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A COMPARISON OF THE METHOD OF BRACKETS WITH THE

METHOD OF NEGATIVE DIMENSION

KRISTINA VANDUSENA, IVÁN GONZÁLEZB AND VICTOR H. MOLLC

Abstract. Negative dimensional integration is a method of evaluating Feynman

diagrams. The method of brackets is an improvement on existing algorithms.

These methods are compared for the ”flying saucer” diagram.

1. Introduction

The goal of this work is to compare a variety of methods for the evaluation of a
definite integral, all being variations of the so-called method of negative dimension,
with an alternative presented in [5] under the name of method of brackets.
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Figure 1. The Feynman diagram for the flying saucer

These methods are compared in terms of efficiency of a single integral, the one
associated to the Feynman diagram of the flying saucer, shown in Figure 1.
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Feynman studied the interaction among elementary particles via his now famous
diagrams. The literature on this subject is immense. The reader will find [10, 11, 13,
18] good introductions to several parts of this topic.

From our point of view, a Feynman diagram is a graph with a collection of vertices
V and two types of oriented edges: the first type is a semi-infinite edge ending at
a single vertex; the second type are finite edges connecting two vertices. These two
vertices need not be distinct, so loops are allowed. The semi-infinite edges are also
known as external edges and the other type are internal edges.

The example shown in Figure 1 has 3 vertices, 2 external edges and 4 internal ones.
The edges are oriented with a label assigned to them. The initial assignments of the six
edges is modified using the condition that, at each vertex, the sum of the assignments
is zero. This gives a new total of three parameters p, q1, q2.

The Feynman diagram represents the integral of the product of the propagators
over all R4, where the propagators are the reciprocals of the squares of the momenta
that are labeled on the internal edges of the diagram. The details may be found in
[16]. The integral becomes a function of the external parameter p and the remaining
propagators parameters q1, q2 run over all R4. The corresponding integral is

(1.1) J =

∫
d4q1d

4q2
1

q2
1(q2 − p)2q2

2(q1 − q2)2
.

The following notation is used throughout: for a 4-vector q = qµ = (q1, q2, q3, q4) ∈ R4,
the symbol q2 is the euclidean norm (q1)2 + (q2)2 + (q3)2 + (q4)2.

In order to illustrate the methods of integration discussed here, it is convenient to
extend the dimension of the variables qj from 4 to a complex-valued parameter D. A
second generalization is to introduce powers νj on the propagators. This yields the
integral

(1.2) Ifs(~ν,D; p) =

∫
dDq1d

Dq2
1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
.

Notation. A variable with a multi-index notation, refers to the sum of the variable
with each individual summand as an index. Examples include

n123 = n1 + n2 + n3(1.3)

ν123 = ν1 + ν2 + ν3.

All D-dimensional integrals over qj variables are calculated over RD. All integrals over
the x-parameters are calculated in one dimension, over the positive real numbers. All
contour integrals are calculated over a small circle containing the origin.

2. The computation of gaussian integrals

A classical statement of elementary integration theory is that the function exp(−x2)
does not admit a primitive in the class of elementary function. In spite of this, the
complete integral can be evaluated as

(2.1)

∫ ∞
−∞

e−x
2

dx = Γ( 1
2 ),
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where Γ(1/2) =
√
π. Details on this classical formula appear in [4, Chapter 8]. A

simple scaling, with A > 0, gives

(2.2)

∫ ∞
−∞

e−Ax
2

dx =
Γ( 1

2 )

A1/2
.

This result is now used to establish the formula

(2.3)

∫
RN

exp
(
−A1x

2
1 − · · · −ANx2

N

)
dx1 · · · dxN =

Γ
(

1
2

)N
[A1 · · ·AN ]1/2

,

simply from the observation that

(2.4) exp

− N∑
j=1

Ajx
2
j

 =

N∏
j=1

exp(−Ajx2
j ).

In the special case Ai = A for 1 6 i 6 N this yields

(2.5)

∫
RN

exp(−A(x2
1 + · · ·+ x2

N ))dx1 . . . dxN =
Γ( 1

2 )N

(AN )1/2
,

which may be written as

(2.6)

∫
RN

exp(−Ax2)dNx =
Γ( 1

2 )N

AN/2
,

using the notation x2 = x2
1 + · · ·+x2

N . The identity (2.6) is generalized to the situation
where the integrand contains a quadratic form by the formula

(2.7)

∫
RN

exp(−xtAx) dNx =
Γ( 1

2 )N

|det(A)|1/2
.

At this point, one makes an analytic continuation of the parameter D, initially in
N, to a complex-valued parameter D. Then (2.6) is written as

(2.8)

∫
RD

exp(−Ax2)dDx =
Γ( 1

2 )D

AD/2
.

3. The Schwinger parametrization

The result presented next allows to convert powers of a real variable into an integral
containing exponentials. This Schwinger parametrization appears in the literature in
several forms.

The parametrization used in [1, 2, 15, 16] is given first.

Lemma 3.1. For A > 0 and ν ∈ R,

(3.1)
1

Aν
=

1

Γ(ν)

∫
R+

xν−1 exp(−xA) dx.

Proof. Start with the integral representation of the gamma function

(3.2) Γ(ν) =

∫ ∞
0

xν−1e−x dx
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and scale to produce

(3.3)
1

Aν
=

1

Γ(ν)

∫ ∞
0

xν−1e−Ax dx, for A > 0.

�

The parametrization used in [9, 12] is given next.

Lemma 3.2. For A, ν ∈ R,

(3.4)
1

Aν
=

(−1)νΓ(1− ν)

2πi

∮
xν−1 exp(−Ax) dx.

Proof. Start with the representation of the gamma function using a Hankel type con-
tour

(3.5) Γ(ν) = − 1

2i sin(πν)

∮
(−x)ν−1e−x dx.

Now use the identity

(3.6) Γ(ν)Γ(1− ν) =
π

sinπν
and scale the integrand by x 7→ Ax to obtain the result. �

The reader will find in [3] information for the type of contour used above. Observe
that, changing A to −A, gives the equivalent form

(3.7)
1

Aν
=

Γ(1− ν)

2πi

∮
xν−1 exp(Ax) dx.

This is used in Section 6.

4. Integration of the internal variables

The Schwinger parametrization converts the integral in (1.2) into

(4.1) Ifs(~ν,D; p) =

4∏
j=1

(−1)νjΓ(1− νj)
1

(2πi)4

∮
dx1

x1

dx2

x2

dx3

x3

dx4

x4
xν11 x

ν2
2 x

ν3
3 x

ν4
4

×
∫
R2D

dDq1d
Dq2 exp

(
[x1q

2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2]

)
.

The goal of this section is to describe a procedure to evaluate the integrals in the
qj variables, corresponding to the momenta on the loops. These will be referred as
the internal variables. This computation uses the result in (2.8).

Step 1. Compute the integral in q1. Completing the square leads to

(4.2)

x1q
2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2 = (x1 + x4)

(
q1 −

x4q2

x1 + x4

)2

+ V

= x14

(
q1 −

x4q2

x14

)2

+ V
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with

V = − x2
4q

2
2

x1 + x4
+ x2(q2 − p)2 + (x3 + x4)q2

2(4.3)

=

[
− x2

4

x1 + x4
+ x2 + x3 + x4

]
q2
2 − 2x2p · q2 + x2p

2.

