
SCIENTIA
Series A: Mathematical Sciences, Vol. 23 (2012), 31–44
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On certain generalized polynomial system associated with
Humbert polynomials

Ritu Agarwala and Hari Singh Pariharb

Abstract. The object of this paper is to present a unification and generaliza-

tion of a class of Humbert polynomials which generalizes the well known class

of Gegenbauer, Legendre, Pincherle, Horadam, Kinney, Horadam-Pethe, Gould,
Milovanovic-Dordevic, Pathan-Khan and many not so well known polynomials.

We shall give some basic relations involving the generalized Humbert polynomi-

als and then take up several generating functions, hypergeometric representations
and expansions in series of some relatively more familiar polynomials of Legendre,

Gegenbauer, Hermite and Laguerre. The results obtained are of general character

and include the investigations carried out by several authors including Dilcher,
Horadam, Sinha, Shreshtha, Milovanovic-Dordevic and Pathan-Khan.

1. Introduction

A systematic study of an interesting generalization of Humbert, Gegenbauer and
several other polynomial systems is presented and defined by Gould [3]

(1.1) (c−mxt+ ytm)p =

∞∑
n=0

Pn(m,x, y, p, c)tn

where m is a positive integer and other parameters are unrestricted in general. For
the special case of (1.1), including Gegenbauer, Legendre, Techebycheff, Princherle,
Kinney and Humbert polynomials, see Gould [3].

Milovanovic and Dordevic [10] considered the polynomials {pλn,m}∞n=0 defined by
the generating function

(1.2) Gλm(x, t) = (1− 2xt+ tm)−λ =

∞∑
n=0

pλn,mt
n

where m ∈ N and λ > − 1
2 .
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The explicit form of the polynomial Pλn,m(x) is

(1.3) pλn,m(x) =

[ nm ]∑
k=0

(−1)k(λ)n−(m−1)k(2x)n−mk

k!(n−mk)!

Sinha [14] considered another set of polynomials denoted by Sνn(x) and which is
defined by the following generating function:

(1.4) [1− 2xt+ t2(2x− 1)]−ν =

∞∑
n=0

Sνn(x)tn

which is precisely a generalization of Sn(x) defined and studied by Shreshtha [13].
Recently, Pathan and Khan [11, p.54, Eq. (1.5)], have defined and studied the

following polynomial system

(1.5) [c− axt+ btm(2x− 1)d]−ν =

∞∑
n=0

P νn,m,a,b,c,d(x)tn =

∞∑
n=0

Θn(x)tn

Here we introduce and study a new polynomial system which provides a gen-
eralization (and unification) of various polynomials mentioned above. This set of
polynomials is defined by the following generating function:

[c− axµt+ btm(pxν + qx+ s)ρ]
−ω

=

∞∑
n=0

Pωn (m, a, b, c, ρ, p, q, r, µ, ν)(x)tn =

∞∑
n=0

Φn(x)tn
(1.6)

where m,µ, ν ∈ N(the set of natural numbers), ρ ∈ N ∪{0} and other parameters
are unrestricted in general.

In this paper, we shall give some basic relations involving the generalized Humbert
polynomials Φn(x) and then take up several operational results, series representation,
hypergeometric representations and expansions of Φn(x) in series of other polynomi-
als which are best stated in terms of the generalized polynomials. The relationship
with other polynomial systems are also developed. Definition (1.6) of Φn(x) is general
enough to account for many of polynomials involved in generalized potential prob-
lems [6], [7], [8]. The particular cases of the generalized Humbert polynomials Φn(x)
are also discussed.

