 k, the following inequality holds

V (x(t), y(t))

ln t
6

e−θt

ln(k − 1)

(
V (x0, y0)− Kλ

θ

)
+

Kλ

θ ln(k − 1)
+
eθ

λ

ln k

ln(k − 1)
.

Let k → ∞, we get lim sup
t→∞

V (x(t), y(t))

ln t
6
eθ

λ
. The required assertion follows from

letting θ → 0, λ→ EBγ2

(Eσ + Cρ)2
. �

Example 3.2. We illustrate the above results by the following example. Consider
(1.3) with A=1, B=2,C=1, D=1,E=1,F=2, α = β = γ = 1, σ = ρ = 2.
This numerical solution is displayed in figure 1.

Figure 1. The graph of function
Ex(t) + Cy(t)

ln t

In the sequel, we estimate the average in time of x(t) + y(t).

Theorem 3.3. There exists L > 0 such that lim sup
1

t

∫ t
0

(
x(s) + y(s)

)
ds 6 La.s.
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Proof. Put V (x, y) = Ex+ Cy. By Ito formula,
(3.4)

V (x(t), y(t))− V (x0, y0) = +

∫ t

0

[
Ex(s)

(
A−Bx(s)

)
− CDy(s)

]
ds+M(t)

= −D
∫ t

0

V (x(s), y(s))ds+

∫ t

0

(
Ex(s)

(
A+D −Bx(s)

)
+ ε

(
(Eσ + Cρ)x(s)y(s)

)2(
α+ βx(s) + γy(s)

)2 )ds
+M(t)− ε〈M(t),M(t)〉,

where M(t) =
∫ t

0

(Eσ + Cρ)x(s)y(s)

α+ βx(s) + γy(s)
dB(t) is a real-valued continuous local martigale

vanishing at t = 0 with quadratic form

〈M(t),M(t)〉 =

∫ t

0

(
(Eσ + Cρ)x(s)y(s)

)2(
α+ βx(s) + γy(s)

)2 ds.
It is easy to chose ε sufficiently small such that

−EBx2 + ε
((Eσ + Cρ)xy)2(
α+ βx+ γy

)2 6 −εx2 ∀(x, y) ∈ R2
+,

which implies

(3.5) M2 = sup
(x,y)∈R2

+

(
Ex(A+D −Bx) + ε

(
(Eσ + Cρ)xy

)2
(α+ βx+ γy)2

)
<∞.

On the other hand, V (x, y) > 0 ∀(x, y) ∈ R2
+. Thus, it follows from (3.4) and (3.5)

that

(3.6) D

∫ t

0

V (x(s), y(s))ds 6 V (x0, y0) +M2t+M(t)− ε〈M(t),M(t)〉.

Applying the exponential martingale inequality [8, Theorem 7.4, p.44] yields,

P
{

sup
06t6k

{M(t)− ε〈M(t),M(t)〉} > ln k

ε

}
6

1

k2
·

By Borel- Cantelli lemma, for almost all ω, there exists a number k0 = k0(ω) such
that for all k > k0 and 0 6 t 6 k,

M(t)− ε〈M(t),M(t)〉 < ln k

ε
,

which implies that for k − 1 6 t 6 k

1

t

(
M(t)− ε〈M(t),M(t)〉

)
6

ln k

(k − 1)ε
·

As a result,

(3.7) lim sup
t→∞

1

t

(
M(t)− ε〈M(t),M(t)〉

)
6 lim
k→∞

ln k

(k − 1)ε
= 0.
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Combining (3.6) and (3.7) gets lim sup
t→∞

1

t

∫ t
0
V (x(s), y(s))ds 6

M2

D
, a.s. Thus

lim sup
t→∞

1

t

∫ t

0

(
x(s) + y(s)

)
ds 6 La.s,

where L =
M2

Dmin{E−1, C−1}
. The proof is complete. �

Theorem 3.4. There exists l > 0 such that lim inf
t→∞

1

t

∫ t
0

(
x(s) + y(s)

)
ds > l a.s.

Proof. By Ito formula

(3.8)

lnx(t)− lnx(0) =

∫ t

0

(
A−Bx(s)− Cy(s)

α+ βx(s) + γy(s)

)
ds

−1

2

∫ t

0

σ2y2(s)(
α+ βx(s) + γy(s)

)2 ds+

∫ t

0

σy(s)(
α+ βx(s) + γy(s)

)dB(s)

M(t) =
∫ t

0

σy(s)(
α+ βx(s) + γy(s)

)dB(s) is a continuous martigale vanishing at t = 0

with quadratic form

〈M(t),M(t)〉 =

∫ t

0

σ2y2(s)(
α+ βx(s) + γy(s)

)2 ds 6 σ2γ−2t.

By the strong law of large numbers [8, Theorem 1.3.4, p.12],

(3.9) lim
t→∞

M(t)

t
→ 0 a.s.

On the other hand, it follows from Theorem (3.1) that

(3.10) lim sup
t→∞

lnx(t)− lnx(0)

t
6 0 a.s.

Combining (3.8), (3.9) and (3.10) yields

lim inf
t→∞

1

t

∫ t

0

(
Bx(s) +

Cy(s)

α+ βx(s) + γy(s)
+

1

2

σ2y2(s)(
α+ βx(s) + γy(s)

)2 )ds > A.
Note that an H > 0 can be found such that

Cy

α+ βx+ γy
+

1

2

σ2y2(
α+ βx+ γy

)2 6 Hy ∀ (x, y) ∈ R2
+.

Thus, lim inf
1

t

∫ t
0

(
Bx(s) +Hy(s)

)
ds > A with probability 1. This inequality results

in the required assertion. �
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4. Conclusion

Compare with Equations (1.1) which is studied in [3] and [9], Equations (1.3)
has more desired properties. It is due to the linear growth rate of the function

x(t)y(t)

α+ βx(t) + γy(t)
. Namely, while Mao et al [9] show that for θ < 3, there exists

Mθ such that

lim sup
t→∞

1

t

∫ t

0

E
[ n∑
i=1

xθi (t)
]
< Mθ ∀x0 ∈ Rn+,

the solution to Equations (1.3) satisfies lim sup
t→∞

E[xθ(t) + yθ(t)] < Kθ ∀θ > 0, where

Kθ is only dependent on θ. In addition, we show that lim sup
t→∞

Ex(t) + Cy(t)

ln t
6

(Eσ + Cρ)2

EBγ2
, instead of the estimation lim sup

t→∞

ln
∑n
i=1 xi(t)

ln t
6 1 given by Du and

Sam [3]. The estimation 0 < l 6 lim inf
t→∞

1

t

∫ t
0

(
x(s) + y(s)

)
ds 6 lim sup

t→∞

1

t

∫ t
0

(
x(s) +

y(s)
)
ds 6 L <∞ a.s. is also an interesting property.
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