=

[
− x2

4

x14
+ x234

]
q2
2 − 2x2p · q2 + x2p

2.

(4.4)

Then (2.8) gives

(4.5)

∫
RD

dDq1 exp
(
[x1q

2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2]

)
=

Γ
(

1
2

)D
(x1 + x4)D/2

× eV .

Step 2. Now integrate with respect to q2. As before, complete the square and write

(4.6) V = −W
(
q2 +

x2p

W

)2

+ T

with

(4.7) W =
x2

4

x1 + x4
− x2 − x3 − x4 and T =

x2
2p

2

W
+ x2p

2.

This gives

(4.8)

∫
R2D

exp
(
[x1q

2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2]

)
dq1 dq2 =

Γ
(

1
2

)2D
(x1 + x4)D/2(

x2
4

x1+x4
− x2 − x3 − x4)D/2

exp

 x2
2p

2

x2
4

x1+x4
− x2 − x3 − x4

+ x2p
2

 .

With the notation introduced in (4.7), the expression above can be written as

(4.9)
Γ
(

1
2

)2D
((x1 + x4)W )D/2

eT =
Γ
(

1
2

)2D
(−x4(x2 + x3)− x1(x2 + x3 + x4))D/2

eT

Introduce the notation

F = (x1x2x3 + x1x2x4 + x2x3x4)p2(4.10)

U = x1x2 + x1x3 + x1x4 + x2x4 + x3x4.

Then (4.8) is written as
(4.11)∫

R2D

exp
(
[x1q

2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2]

)
dq1 dq2 =

Γ
(

1
2

)2D
(−U)D/2

exp

(
F

U

)
.
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Definition 4.1. The polynomials F and U are called the Symanzik polynomials

corresponding to the diagram appearing in Figure 1.

The final product of this section is that the integral in (1.2) has been reduced to:

(4.12) Ifs(~ν,D; p) =

4∏
j=1

(−1)νjΓ(1− νj)
1

(2πi)4

∮
dx1

x1

dx2

x2

dx3

x3

dx4

x4
xν11 x

ν2
2 x

ν3
3 x

ν4
4

×
Γ
(

1
2

)2D
(−1)D/2

1

UD/2
exp

(
F

U

)
,

in terms of the Symanzik polynomials F and U .

Note 4.2. The next five sections present different methods in the literature to evaluate
integrals associated to Feynman diagrams. The methods are used to evaluate the flying
saucer integral.

5. Ricotta method without parametrization

This section presents the evaluation of

(5.1) Ifs(~ν,D; p) =

∫
dDq1 d

Dq2
1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
,

where

∫
is an abbreviation of

∫
RD

∫
RD

. The method discussed here appears in [12].

In her thesis, the author discusses two approaches to this evaluation. In the first one,
discussed in this Section, there are some gaussian integrals appearing as intermediate
steps are evaluated directly. This method is referred to as Ricotta method without

parametrization. In the second approach, the author uses the Schwinger parameter-
ization as an intermediate step. This is discussed in Section 6 and is called Ricotta

method with parametrization.

Step 1. The binomial expressions [(q2−p)2]−ν2 and [(q1−q2)2]−ν4 are expanded using
the multinomial theorem. For n, m ∈ N, recall the classical expansion

(5.2) (y1 + · · ·+ ym)n =
∑
|α|=n

(
n

α

)
yα

where α = (α1, . . . , αm), yα = yα1
1 · · · yαmm , the sum runs over all multi-indices α with

|α| = α1 + · · ·+ αm = n and the binomial coefficient given by

(5.3)

(
n

α

)
=

n!

α1! · · ·αm!
.

In the case with three summands1 and real exponent, the expansion (5.2) becomes

(5.4) (y1 + y2 + y3)−ν = Γ(1− ν)
∑

n1,n2,n3
n1+n2+n3=−ν

yn1
1

n1!

yn2
2

n2!

yn3
3

n3!

1This is the case appearing in the calculations discussed here.
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The sum can be written without restrictions on the indices by introducing the Kro-
necker delta

(5.5) δx,y =

{
1 if x = y

0 if x 6= y.

and then (5.4) becomes

(5.6) (y1 + y2 + y3)−ν = Γ(1− ν)
∑

n1,n2,n3

yn1
1

n1!

yn2
2

n2!

yn3
3

n3!
× δn1+n2+n3,−ν .

In the expression (5.1) use the expansions

(5.7)

((q2 − p)2)−ν2 = (q2
2 − 2q2 · p+ p2)−ν2

= Γ(1− ν2)
∑

n1,n2,n3

(q2
2)n1(2p · q2)n2(p2)n3

(−1)n2

n1!n2!n3!
δn1+n2+n3,−ν2

((q1 − q2)2)−ν4 = (q2
1 − 2q1 · q2 + q2

2)−ν4

= Γ(1− ν4)
∑

n4,n5,n6

(q2
1)n4(2q1 · q2)n5(q2

2)n6
(−1)n5

n4!n5!n6!
δn4+n5+n6,−ν4

in (5.1) to obtain

(5.8)

Ifs(~ν,D; p) = Γ(1−ν2)Γ(1−ν4)
∑

n1,...,n6

(−1)n2+n5

n1!n2!n3!n4!n5!n6!
(p2)n3δn1+n2+n3,−ν2δn4+n5+n6,−ν4

×
∫
dDq1d

Dq2 (q2
1)−ν1+n4(q2

2)−ν3+n1+n6(2p · q2)n2(2q1 · q2)n5 .

Step 2. Derive first an identity for general integrals of the type

(5.9)

∫
dDq1d

Dq2(q2
1)k1(q2

2)k2(2p · q1)k3(2p · q2)k4(2q1 · q2)k5

by using the associated gaussian
(5.10)

E =

∫
dDq1d

Dq2 exp
(
−α1q

2
1 − α2q

2
2 + α3(2p · q1) + α4(2p · q2) + α5(2q1 · q2)

)
with αi, 1 6 i 6 5 are arbitrary parameters. The evaluation of (5.8) will employ this
identity.

Start by evaluating E using the method of completing squares detailed in Section
3. The result is

(5.11) E = πD(α1α2 − α2
5)−D/2 exp

[
p2

(
α1α

2
4 + α2α

2
3 + 2α3α4α5

α1α2 − α2
5

)]
.
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Now expand the equations (5.10) and (5.11) in powers of the parameters αi and
match corresponding coefficients to produce the identity

(5.12)

∫
dDq1d

Dq2(q2
1)k1(q2

2)k2(2p · q1)k3(2p · q2)k4(2q1 · q2)k5

=
∑

m1,...,m5

πD(−1)k1+k22m3k1!k2!k3!k4!k5!Γ(1 +m4 +m5)(p2)m1+m2+m3

m1!m2!m3!m4!m5!
×

δ
m1+m2+m3+m4+m5,−

1
2D
δk1,m1+m4δk2,m2+m4δk3,2m2+m3δk4,2m1+m3δk5,m3+2m5 .