2. Relations with other polynomial systems

On comparing the new polynomial system (1.6) with the other polynomial systems
, we find the following relationships hold:

Liouville(1722)

(2.1) P 1/2
n (2, q,−1, p2, 1, 0, 0, 1, 1, 0)(x) = fn(p, q)
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Legendre(1784)

(2.2) P 1/2
n (2, x, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Pn(x)

Tchebycheff(1859)

(2.3) P 1
n(2, x, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Un(x)

Gegenbauer(1874)

(2.4) P δn(2, x, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Cδn(x)

Pincherle(1890)

(2.5) P 1/2
n (3, x, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Pn(x)

Humbert(1921)

(2.6) P δn(m,x, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Πδ
n,m(x)

Kinney(1963)

(2.7) P 1/m
n (m,x, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Pn(m,x)

Gould(1965)

(2.8) P−pn (m, a,−y, c, 1, 0, 0, 1, 1, 0)(x) = Pn(m,x, y, p, c)

Horadam and Pethe(1981)

(2.9) Pωn (3, 2, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Pωn,3(x)

Horadam(1985)

(2.10) Pωn (1, 2, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Pωn,1(x)

Milovanovic and Dordevic(1987)

(2.11) Pωn (m, 2, 1, 1, 1, 0, 0, 1, 1, 0)(x) = Pωn,m(x)

Sinha(1989)

(2.12) Pωn (2, 2, 1, 1, 1, 2, 0,−1, 1, 1)(x) = Sωn (x)

Pathan and Khan(1997)

(2.13) Pωn (m, a, b, c, ρ, 2, 0, 1, 1, 1)(x) = Pωn (m, a, b, c, ρ)(x)

3. Finite series representations for Φn(x)

In this section, we obtain the following two finite series representations for Φn(x),
viz. (i)

(3.1) Φn(x) =

[ nm ]∑
k=0

(−b)k(ω)n−(m−1)k(axµ)n−mk(pxν + qx+ s)ρkc−ω−n+(m−1)k

k!(n−mk)!

and
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(ii)

Φn(x) =

[ (n−(m−2)r)
2 ]∑

k=0

k∑
r=0

(ω)kc
−ω−n+(m−2)r(2ω + 2k)n−2k−(m−2)r

k!r!(n− 2k − (m− 2)r)!

(−k)r

(
axµ

2

)n−(m−2)r {
4bc(pxν + qx+ s)ρ

a2x2µ

}r(3.2)

Proof. of (3.1):
By using binomial expansion in (1.6), we have

(3.3)

∞∑
n=0

Φn(x)tn = c−ω
∞∑
n=0

(ω)n
n!

(
axµt− btm(pxν + qx+ s)ρ

c

)n
.

Also, we know that

(3.4) (t+ v)n =

n∑
k=0

n!

k!(n− k)!
tkvn−k.

By using (3.4) in (3.3), we get

∞∑
n=0

Φn(x)tn =

∞∑
n=0

n∑
k=0

c−ω−n(ω)n
k!(n− k)!

(−b)k(axµ)n−k(pxν + qx+ s)ρktn+(m−1)k

which on applying series manipulation [12, p.57, Eq.(2)]

(3.5)

∞∑
n=0

n∑
k=0

B(k, n) =

∞∑
n=0

∞∑
k=0

B(k, n+ k)

gives

(3.6)

∞∑
n=0

Φn(x)tn =

∞∑
n=0

∞∑
k=0

c−ω−n−k(ω)n+k

k!n!
(−b)k(axµ)n(pxν + qx+ s)ρktn+mk.

Again, using series manipulation

(3.7)

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

[ nm ]∑
k=0

A(k, n−mk)

in (3.6), we have

∞∑
n=0

Φn(x)tn =

∞∑
n=0

[ nm ]∑
k=0

c−ω−n+(m−1)k(ω)n−(m−1)k

k!(n−mk)!

(−b)k(axµ)n−mk(pxν + qx+ s)ρktn.

(3.8)

On comparing the coefficients of tn, on both sides of (3.8), we get the finite series
representation of (3.1) for Φn(x).
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Proof of (3.2): From (1.6), we have

∞∑
n=0

Φn(x)tn = c−ω

[(
1− axµt

2c

)2

−
(
axµt

2c

)2

+
btm

c
(pxν + qx+ s)ρ

]−ω

= c−ω
(

1− axµt

2c

)−2ω
[

1−
(
axµt

2c

)2 − btm

c (pxν + qx+ s)ρ(
1− axµt

2c

)2
]−ω(3.9)

Using Binomial expansion in (3.9), we have

∞∑
n=0

Φn(x)tn = c−ω
∞∑
k=0

(ω)k
k!