The constraints given by the Kronecker deltas lead to the system of constraints

m1 +m4 = k1

m2 +m4 = k2

2m2 +m3 = k3

2m1 +m3 = k4

m3 + 2m5 = k5

m1 +m2 +m3 +m4 +m5 = −D
2
.(5.13)

The corresponding matrix is of rank 4 and the system is consistent only if the
conditions

(5.14) 2k2 + k4 + k5 = −D and 2k1 + k3 + k5 = −D

are satisfied. These constraints will be imposed by including the Kronecker deltas
δ2k2+k4+k5,−D and δ2k1+k3+k5,−D in the series giving the value of the integral I. Since
the rank is 4 there is a single choice for the free index mj and the value of the integral
is independent of which choice of index is made.

Choose m3 as the free index, then impose the condition (5.14) and solve the system
to obtain

m1 = 1
2 (−m3 + k4)(5.15)

m2 = 1
2 (−m3 + k3),

m4 = 1
2 (m3 + 2k2 − k3)

m5 = 1
2 (−m3 + k5).

Note that the Kronecker deltas δk1,m1+m4
δk2,m2+m4

δk3,2m2+m3
δk4,2m1+m3

δk5,m3+2m5

appearing in (5.12) imply that the solutions mj , j 6= 3, are integers. For instance, the
term δk3,2m2+m3

imposes k3 = 2m2 +m3, so that k3 ≡ m3 mod 2 and this shows that
m2 is an integer. The sign condition on these solutions are discussed below.
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With this information (5.12) becomes, with m3 written simply as m,

(5.16)

∫
dDq1d

Dq2(q2
1)k1(q2

2)k2(2p · q1)k3(2p · q2)k4(2q1 · q2)k5

∑
m

πD(−1)−k1−k22mk1!k2!k3!k4!k5!Γ(1 + k2 − 1
2k3 + 1

2k5)(p2)
1
2 (k3+k4)

Γ(1− 1
2m+ 1

2k3)Γ(1− 1
2m+ 1

2k4)Γ(1− 1
2m+ 1

2k5)

× δ2k2+k4+k5,−D δ2k1+k3+k5,−D

Γ(1 + 1
2m+ k2 − 1

2k3)Γ(1 +m)

In the previous sum one has to impose restrictions of the index m so that the vari-
ables m1, m2, m4, m5 are non-negative. This requires m to range from max{0,−2k2 +
k3} to min{k3, k4, k5}.
Step 3 is to use (5.16) to evaluate (5.1)

(5.17) Ifs(~ν,D; p) =

∫
dDq1 d

Dq2
1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
,

that has been written in (5.8) as

(5.18)

Ifs(~ν,D; p) = Γ(1−ν2)Γ(1−ν4)
∑

n1,...,n6

(−1)n2+n5

n1!n2!n3!n4!n5!n6!
(p2)n3δn1+n2+n3,−ν2δn4+n5+n6,−ν4

×
∫
dDq1d

Dq2 (q2
1)−ν1+n4(q2

2)−ν3+n1+n6(2p · q2)n2(2q1 · q2)n5 .

Comparing with (5.16) it follows that

(5.19) k1 = −ν1 + n4, k2 = −ν3 + n1 + n6, k3 = 0, k4 = n2, k5 = n5

and then (5.18) becomes

(5.20)

Ifs(~ν,D; p) =
∑

n1,...,n6

min{0,n2,n5}∑
m=max{0,2ν3−2n16}

πD2m(−1)−ν13+n12456(p2)
1
2n2+n3Γ(1− ν2)

n1!n3!n4!n6!m!Γ(1− ν3 + n16 + 1
2m)

×
Γ(1− ν4)Γ(1− ν1 + n4)Γ(1− ν3 + n16)Γ(1− ν3 + n16 + 1

2n5)

Γ(1− m
2 )Γ(1 + n2

2 −
m
2 )Γ(1 + n5

2 −
m
2 )

× δn123,−ν2δn456,−ν4δ2n16+n25,2ν3−Dδ2n4+n5,2ν1−D.

Now observe that n2, n5 ∈ N, so that min{0, n2, n5} = 0. Therefore the inner sum
is trivial if 2ν3− 2n16 > 0. The only contribution comes from the case 2ν3− 2n16 6 0
and then only m = 0 contributes to the sum. In addition, the Kronecker deltas
appearing in the derivation of the identity require that n2

2 ±
m
2 and n5

2 ±
m
2 to be

integers. The conclusion is that n2, n5 and m must be of the same parity. Since the
only contribution is from m = 0, it follows that n2 and n5 must be even. Replacing
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(n2, n5) by (n2

2 ,
n5

2 ) transforms the sum to one over all integers, not just even ones.
This is now written as

(5.21)

Ifs(~ν,D; p) =
∑

n1...n6∗

πD(p2)n23Γ(1− ν2)Γ(1− ν4)Γ(1− ν1 + n4)Γ(1− ν3 + n156)

n1!n2!n3!n4!n5!n6!

× (−1)−ν1234−n3δn13+2n2,−ν2δn46+2n5,−ν4δn1256,ν3−
D
2
δ
n45,ν1−

D
2

where the star in the sum indicates that the constraint ν3−n16 6 0 must be satisfied.

Step 4 is to use the constraint on the indices to write the sum in (5.21) with a minimal
number of them.

The constraints in (5.21) are

n1 + 2n2 + n3 = −ν2(5.22)

n4 + 2n5 + n6 = −ν4

n1 + n2 + n5 + n6 = −D2 + ν3

n4 + n5 = −D2 + ν1.

There are four constraints and six indices, therefore there will be two free indices
and at most

(
6
2

)
= 15 solutions. The first two equations in (5.22) show that the sets

{n1, n2, n3} and {n4, n5, n6} must contain a free index each. This lowers the total
number of solutions to at most 9. One of these examples is completely discussed below,
the remaining eight are evaluated in a similar form, so the details are omitted.

Case 1 : n1 and n4 as free indices. Solving the system of constraints (5.22) in
terms of the free parameters gives

n2 = −D + ν134 − n1(5.23)

n3 = 2D − 2ν134 − ν2 + n1

n5 = −D2 + ν1 − n4

n6 = D − 2ν1 − ν4 + n4.

Replacing in (5.21) gives

(5.24) S14 =
∑
n1,n4∗

πD(−1)2D+ν134+n1(p2)D−ν1234Γ(1− ν2)Γ(1− ν4)

n1!n4!Γ(1 + 2D − 2ν134 − ν2 + n1)Γ(1 +D − 2ν1 − ν4 + n4)

×
Γ(1− ν1 + n4)Γ(1 + D

2 − ν134 + n1)

Γ(1−D + ν134 − n1)Γ(1− D
2 + ν1 − n4)

,

where the star in the sum indicates that the constrain n1 + n4 > −D+ 2ν1 + ν3 + ν4.

The expression for S14 given above depends on the parameters D, ν1, ν2, ν3 and
ν4, originally assumed integers.
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In order to write S14 in more compact form, introduce the notation

(5.25) ρ = −D + 2ν1 + ν3 + ν4, γ1 = 1− ν1, γ2 = 1 + D
2 − ν134,

γ3 = 1+2D−2ν134−ν2, γ4 = 1+D−2ν1−ν4, γ5 = 1−D+ν134, γ6 = 1− D
2 +ν1

to obtain

(5.26) S14 = πD(−1)2D+ν134(p2)D−ν1234Γ(1− ν2)Γ(1− ν4)
∞∑

n1=0

∑
n4>ρ−n1

(−1)n1Γ(γ1 + n4)Γ(γ2 + n1)

n1!n4!Γ(γ3 + n1)Γ(γ4 + n4)Γ(γ5 − n1)Γ(γ6 − n4)
.