(
1− axµt

2c

)−2ω−2k (
axµt

2c

)2k

.

[
1− 4bctm(pxν + qx+ s)ρ

a2t2x2µ

]k
= c−ω

∞∑
k=0

∞∑
n=0

(ω)k(2ω + 2k)n
k!n!

(
axµt

2c

)n+2k

.

[
1− 4bctm−2(pxν + qx+ s)ρ

a2x2µ

]k
= c−ω

∞∑
k=0

∞∑
n=0

k∑
r=0

(ω)k(2ω + 2k)n(−k)r
k!n!r!

(
axµ

2c

)n+2k

.

(
4bc(pxν + qx+ s)ρ

a2x2µ

)r
t(n+2k+(m−2)r)

(3.10)

Replacing n by n− 2k − (m− 2)r in (3.10), we get

∞∑
n=0

Φn(x)tn =

∞∑
n=0

[ (n−(m−2)r)
2 ]∑

k=0

k∑
r=0

c−ω−n+(m−2)r(ω)k
k!r!(n− 2k − (m− 2)r)!

.(2ω + 2k)n−2k−(m−2)r(−k)r

(
axµ

2

)n−(m−2)r

.

(
4bc(pxν + qx+ s)ρ

a2x2µ

)r
tn

(3.11)

On comparing the coefficients of tn on both sides of (3.11), we get (3.2).
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4. Hypergeometric representations for Φn(x)

Φn(x) =
(ω)nc

−ω−n(axµ)n

n!

.mFm−1

 −n
m , −n+1

m , ..., −n+m−1
m ;

−ω−n+1
m−1 , −ω−n+2

m−1 , ..., −ω−n+m−1
m−1 ;

mmbcm−1(pxν + qx+ s)ρ

(m− 1)(m−1)(axµ)m



(4.1)

for m > 2.

Proof. Since we know that [12, p.58, Eq.(2)]

(4.2) (α)n−k =
(−1)k(α)n

(1− α− n)k
, 0 6 k 6 n.

Using (4.2) in (3.1), we have

(4.3) Φn(x) =

[ nm ]∑
k=0

(−1)(m−1)k(−b)k(ω)n(axµ)n−mk(pxν + qx+ s)ρkc−ω−n+(m−1)k

(1− ω − n)(m−1)kk!(n−mk)!

Now, using the well-known results

(4.4) (n−mk)! =
(−1)mkn!

(−n)mk
, 0 6 mk 6 n,

(4.5) (−n)mk = mmk
m∏
s=1

(
−n+ s− 1

m

)
k

and

(4.6) (1− ν − n)(m−1)k = (m− 1)(m−1)k

(m−1)∏
p=1

(
−ν − n+ p

m− 1

)
k

, k = 0, 1, 2, ...

in (4.3), we find that

Φn(x) =

[ nm ]∑
k=0

(m)mk(b)kc−ω−n+(m−1)k(ω)n
∏m
r=1

(−n+r−1
m

)
k∏m−1

r=1

(
−ω−n+r
m−1

)
k

(m− 1)(m−1)kk!n!

.(axµ)n−mk(pxν + qx+ s)ρk

(4.7)

After a little simplification in the right hand side of (4.7), we get (4.1). �
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5. Generating functions for Φn(x)

(i)

∞∑
n=0

Φn(x)tn

(ω)n
=

∞∑
n=0

c−ω−n(axµt)n

n!

.1Fm

 ω + n;

ω+n
m , ω+n+1

m , ..., ω+n+m−1
m ;

−btm(pxν + qx+ s)ρ

cmm

(5.1)

(ii)

∞∑
n=0

Φn(x)tn(e)n
(ω)n

=

∞∑
n=0

c−ω−n(axµt)n(e)n
n!