Note 5.1. In the special case ρ < 0, the lower limit of summation in the index n4

can be reduced to 0. Then the double series simplifies and one obtains

(5.27) S14 = πD(−1)2D+ν134(p2)D−ν1234Γ(1− ν2)Γ(1− ν4)

×
∞∑

n1=0

(−1)n1Γ(γ2 + n1)

n1!Γ(γ3 + n1)Γ(γ5 − n1)

∞∑
n4=0

Γ(γ1 + n4)

n4!Γ(γ4 + n4)Γ(γ6 − n4)
.

Simplify these expressions using

(5.28) Γ(a+ n) = Γ(a)(a)n and Γ(a− n) =
(−1)nΓ(a)

(1− a)n
,

where (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol. The first series S
(1)
14

in (5.27) becomes

S
(1)
14 =

Γ(γ2)

Γ(γ3)Γ(γ5)

∞∑
n1=0

(γ2)n1
(1− γ5)n1

n1!(γ3)n1

(5.29)

=
Γ(γ2)

Γ(γ3)Γ(γ5)
2F1

(
γ2 1− γ5

γ3

∣∣∣∣1) .
Similarly, the second series S

(2)
14 is

(5.30) S
(2)
14 =

Γ(γ1)

Γ(γ4)Γ(γ6)
2F1

(
γ1 1− γ6

γ4

∣∣∣∣−1

)
.

Therefore

(5.31) S14 = πD(−1)2D+ν134(p2)D−ν1234Γ(1− ν2)Γ(1− ν4)

× Γ(γ2)

Γ(γ3)Γ(γ5)

Γ(γ1)

Γ(γ4)Γ(γ6)
2F1

(
γ2 1− γ5

γ3

∣∣∣∣1) 2F1

(
γ1 1− γ6

γ4

∣∣∣∣−1

)
.

In summary: the Ricotta method without parametrization gives 9 solutions of
the type given in (5.26). Under certain restriction on the parameter ρ, it is possible
that the terms in these sums could be products of two hypergeometric 2F1-functions.
However, the results may not always allow simplification.
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6. Ricotta method with parametrization

This section presents a method to evaluate the integral

(6.1) Ifs(~ν,D; p) =

∫
dDq1d

Dq2
1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
,

which uses the Schwinger parametrization in the alternate form given in Lemma 3.2
as an initial step.

Step 1. Use the Schwinger parametrization

(6.2)
1

Aν
=

Γ(1− ν)

2πi

∮
xν exp(xA)

dx

x

to rewrite (6.1) as

(6.3) Ifs(~ν,D; p) =
1

(2πi)4

4∏
j=1

Γ(1− νj)
∮
dx1

x1

dx2

x2

dx3

x3

dx4

x4
xν11 x

ν2
2 x

ν3
3 x

ν4
4

×
∫
dDq1d

Dq2 exp
[
x1q

2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2

]
.

Step 2. Evaluate the gaussian integral using the formula, discussed in Section 2,

(6.4)

∫
dDq1 . . . d

DqL exp

(
−

N∑
i=1

xiAi

)
=

(−1)DL/2πDL/2

UD/2
exp

(
F

U

)
,

where F, U are determined in Section 3. The result is

(6.5) Ifs(~ν,D; p) =
1

(2πi)4

4∏
j=1

Γ(1− νj)
∮
dx1

x1

dx2

x2

dx3

x3

dx4

x4
xν11 x

ν2
2 x

ν3
3 x

ν4
4

× (−1)DπD

UD/2
exp

(
F

U

)
.

Step 3a. Expand the exponentials in powers of xj and U to obtain

(6.6) Ifs(~ν,D; p) =
Γ(1− ν1)Γ(1− ν2)Γ(1− ν3)Γ(1− ν4)

(2πi)4

∮
dx1

x1

dx2

x2

dx3

x3

dx4

x4

×
∑

n1,n2,n3

πD(−1)D(p2)n123

n1!n2!n3!
xn12+ν1

1 xn123+ν2
2 xn13+ν3

3 xn23+ν4
4 U−D/2−n123 .
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Step 3b. Expand the multinomial U to express the integral Ifs(~ν,D; p) in terms of
the parameters xj . This produces

(6.7)

Ifs(~ν,D; p) =
∑
n1···n8

πD(−1)D(p2)n123Γ(1 + n45678)Γ(1− ν1)Γ(1− ν2)Γ(1− ν3)Γ(1− ν4)

n1!n2!n3!n4!n5!n6!n7!n8!

× 1

2πi

∮
dx1

x1
xν1+n12456

1

2πi

∮
dx2

x2
xν2+n12347

1

2πi

∮
dx3

x3
xν3+n1358

3

× 1

2πi

∮
dx4

x4
xν4+n23678

4 δn12345678,−D/2.

Step 4. Use the identity

(6.8)
1

2πi

∮
dx

x
xn = δn,0

to evaluate the integrals involving xj . This gives

(6.9)

Ifs(~ν,D; p) =
∑
n1···n8

πD(−1)D(p2)n123Γ(1 + n45678)Γ(1− ν1)Γ(1− ν2)Γ(1− ν3)Γ(1− ν4)

n1!n2!n3!n4!n5!n6!n7!n8!

× δn12456,−ν1
δn12347,−ν2

δn1358,−ν3
δn23678,−ν4

δn12345678,−D/2 .

Step 5 is to solve the system of constraints to reduce the numbers of indices. This
system is

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 = − 1
2D(6.10)

n1 + n2 + n4 + n5 + n6 = −ν1

n1 + n2 + n3 + n4 + n7 = −ν2

n1 + n3 + n5 + n8 = −ν3

n2 + n3 + n6 + n7 + n8 = −ν4.

There are 5 equations with 8 indices, so there may be as many as

(
8

5

)
= 56 solutions.

It turns out that 20 choices of a set of three free indices do not lead to a solution. For
instance, choosing n1, n2, n3 as the free parameters, leads to a 5× 5 system of rank 4.
Gaussian elimination on this system leads to the relation

(6.11) n1 + n2 + n3 = D − ν1234,

contradicting the fact that n1, n2, n3 are free variables.
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Take n1, n2, n4 to be the free variables. Solving the system of equations,

n3 = D − ν1234 − n12(6.12)

n5 = −D
2

+ ν4 − n14

n6 =
D

2
− ν14 − n2

n7 = −D + ν134 − n4

n8 = D − ν1234 − n12

The next step is to replace these values in (6.9) to get

(6.13)

Ifs(~ν,D; p) =
∑

n1,n2,n4

πD(−1)D(p2)D−ν1234Γ(1− ν1)Γ(1− ν2)Γ(1− ν3)Γ(1− ν4)

n1!n2!n4!Γ(1 +D − ν1234 − n12)Γ(1−D + ν134 − n4)

×
Γ
(
1− 3D

2 + ν1234

)
Γ
(
1− D

2 + ν4 − n14

)
Γ
(
1 + D

2 − ν14 − n2

)
Γ
(
1− D

2 + ν12 + n124

) .
This solution may be written as a product of three 2F1 hypergeometric functions. Now
use Gauss’s formula for the 2F1 at z = 1

(6.14) 2F1

(
a b

c

∣∣∣∣1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

to arrive at the solution

(6.15) Ifs(~ν,D; p) =
πD(−1)D(p2)D−ν1234Γ(1− ν1)Γ(1− ν2)Γ(1− ν4)

Γ(1 +D − ν1234)Γ
(
1− D

2 + ν4

)
Γ
(
1 + D

2 − ν14

)
×

Γ
(
1− 3D

2 + ν1234

)
Γ
(
1 + D

2 − ν134

)
Γ(1−D + ν14)

Γ (1−D + ν134) Γ
(
1− D

2 + ν2

)
Γ
(
1− D

2 + ν1

) .

Each of the 36 sets of free indices lead to the same solution when hypergeometric
identities are used, so there is a 36-fold degeneracy in the solutions for the flying saucer
diagram using the Ricotta method with Schwinger parametrization. The solutions are
classified in Tables 1 and 2
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n1, n2, n3 n1, n5, n7 n2, n5, n8 n3, n7, n8

n1, n2, n6 n2, n3, n6 n2, n6, n7 n4, n5, n7

n1, n3, n6 n2, n4, n6 n2, n6, n8 n4, n6, n7

n1, n4, n5 n2, n4, n7 n3, n4, n7 n4, n7, n8

n1, n4, n7 n2, n5, n6 n3, n4, n8 n5, n6, n8

Table 1. Sets of free indices leading to no solution

n1, n2, n4 n1, n5, n6 n2, n4, n5 n3, n6, n7

n1, n2, n5 n1, n6, n7 n2, n4, n8 n3, n6, n8

n1, n2, n7 n1, n6, n8 n2, n5, n7 n4, n5, n6

n1, n2, n8 n1, n7, n8 n2, n7, n8 n4, n5, n8

n1, n3, n4 n2, n3, n4 n3, n4, n5 n4, n6, n8

n1, n3, n7 n2, n3, n5 n3, n4, n6 n5, n6, n7

n1, n4, n6 n2, n3, n7 n3, n5, n6 n5, n7, n8

n1, n4, n8 n2, n3, n8 n3, n5, n7 n6, n7, n8

n1, n3, n5 n1, n3, n8 n1, n5, n8 n3, n5, n8

Table 2. Sets of free indices leading to a solution

Step 6: Analytic continuation to positive values of D, ν1, ν2, ν3, and ν4.

The solution contains poles coming from the gamma factors. This last step is neces-
sary to eliminate as many them as possible. The gamma functions for which analytic
continuation is necessary are determined by the values of D, ν1, ν2, ν3, and ν4. Assum-
ing that ν1 = ν2 = ν3 = ν4 = 1, one can see that at least three gamma factors will
require continuation.

The formula for analytic continuation of a ratio of gamma factors, given as equation
2.33 in [1], is

(6.16)

n∏
i=1

Γ(αi)

Γ(βi)
= (−1)

∑n
i=1(βi−αi)

n∏
i=1

Γ(1− βi)
Γ(1− αi)

.

The gamma function has poles at 0 and at negative integers, so estimating ν1 = ν2 =
ν3 = ν4 = 1, one can see that at least the gamma factors Γ(1 − ν1), Γ(1 − ν2), and
Γ(1 − ν4) will require continuation. Further estimating that D = 4, one can see that
all gamma factors in the numerator will require continuation. These six factors must
be balanced by the six gamma factors of the denominator. The result is

(6.17) Ifs(~ν,D; p) =
πD(p2)D−ν1234Γ

(
D
2 − ν1

)
Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν4

)
Γ
(
−D2 + ν14

)
Γ(ν1)Γ(ν2)Γ(ν4)Γ

(
3D
2 − ν1234

)
Γ
(
−D2 + ν134

)
Γ(D − ν14)

× Γ(−D + ν1234)Γ(D − ν134)
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7. The method of Anastasiou

In this method, one begins with the scaled version of the integral

(7.1) I(ν1, ν2, ν3, ν4) =

∫
dDq1

iπ
D
2

dDq2

iπ
D
2

1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
,

with the extra factors depending on the dimension D. The dependence on p is dropped
from the notation.

Step 1: Use the Schwinger parametrization

(7.2)
1

Aν
=

1

Γ(ν)

∫
R+

xν−1 exp(−xA) dx

given in (3.1) and then change the order of integration. This yields

(7.3) I(ν1, ν2, ν3, ν4) =∫
Dx

∫
dDq1

iπ
D
2

dDq2

iπ
D
2

exp
[
−(x1q

2
1 + x2(q2 − p)2 + x3q

2
2 + x4(q1 − q2)2)

]
,

where ∫
Dx =

1

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

∫
xν11 x

ν2
2 x

ν3
3 x

ν4
4

dx1

x1

dx2

x2

dx3

x3

dx4

x4

is a shorthand notation for the quantity which will appear on both sides of the equa-
tion in Step 4 below.

Step 2: Use the identity (2.8) to evaluate the gaussian of (7.3). Here F and U are
the Symanzik polynomials determined in Section 4:

(7.4) I(ν1, ν2, ν3, ν4) =

∫
Dx

(−1)D

U
D
2

exp

(
F

U

)
.

The next part of the process is to evaluate the integral I(ν1, ν2, ν3, ν4) in (7.3) in
two different forms and match corresponding results.

Step 3a: Expand the exponential of (7.4) and the resulting monomials. This is the
first method of evaluation of (7.3). One obtains the relation

(7.5) I(ν1, ν2, ν3, ν4) =

∫
Dx

∑
n1···n8

(−1)DΓ(1 + n45678)(p2)D−ν1234

n1!n2!n3!n4!n5!n6!n7!n8!

× δn12345678,−D2
xn12456

1 xn12347
2 xn1358

3 xn23678
4 .

Step 3b: Expand the exponentials of (7.3) in powers of the propagators and rewrite
in terms of the original integral. This is the second method of evaluation.

(7.6) I(ν1, ν2, ν3, ν4) =

∫
Dx

∑
m1···m4

xm1
1 xm2

2 xm3
3 xm4

4

m1!m2!m3!m4!
I(−m1,−m2,−m3,−m4).
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Step 4: Equate the integrands of the two expressions for I(ν1, ν2, ν3, ν4) obtained in
Steps 3a and 3b. This gives

(7.7)
∑
n1···n8

(−1)DΓ(1 + n45678)(p2)D−ν1234

n1!n2!n3!n4!n5!n6!n7!n8!
δn12345678,−D2

xn12456
1 xn12347

2 xn1358
3 xn23678

4

=
∑

m1···m4

xm1
1 xm2

2 xm3
3 xm4

4

m1!m2!m3!m4!
I(−m1,−m2,−m3,−m4).

This implies relations on the parameters mj and n`. For example, matching the power
of x1 gives

(7.8) m1 = n12456.

This condition is now imposed by putting an extra Kronecker delta on the sum of the
left-hand side and write

(7.9)∑
n1···n8

(−1)DΓ(1 + n45678)(p2)D−ν1234

n1!n2!n3!n4!n5!n6!n7!n8!
δn12345678,−D2

δn12456,m1
xn12347

2 xn1358
3 xn23678

4

=
∑

m1···m4

xm2
2 xm3

3 xm4
4

m1!m2!m3!m4!
I(−m1,−m2,−m3,−m4).