.m+1Fm

 ω + n, e+nm , e+n+1
m , ..., e+n+m−1

m ;

ω+n
m , ω+n+1

m , ..., ω+n+m−1
m ;

−btm(pxν + qx+ s)ρ

cmm

(5.2)

(iii)

∞∑
n=0

Φn(x)tn

(2ω)n
=

∞∑
n=0

∞∑
k=0

k∑
r=0

c−ω−n−2k(−k)r
(
axµt

2

)n+2k

n!k!r!22k(ω + 1
2 )k(2ω + n+ 2k)(m−2)r

.

(
4bctm−2(pxν + qx+ s)ρ

a2x2µ

)r(5.3)

and
(iv)

∞∑
n=0

Φn(x)tn(e)n
(2ω)n

=

∞∑
n=0

∞∑
k=0

k∑
r=0

c−ω−n−2k(−k)r
(
axµt

2

)n+2k

n!k!r!22k(2ω + n+ 2k)(m−2)r

.(e)n+2k

(e+ n+ 2k)(m−2)r

(ω + 1
2 )k

(
4bctm−2(pxν + qx+ s)ρ

a2x2µ

)r(5.4)

where e is an arbitrary number, may be a complex number.

Proof. of (5.1):

∞∑
n=0

Φn(x)tn

(ω)n
=

∞∑
n=0

[ nm ]∑
k=0

(−b)k(ω)n−(m−1)kc
−ω−n+(m−1)k

(ω)nk!(n−mk)!

.(axµ)n−mk(pxν + qx+ s)ρktn

(5.5)
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By using series manipulation [15, p.101, Eq.(6)], we have

∞∑
n=0

Φn(x)tn

(ω)n
=

∞∑
n=0

∞∑
k=0

(−b)k(ω)n+kc
−ω−n−k

(ω)n+mkk!n!

.(axµ)n(pxν + qx+ s)ρktn+mk

(5.6)

Using the identity

(λ)m+n = (λ)m(λ+m)n

and the well-known Gauss’s multiplication theorem in (5.6), we find that

∞∑
n=0

Φn(x)tn

(ω)n
=

∞∑
n=0

∞∑
k=0

(−b)k(ω + n)kc
−ω−n−k

k!n!(m)mk
∏m
p=1

(
ω+n+p−1

m

)
k

.(axµ)n(pxν + qx+ s)ρktn+mk

(5.7)

By summing the kth series, we easily arrive at the right hand side of (5.1). �

The proof of (5.2) is similar to the proof of (5.1). (5.3) and (5.4) can be made on
similar lines of (5.1) using (3.2).

6. Expansion of Φn(x) in series of polynomials

Expansion of Φn(x) in series of Legendre, Geganbauer, Hermite and Laguerre
polynomials relevant to our present investigation are given by

(i)

Φn(x) =

[ (n−(m−2)r)
2 ]∑

k=0

k∑
r=0

(−1)k(ω)n+(m−1)(r−k) c
−ω−n+(m−1)(k−r)

k!r!(3/2)(n−mk+(m−1)r)

.(−k)r {b(pxν + qx+ s)ρ}k−r {2n+ 2r(m− 2)− 2mk + 1}

.Pn+(m−2)r−mk

(
axµ

2

)
,

(6.1)

where Pn(x) is Legendre Polynomial.
(ii)

Φn(x) =

[ (n−(m−2)r)
2 ]∑

k=0

k∑
r=0

(−1)k(ω)n+(m−1)(k−r)c
−ω−n+(m−1)(k−r)

k!r!(ω)(n+1−mk+(m−1)r)

.(−k)r {b(pxν + qx+ s)ρ}k−r {ω + n− 2r −m(k − r)}

.Cωn−2r−m(k−r)

(
axµ

2

)
,

(6.2)

where Cωn (x) stands for Gegenbauer polynomial.
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(iii)

Φn(x) =

[ (n−(m−2)r)
2 ]∑

k=0

k∑
r=0

(−1)k(ω)n−(m−1)(k−r)c
−ω−n+(m−1)(k−r)

k!r!(n− 2r −m(k − 1))!

.(−k)r {b(pxν + qx+ s)ρ}k−rHn−2r−m(k−r)

(
axµ

2

)
,

(6.3)

where Hn(x) stands for Hermite polynomial.
(iv)

Φn(x) =

[ (n−(m−2)r)
2 ]∑

r=0

[n2 ]∑
k=0

(−1)k+r(ω)n−(m−1)kc
−ω−n+(m−1)k

k!(n− r −mk)!(1 + α)r

.(1 + α)n2n−mk {b(pxν + qx+ s)ρ}k L(α)
n

(
axµ

2

)
,

(6.4)

where L
(α)
n (x) stands for Laguerre polynomial.

Proof. of (6.1)
From (3.1), we have

∞∑
n=0

Φn(x)tn =

∞∑
n=0

[ nm ]∑
k=0

(−b)k(ω)n−(m−1)kc
−ω−n+(m−1)k

k!(n−mk)!

.(axµ)n−mk(pxν + qx+ s)ρktn

(6.5)

Using a known result [15, p.101, Eq.(6)] in (6.5), we get

∞∑
n=0

Φn(x)tn =

∞∑
n=0

∞∑
k=0

(−b)k(ω)n+kc
−ω−n−k

k!n!
(axµ)n

(pxν + qx+ s)ρktn+mk.

(6.6)

Again on using the result [12, p.181, Eq.(4)] in (6.6), we get

∞∑
n=0

Φn(x)tn =

∞∑
n=0

∞∑
k=0

[n2 ]∑
r=0

(−b)k(ω)n+kc
−ω−n−k

k!r!(3/2)n−r

.(pxν + qx+ s)ρk(2n− 4r + 1)Pn−2r

(
axµ

2

)
tn+mk.

(6.7)

Using the results [12, p.57, Eq.(8) and p.56, Eq.(1)] in (6.7), we have

∞∑
n=0

Φn(x)tn =

∞∑
n=0

∞∑
k=0

k∑
r=0

(−b)k−r(ω)n+r+kc
−ω−n−r−k

(k − r)!r!(3/2)n+r

.(pxν + qx+ s)ρ(k−r)(2n+ 1)Pn

(
axµ

2

)
tn−(m−2)r+mk.

(6.8)
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Now replacing n by n+ (m− 2)r −mk, we get

∞∑
n=0

Φn(x)tn =

∞∑
n=0

[n+(m−2)r
m ]∑
k=0

k∑
r=0

(−b)k−r(ω)n−(m−1)(k−r)

(k − r)!r!(3/2)n+(m−1)r−mk

.(pxν + qx+ s)ρ(k−r)(1− 2mk + 2n+ 2(m− 2)r)

.c−ω−n+(m−1)(k−r)Pn+(m−2)r−mk

(
axµ

2

)
tn.

(6.9)

On using (4.4) in (6.9), we get

∞∑
n=0

Φn(x)tn =

∞∑
n=0

[n+(m−2)r
m ]∑
k=0

k∑
r=0

(−1)k(ω)n−(m−1)(k−r)

(k − r)!r!(3/2)n+(m−1)r−mk

.(−k)r{b(pxν + qx+ s)ρ}(k−r)(1− 2mk + 2n+ 2(m− 2)r)

.c−ω−n+(m−1)(k−r)Pn+(m−2)r−mk

(
axµ

2

)
tn.

(6.10)

On comparing the coefficients of tn, we obtain (6.1). �

In a similar manner, results (6.2) to (6.4) can be proved by using [12, p.283,
Eq.(36), p.194, Eq.(4) and p.207, Eq.(2)] respectively.