Continuing this procedure with x2, x3, x4 gives

(7.10)∑
n1···n8

(−1)DΓ(1 + n45678)(p2)D−ν1234

n1!n2!n3!n4!n5!n6!n7!n8!
δn12345678,−D2

δn12456,m1
δn12347,m2

δn1358,m3
δn23678,m4

=
I(−m1,−m2,−m3,−m4)

m1!m2!m3!m4!
.

and this can be written as

(7.11) I(−m1,−m2,−m3,−m4) =∑
n1···n8

(−1)DΓ(1 + n45678)(p2)D−ν1234

n1!n2!n3!n4!n5!n6!n7!n8!
×m1!m2!m3!m4!

δn12345678,−D2
δn12456,m1

δn12347,m2
δn1358,m3

δn23678,m4
.

Step 5: Replacemi by−νi for i = 1 to 4 in order to obtain a new expression equivalent
to I(ν1, ν2, ν3, ν4).

(7.12)

I(ν1, ν2, ν3, ν4) =
∑
n1···n8

(−1)DΓ(1− ν1)Γ(1− ν2)Γ(1− ν3)Γ(1− ν4)Γ(1 + n45678)(p2)n123

n1!n2!n3!n4!n5!n6!n7!n8!

× δn12345678,−D2
δn12456,−ν1δn12347,−ν2δn1358,−ν3δn23678,−ν4 .
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This expression is valid for νj a negative integer.

Step 6: Solve the system of constraints to reduce the number of indices of the sum.

The constraints given by the Kronecker deltas are

(7.13)

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 = − 1
2D

n1 + n2 + n4 + n5 + n6 = −ν1

n1 + n2 + n3 + n4 + n7 = −ν2

n1 + n3 + n5 + n8 = −ν3

n2 + n3 + n6 + n7 + n8 = −ν4.

There are 5 equations with 8 indices, so there may be as many as

(
8

5

)
= 56 solutions.

It turns out that 20 choices of a set of three free indices do not lead to a solution.
The remaining 36 sets all lead to the same solution when hypergeometric identities
are used. The solution is:

(7.14) I =
πD(−1)D(p2)D−ν1234Γ(1− ν1)Γ(1− ν2)Γ(1− ν4)

Γ(1 +D − ν1234)Γ
(
1− D

2 + ν4

)
Γ
(
1 + D

2 − ν14

)
×

Γ
(
1− 3D

2 + ν1234

)
Γ
(
1 + D

2 − ν134

)
Γ(1−D + ν14)

Γ (1−D + ν134) Γ
(
1− D

2 + ν2

)
Γ
(
1− D

2 + ν1

) .

There are 36 sets of free indices which lead to the solution, so there is a 36-fold de-
generacy in the solutions for the flying saucer diagram using the Anastasiou method.
The sets of free indices leading to the solution are listed in Table 2

Step 7: Analytic continuation to positive values of D, ν1, ν2, ν3, and ν4.

This step is required in order to minimize the number of poles in the solution. The
gamma factors to be analytically continued is determined by the values of D, ν1, ν2, ν3,
and ν4. In the special case ν1 = ν2 = ν3 = ν4 = 1, one can see that at least three
gamma factors require continuation. This is true in general.

The formula for analytic continuation of a ratio of gamma factors, given as equation
2.33 in [1], is

(7.15)

n∏
i=1

Γ(αi)

Γ(βi)
= (−1)

∑n
i=1(βi−αi)

n∏
i=1

Γ(1− βi)
Γ(1− αi)

.

The gamma function has poles at 0 and at negative integers, so estimating ν1 = ν2 =
ν3 = ν4 = 1, one can see that at least the gamma factors Γ(1 − ν1), Γ(1 − ν2), and
Γ(1 − ν4) will require continuation. Further estimating that D = 4, one can see that



NEGATIVE DIMENSION VERSUS BRACKETS 99

all gamma factors in the numerator will require continuation. These six factors must
be balanced by the six gamma factors of the denominator. The result is

(7.16) Ifs(~ν,D; p) =
πD(p2)D−ν1234Γ

(
D
2 − ν1

)
Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν4

)
Γ
(
−D2 + ν14

)
Γ(ν1)Γ(ν2)Γ(ν4)Γ

(
3D
2 − ν1234

)
Γ
(
−D2 + ν134

)
Γ(D − ν14)

× Γ(−D + ν1234)Γ(D − ν134)

8. The method of Suzuki

This method begins with the integral

(8.1) Ifs(~ν,D; p) ==

∫
dDq1d

Dq2
1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
.

The discussion is adapted from [15, 16].

Step 1: Write the gaussian integral corresponding to the diagram, which takes the
form

(8.2)

∫
dDq exp

(
N∑
i=1

−xiAi

)
,

Here, Ai is the propagator associated to the ith internal line of the diagram.

For the flying saucer diagram, the gaussian integral is

(8.3) G =

∫
dDq1d

Dq2 exp
[
−x1q

2
1 − x2(q2 − p)2 − x3q

2
2 − x4(q1 − q2)2)

]
.

Step 2a. The first method of evaluating Ifs(~ν,D; p) starts with the computation of
G using

(8.4)

∫
dDq1 · · · dDqL exp

(
−

N∑
i=1

xiAi

)
=
π
DL
2

U
D
2

exp

(
−F
U

)
,

where F and U are the Symanzik polynomials determined in Section 4. This first
method to evaluate G gives

(8.5) G =
πD

U
D
2

exp

(
−F
U

)
.

Step 2b. Complete the method in Step 2a by expanding the exponential in (8.5) and
the resulting multinomials in powers of x1, x2, x3, and x4. This yields

(8.6) G =
∑

n1,··· ,n8

πD(−1)n123(p2)n123Γ
(
1− D

2 − ν123

)
n1!n2!n3!n4!n5!n6!n7!n8!

× xn12456
1 xn12347

2 xn1358
3 xn23678

4 δn12345678,−D2
.
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Step 3. The second method of evaluating Ifs(~ν,D; p) starts by expanding the expo-
nential of (8.3) in powers of the propagators.

The result is

(8.7) G =

∫
dDq1d

Dq2

∑
m1,··· ,m4

(−1)m1234

m1!m2!m3!m4!
xm1

1 xm2
2 xm3

3 xm4
4

× (q2
1)m1

[
(q2 − p)2

]m2
(q2

2)m3
[
(q1 − q2)2

]m4
.

Exchanging the order of the sum and the integral shows that the integral is (8.1) with
the powers of the propagators changed. The integral G can be rewritten as

(8.8) G =
∑

m1,··· ,m4

(−1)m1234

m1!m2!m3!m4
xm1

1 xm2
2 xm3

3 xm4
4 I(−m1,−m2,−m3,−m4).

Step 4: Let mi = −νi for i = 1 to 4 and equate coefficients in the two expressions for
G. Solve for I = I(ν1, ν2, ν3, ν4) to get

(8.9) I =
∑

n1,··· ,n8

(−1)DπD(p2)n123Γ(1− ν1)Γ(1− ν2)Γ(1− ν3)Γ(1− ν4)

n1!n2!n3!n4!n5!n6!n7!n8!

× Γ

(
1− D

2
− n123

)
δn12456,−ν1δn12347,−ν2δn1358,−ν3δn23678,−ν4δn12345678,−D2

.

This is the presolution.

Step 5: Solve the system of constraints to reduce the number of indices of the sum.

The constraints given by the Kronecker deltas are

(8.10)

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 = −D
2

n1 + n2 + n4 + n5 + n6 = −ν1

n1 + n2 + n3 + n4 + n7 = −ν2

n1 + n3 + n5 + n8 = −ν3

n2 + n3 + n6 + n7 + n8 = −ν4.

There are 5 equations with 8 indices, so there may be as many as

(
8

5

)
= 56 solutions.

It turns out that 20 choices of a set of three free indices do not lead to a solution.
The remaining 36 sets all lead to the same solution when hypergeometric identities
are used. The solution is:

(8.11) I =
πD(−1)D(p2)D−ν1234Γ(1− ν1)Γ(1− ν2)Γ(1− ν4)

Γ(1 +D − ν1234)Γ
(
1− D

2 + ν4

)
Γ
(
1 + D

2 − ν14

)
×

Γ
(
1− 3D

2 + ν1234

)
Γ
(
1 + D

2 − ν134

)
Γ(1−D + ν14)

Γ (1−D + ν134) Γ
(
1− D

2 + ν2

)
Γ
(
1− D

2 + ν1

) .
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There are 36 sets of free indices which lead to the solution, so there is a 36-fold de-
generacy in the solutions for the flying saucer diagram using the Anastasiou method.
The sets of free indices leading to the solution are listed in Tables 1 and 2

Step 7: Analytic continuation to positive values of D, ν1, ν2, ν3, and ν4.

This step is required in order to minimize the number of poles in the solution. The
gamma factors to be analytically continued is determined by the values of D, ν1, ν2, ν3,
and ν4. Assuming that ν1 = ν2 = ν3 = ν4 = 1, one can see that at least three gamma
factors require continuation.

The formula for analytic continuation of a ratio of gamma factors, given as equation
2.33 in [1], is

(8.12)

n∏
i=1

Γ(αi)

Γ(βi)
= (−1)

∑n
i=1(βi−αi)

n∏
i=1

Γ(1− βi)
Γ(1− αi)

.

The gamma function has poles at 0 and at negative integers, so estimating ν1 = ν2 =
ν3 = ν4 = 1, one can see that at least the gamma factors Γ(1 − ν1), Γ(1 − ν2), and
Γ(1 − ν4) will require continuation. Further estimating that D = 4, one can see that
all gamma factors in the numerator will require continuation. These six factors must
be balanced by the six gamma factors of the denominator. The result is

(8.13) Ifs(~ν,D; p) =
πD(p2)D−ν1234Γ

(
D
2 − ν1

)
Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν4

)
Γ
(
−D2 + ν14

)
Γ(ν1)Γ(ν2)Γ(ν4)Γ

(
3D
2 − ν1234

)
Γ
(
−D2 + ν134

)
Γ(D − ν14)

× Γ(−D + ν1234)Γ(D − ν134)

9. The method of brackets

Start with I =

∫
dDq1

iπ
D
2

dDq2

iπ
D
2

1

(q2
1)ν1 [(q2 − p)2]ν2(q2

2)ν3 [(q1 − q2)2]ν4
.

Step 1: Use the Schwinger parametrization

(9.1)
1

Aν
=

1

Γ(ν)

∫
dx · xν−1 exp(−xA)

to parametrize the integral.

After parametrization, the integral is

(9.2) I =
1

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

∫
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

×
∫
dDq1d

Dq2

(iπ
D
2 )2

exp
(
−x1q

2
1 − x2(q2 − p)2 − x3q

2
2 − x4(q1 − q2)2

)
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Step 2: Integrate over the loop momenta using

(9.3)

∫
dDq1 · · · dDqL(

iπ
D
2

)L exp

(
−

N∑
i=1

xiAi

)
=

(−1)
DL
2

U
D
2

exp

(
−F
U

)
.

The result is

(9.4)

I =
1

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

∫
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

1

U
D
2

exp

(
−F
U

)
,

where F and U are the Symanzik polynomials determined in Section 4.

Step 3a: Factor F and U so as to reduce the number of indices that will be needed in
the expansion of the exponential (if possible). The best method is to look for repeated
multinomials. The reader can find more details in [6].

The first step in factoring F is to notice that all terms have a common factor of x2p
2.

The remaining factor x1x3 +x3x4 +x1x4 is found as a summand in U , so the first step
in factoring U is to write it as a sum of x1x3 + x3x4 + x1x4 and what is left. Then
these terms are factored, noting that x1 + x4 may appear in both.

(9.5)

F = (x1x2x3 + x1x2x4 + x2x3x4) p2

= x2p
2 [x3(x1 + x4) + x1x4] .

U = x1x2 + x1x3 + x1x4 + x2x4 + x3x4

= [x3(x1 + x4) + x1x4] + x2(x1 + x4).

Step 3b: Expand the exponential and resulting multinomials in steps by using the
binomial formula, so that repeated multinomials, which appear in subsequent expan-
sions, are factored last.

First, replace F and U by their factored versions, then expand the exponential.

(9.6) I =
1

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

∫
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4 ×

∑
n1

(−1)n1(p2)n1

n1!
xn1

2 [x3(x1 + x4) + x1x4]
n1

× [[x3(x1 + x4) + x1x4] + x2(x1 + x4)]
−D2 −n1 .

Begin expansion of the multinomials. In each step, select terms to expand which
contain other multinomials of the product as a summand. In the first step, since
[x3(x1 + x4) + x1x4] appears in the product by itself and as a summand of
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[x3(x1 + x4) + x1x4] + x2(x1 + x4), the latter is expanded first.

(9.7) I =
1

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

∫
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

×
∑

n1,n2,n3

(−1)n1(p2)n1Γ(1 + n23)

n1!n2!n3!
xn13

2 [x3(x1 + x4) + x1x4]
n12 (x1 + x4)n3

× δn123,−D2
.

Next, expand x3(x1 + x4) + x1x4, noticing that the multinomial x1 + x4 appears in
the product and will be expanded later.

(9.8) I =
1

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

∫
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

×
∑

n1,··· ,n5

(−1)n1(p2)n1Γ(1 + n23)Γ(1 + n45)

n1!n2!n3!n4!n5!
xn5

1 xn13
2 xn4

3 xn5
4 (x1 + x4)n34

× δn123,−D2
δn12−n45,0.

Finally, the remaining multinomial x1 +x4 is expanded and the x-integrals separated.

(9.9) I =
∑

n1,··· ,n7

(−1)n1(p2)n1Γ(1 + n23)Γ(1 + n45)Γ(1 + n67)

n1!n2!n3!n4!n5!n6!n7!

∫
dx1

Γ(ν1)
xn56+ν1−1

1

×
∫

dx2

Γ(ν2)
xn13+ν2−1

2

∫
dx3

Γ(ν3)
xn4+ν3−1

3

∫
dx4

Γ(ν4)
xn57+ν4−1

4

× δn123,−D2
δn12−n45,0δn34−n67,0

Step 4: Write the integrals in terms of brackets using 〈α〉 =
∫
dx · xα−1, and write

any Kronecker deltas in terms of brackets using the identity

(9.10) δα,β =
(−1)ω〈α− β〉
Γ(ω)Γ(1− ω)

,

where ω is an arbitrary value chosen so that some of the gamma factors in the numer-
ator cancel.