7. Particular Cases

(1) For a = m = p = 2, b = c = ρ = µ = ν = 1, q = 0, r = −1, (3.1) gives

(7.1) Sωn (x) =

[n2 ]∑
k=0

(−1)k(ω)n−k(2x)n−2k(2x− 1)k

k!(n− 2k)!

where Sωn (x) stands for Sinha’s polynomial defined by (1.4).
(2) Making same substitutions in (3.2), we get

Sωn (x) =

[n2 ]∑
k=0

k∑
r=0

(ω)k(2ω + 2k)n−2k(−k)r
k!r!(n− 2k)!

xn
(

2x− 1

x2

)r

=

[n2 ]∑
k=0

(ω)k(2ω + 2k)n−2k

k!(n− 2k)!
xn
(

1− 2x− 1

x2

)k

=

[n2 ]∑
k=0

Γ(2ω)Γ(ω + k)Γ(2ω + n)

Γ(2ω + 2k)Γ(ω)Γ(2ω)k!(n− 2k)!
xn−2k (x− 1)

2k

Now, using the well-known Legendre’s duplication formula, we finally get

(7.2) Sωn (x) =

[n2 ]∑
k=0

(2ω)n

22k(ω + 1
2 )kk!(n− 2k)!

xn−2k (x− 1)
2k
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The results (7.1)and (7.2) are due to Sinha [14, p.439, Eqs. (3) and (4)].
(3) Setting a = m, b = c = µ = 1, ρ = 0 in (3.1) and (3.2), we get

(7.3) hωn,m(x) =

[ nm ]∑
k=0

(−1)k(ω)n−(m−1)k(mx)n−mk

k!(n−mk)!

and

(7.4) hωn,m(x) =

[ (n−(m−2)r)
2 ]∑

k=0

k∑
r=0

(ω)k(2ω + 2k)n−2k−(m−2)r

k!r!(n− 2k − (m− 2)r)!
(−k)r

(mx
2

)n−mr
where hωn,m(x) stands for Humbert polynomials.

(4) Substituting m = 3, ω = 1
2 in (7.3)and (7.4), we get

(7.5) Pn(x) =

[n3 ]∑
k=0

(−1)k( 1
2 )n−2k(3x)n−3k

k!(n− 3k)!

and

(7.6) Pn(x) =

[ (n−r)
2 ]∑

k=0

k∑
r=0

( 1
2 )k(1 + 2k)n−2k−r

k!r!(n− 2k − r)!
(−k)r

(
3x

2

)n−3r

where Pn(x) is Pincherle polynomials [6].
(5) For a = m = 2, ω = 1

2 , (7.3)and (7.4) give finite series representation of
Legendre polynomials [12, p.164, Eq.(1)].

(6) Putting m = 2 in (7.3), we get

(7.7) Cωn (x) =

[n2 ]∑
k=0

(−1)k(ω)n−k(2x)n−2k

k!(n− 2k)!

(7) Putting m = 2 in (7.4), we get

Cωn (x) =

[n2 ]∑
k=0

k∑
r=0

(ω)k(2ω + 2k)n−2k

k!r!(n− 2k)!
(−k)r (x)

n−2r

=

[n2 ]∑
k=0

(ω)k(2ω + 2k)n−2k

k!(n− 2k)!
xn
(

1− 1

x2

)k

=

[n2 ]∑
k=0

Γ(2ω)Γ(ω + k)Γ(2ω + n)

Γ(2ω + 2k)Γ(ω)Γ(2ω)k!(n− 2k)!
xn−2k

(
x2 − 1

)k
(7.8)

Now, using the well-known Legendre’s duplication formula [12, p.23, Eq.
(19)], we finally get

(7.9) Cωn (x) =

[n2 ]∑
k=0

(2ω)n

(ω + 1
2 )kk!(n− 2k)!

xn−2k
(
x2 − 1

)k
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where Cωn (x) is the well-known Gegenbauer polynomial.
(8) In (3.1), setting a = c = 1, ρ = 0, m = 2 and replacing b and x by λz2 and

1 + z + z2 respectively, we get

(7.10) fλ,ωn (z) =

[n2 ]∑
k=0

(ω)n−k
k!(n− 2k)!