Replacing each integral and Kronecker delta by an expression in terms of brackets
gives

(9.11) I =
∑
n1···n7

(−1)n1(p2)n1Γ(1 + n23)Γ(1 + n45)Γ(1 + n67)

n1!n2!n3!n4!n5!n6!n7!Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)
〈n5 + n6 + ν1〉

× 〈n1 + n3 + ν2〉〈n4 + ν3〉〈n5 + n7 + ν4〉

×
(−1)n23

〈
n1 + n2 + n3 + D

2

〉
Γ(1 + n23)Γ(−n23)

(−1)n45〈n1 + n2 − n4 − n5〉
Γ(1 + n45)Γ(−n45)

(−1)n67〈n3 + n4 − n6 − n7〉
Γ(1 + n67)Γ(−n67)

.

Step 5a: Find the values of n∗1, n
∗
2, · · · , n∗7 and |detA|, where the starred indices are

the values that make the system of brackets vanish and A is the matrix of coefficients
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of the brackets.

The brackets vanish when

(9.12)

n5 + n6 = −ν1

n1 + n3 = −ν2

n4 = −ν3

n5 + n7 = −ν4

n1 + n2 + n3 = −D
2

n1 + n2 − n4 − n5 = 0

n3 + n4 − n6 − n7 = 0,

so the matrix A of coefficients of the brackets is

(9.13) A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1 1 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
1 1 1 0 0 0 0
1 1 0 −1 −1 0 0
0 0 1 1 0 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and |detA| = 1.

There are 7 equations and 7 indices, so there will be no free index, which allows only
one solution. The values are

(9.14)

n∗1 = D − ν1 − ν2 − ν3 − ν4

n∗2 = −D
2

+ ν2

n∗3 = −D + ν1 + ν3 + ν4

n∗4 = −ν3

n∗5 =
D

2
− ν1 − ν4

n∗6 = −D
2

+ ν4

n∗7 = −D
2

+ ν1

Step 5b: Evaluate the brackets using the formula

(9.15)
∑

m1···mk

φ1 · · ·φkf(m1 · · ·mk)∆1 · · ·∆k =
f(m∗1 · · ·m∗k)

|detA|
Γ(−m∗1) · · ·Γ(−m∗k)

where the ∆i represent each of the k brackets, and φj =
(−1)mj

mj !
.
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The result is

(9.16) I =
(p2)n

∗
1Γ(−n∗1)Γ(−n∗2)Γ(−n∗3)Γ(−n∗4)Γ(−n∗5)Γ(−n∗6)Γ(−n∗7)

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)Γ(−n∗2 − n∗3)Γ(−n∗4 − n∗5)Γ(−n∗6 − n∗7)
.

Substituting the values of the starred indices gives the final solution.

(9.17) I =
(p2)D−ν1234Γ

(
D
2 − ν1

)
Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν4

)
Γ
(
−D2 + ν14

)
Γ(ν1)Γ(ν2)Γ(ν4)Γ

(
3D
2 − ν1234

)
Γ
(
−D2 + ν134

)
Γ(D − ν14)

× Γ(−D + ν1234)Γ(D − ν134).

Step 6: Analytic continuation to positive values of D, ν1, ν2, ν3, and ν4.

Assuming that ν1 = ν2 = ν3 = ν4 = 1, it is not obvious that any of the gamma factors
will require analytic continuation.

10. Conclusions

Ricotta, in [12], gave several methods for evaluating Feynman diagrams using negative
dimensional integration. The first method, in Section 5, is referred to here as the Ri-
cotta method without parametrization. It uses the multinomial formula (5.2) to write
the integrand as a polynomial, and derives an identity to evaluate the terms. This
method gives 9 solutions, each of which is a double sum. Because of the constraints
on the indices, it is not obvious that any of the series may be written in closed form;
however, under certain conditions on the parameters, they may be written as a prod-
uct of hypergeometric functions and simplified.

The second method, in Section 6, is referred to here as the Ricotta method with
parametrization, and uses the Schwinger parametrization. The Schwinger parametriza-
tion introduces a new parameter for each of the internal segments of the diagram.
Introducing new parameters allows the integral over the loop momentum q to become
a gaussian, which is easily evaluated, leaving integrals over each of the Schwinger pa-
rameters. For this method, there are 56 choices for a set of free indices. 20 of these
lead to no solution and 36 choices lead to triple hypergeometric series which may be
determined by using the Gauss summation formula. Each of these 36 choices lead
to the same solution, and analytic continuation of at least three gamma factors is
required to obtain the final result.

C. Anastasiou, E. Glover, and C. Oleari, in [1, 2], evaluated the integrals two ways and
equated the results, beginning with the integral associated to the Feynman diagram
and using the Schwinger parametrization. This method, in Section 7, is referred to
here as the Anastasiou method. This method gives the same solutions as the Ricotta
method with parametrization.

Instead of beginning with the integral associated to the Feynman diagram, Suzuki
and Schmidt began with an associated gaussian. This is the same gaussian obtained
by Schwinger parametrization of the integral for the diagram. They changed the
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algorithm somewhat in that they did not evaluate the integrals over the Schwinger
parameters, but instead found two ways to evaluate the integral, equating the results
to find the solution. This method, in Section 8, is referred to here as the Suzuki
method, and finds the same solutions as in the previous two methods.

Suzuki and Schmidt gave many examples using negative dimensional integration.
Among them, they found that negative dimensional integration not only gives the
solutions that were able to be calculated using other methods, but that new solutions
were simultaneously obtained. These new solutions are analytic continuations of the
other solutions, which are convergent in other regions (which depend on external mo-
mentum and mass).

I. Gonzalez and I. Schmidt, in [6, 7, 8], further developed negative dimensional inte-
gration with the method of brackets algorithm. The method of brackets adds the step
of the factorization of F and U when possible, which greatly reduces the number of
free indices in the solution for more complicated diagrams (here, 36 solutions were re-
duced to one). The formulas used for the Schwinger parametrization and the analysis
of brackets further simplify the calculations involved to determine the final solution,
because the Schwinger parametrization leaves factors of Γ(νi), which is analytic for
positive νi, in the result rather than factors of Γ(1− νi), which require continuation,
and the expression for δα,β allows one to choose gamma factors that cancel with ex-
isting gamma factors, further simplifying the result.

The method of brackets is an improvement upon the earlier methods of negative di-
mensional integration. In this example of the flying saucer diagram, the method of
brackets gives the same solution as the other methods, and does so without requiring
the extra step of analytic continuation. With the factorization of F and U before the
expansion into powers of the x parameters, the number of free indices can be greatly
reduced. This yields solutions which are sums over fewer indices, which are more likely
to be a special type of hypergeometric series, such as an Appell function, for which
convergence properties are known. The reader will find more examples in [17].

In this work the one diagram was evaluated considering the two loops simultane-
ously. The only purpose of the work discussed here was to compare the methods
existing in the literature. On the other hand, this diagram belongs to a family that
can be evaluated loop by loop in a recursive manner. This produces the solution in a
direct and simple manner. The reader can verify this using the strategies described in
[14].
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