(1 + z + z2)n−2k
(
−λz2

)k
Note that fλ,ωn (z) is related to Cωn (z) by the relation (see, e.g. [11, p.57])

fλ,ωn (z) = λn/2znCωn

(
1 + z + z2

2
√
λz

)
(9) Making the same substitutions in (3.2) as mentioned above, we get after a

little simplification

(7.11) fλ,ωn (z) =

[n2 ]∑
k=0

(2ω)n

(
(1+z+z2)µ

2

)n
22k(ω + 1

2 )kk!(n− 2k)!

(
1− 4λz2

(1 + z + z2)2µ

)k
(10) If we set a = m = p = 2, b = c = ρ = ν = 1 and q = 0, r = −1 in (4.1), we

arrive at a known result [14, p.442, Eq. (12)].
(11) By setting a = m, b = c = 1, ρ = 0 and µ = 1 in (4.1), we get

hωn,m(x) =
(ω)n(mx)n

n!

.mFm−1

 −n
m , −n+1

m , ..., −n+m−1
m ;

−ω−n+1
m−1 , −ω−n+2

m−1 , ..., −ω−n+m−1
m−1 ;

1

(m− 1)(m−1)xm

(7.12)

which is hypergeometric representation of Humbert polynomials.
(12) For m = 2, (7.12) gives hypergeometric representation of Gegenbauer poly-

nomial

(7.13) Cωn (x) =
(ω)n(2x)n

n!
.2F1

[
−n
2
,
−n+ 1

2
;−ω − n+ 1;

1

x2

]
(13) Setting a = c = µ = 1, m = 2, ρ = 0 in (4.1) and replacing b and x by λz2

and 1 + z + z2 respectively, we get

fλ,ωn (z) =
(ω)n(1 + z + z2)n

n!

.2F1

[
−n
2
,
−n+ 1

2
;−ω − n+ 1;

4λz2

(1 + z + z2)2

](7.14)

(14) For a = 2, b = c = 1, ρ = 0 and µ = 1, (5.1) gives the generating function
for Pωn,m(x) defined by (1.2):

(7.15)

∞∑
n=0

Pωn,m(x)tn

(ω)n
=

∞∑
n=0

(2xt)n

n!
.1Fm

[
ω + n;

ω+n
m , ω+n+1

m , ..., ω+n+m−1
m ;

−tm

mm

]



ON CERTAIN GENERALIZED POLYNOMIAL SYSTEM 43

(15) In (5.2), setting a = m = p = 2, b = c = ρ = µ = ν = 1, q = 0, r = −1, we
get the generating function for Sωn (x):

∞∑
n=0

Sωn (x)tn(e)n
(ω)n

=

∞∑
n=0

(2xt)n(e)n
n!

.3F2

[
ω + n, e+n2 , e+n+1

2 ;
ω+n

2 , ω+n+1
2 ;

− t2(2x− 1)

](7.16)

For e = ω, (7.16) reduces to a known result of Sinha [14, p.439, Eq.(2)].
(16) For a = m, b = c = µ = 1, ρ = 0, (5.2) gives the generating function for

Humbert polynomials:
∞∑
n=0

hωn,m(x)tn(e)n

(ω)n
=

∞∑
n=0

(mxt)n(e)n
n!

.1Fm

[
ω + n, e+nm , e+n+1

m , ..., e+n+m−1
m ;

ω+n
m , ω+n+1

m , ..., ω+n+m−1
m ;

− tm
](7.17)

(17) For m = 3 and ω = 1/2, (7.17) gives generating function for Pincherle
polynomials Pn(x)

∞∑
n=0

Pn(x)tn(e)n
(1/2)n

=

∞∑
n=0

(3xt)n(e)n
n!

.4F3

[
1
2 + n, e+n3 , e+n+1

3 , e+n+2
3 ;

1
2 +n

3 ,
3
2 +n

3 ,
5
2 +n

3 ;
− t3

](7.18)

If we set µ = ν = 1, p = 2, q = 0, r = −1 in (3.1), (3.2), (4.1), (5.1) to (5.4) (6.1)
to (6.4), we get the results established by Pathan and Khan [11].
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