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The Forcing Edge Monophonic Number of a Graph

J. John® and P Arul Paul Sudhahar®

ABSTRACT. For a connected graph G = (V| E), let a set M be a minimum edge
monophonic set of G. A subset T C M is called a forcing subset for M if M is the
unique minimum edge monophonic set containing 7'. A forcing subset for M of
minimum cardinality is a minimum forcing subset of M. The forcing edge mono-
phonic number of M , denoted by fm1 (M) is the cardinality of a minimum forcing
subset of M. The forcing edge monophonic number of G, denoted by fm1(G) is
fm1(G) = min {fm1(M)}, where the minimum is taken over all minimum edge
monophonic sets M in G. Some general properties satisfied by this concept are
studied.The forcing edge monophonic number of certain classes of graphs are de-
termined. It is known that m(G) < m1(G), where m(G) and m1(G) respectively
the monophonic number and the edge monophonic number of a connected graph
G. However, there is no relation between fn, (G) and fimm1(G), where fi, (G) is the
forcing monophonic number of a connected graph G. We give realization results
for various possibilities of these four parameters.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and ¢ respectively.
For basic graph theoretic terminology, we refer to Harary [1,4]. A chord of a path
Uo, UL, U, ..., Up, 15 an edge u;u; with j >4+ 2. An v — v path is called a monophonic
path if it is a chordless path. A monophonic set of G is a set M C V(G) such that
every vertex of GG is contained in a monophonic path joining some pair of vertices in
M. The monophonic number m(G) of G is the minimum order of its monophonic
sets and any monophonic set of order m(G) is the minimum monophonic set of G.
The monophonic number of a graph is introduced in [2] and further studied in [5,
8]. An edge monophonic set of G is a set M C V(G) such that every edge of G is
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contained in a monophonic path joining some pair of vertices in M. The edge mono-
phonic number m;(G) of G is the minimum order of its edge monophonic sets and
any edge monophonic set of order m;(G) is a minimum edge monophonic set of G.
The edge monophonic number of a graph is introduced in [7]. A subset T C M is
called a forcing subset for M if M is the unique minimum monophonic set containing
T. A forcing subset for M of minimum cardinality is a minimum forcing subset of
M. The forcing monophonic number of M, denoted by f,,(M), is the cardinality of
a minimum forcing subset of M. The forcing monophonic number of GG, denoted by
fm(G), is fm(G) = min{fm(M)}, where the minimum is taken over all minimum
monophonic sets M in G. The forcing geodetic number, the forcing monophonic num-
ber and the forcing Steiner number where studied in [3, 6, 9]. A vertex v of G is said
to be a monophonic vertex of G if v belongs to every minimum monophonic set of G.
A vertex v is an extreme vertex of a graph if the subgraph induced by its neighbors is
complete. The following theorems are used in the sequel.

THEOREM 1.1. [5, 7] Each extreme vertex of G belongs to every monophonic set
of G as well as every edge monophonic set of G.

THEOREM 1.2. [7] For any non trivial tree T, the edge monophonic number equals
the number of end vertices in T. In fact, the set of all end vertices of T is the unique
minimum edge monophonic set of T'.

THEOREM 1.3. [6] Let G be a connected graph and W be the set of all monophonic
vertices of G. Then f,,(G) < m(G) — |W|

2. Forcing Edge Monophonic number of a graph

Even though every connected graph contains a minimum edge monophonic set,
some connected graph may contain several minimum edge monophonic sets. For each
minimum edge monophonic set M in a connected graph G, there is always some subset
T of M that uniquely determine M as the minimum edge monophonic set containing
T. Such ”forcing subsets” will be considered in this paper.

DEFINITION 2.1. Let G be a connected graph and M a minimum edge monophonic
set of G. A subset T' C M is called a forcing subset for M if M is the unique minimum
edge monophonic set containing 7. A forcing subset for M of minimum cardinality is
a minimum forcing subset of M. The forcing edge monophonic number of M, denoted
by fm1(M), is the cardinality of a minimum forcing subset of M. The forcing edge
monophonic number of G, denoted by fin1(G), is fm1(G) = min {fm1(M)}, where the
minimum is taken over all minimum edge monophonic sets M in G.

ExXAMPLE 2.1. For the graph G given in Figure 2.1, M; = {vy,va,v4}, My =
{v1,v9,05}, M3 = {v1,v3,06}, My = {v1,v3,v5} are the only four minimum edge
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monophonic sets of G.It is clear that f,,1 (M1) = 1, frn1(M2) = 2, frn1(M3) = 1, frn1(My) =
2 so that f,1(G) = 1.

V2 Ve Us
@
U1
U3 V4
G
Figure 2.1

The next theorem follows immediately from the definition of the edge monophonic
number and the forcing edge monophonic number of a connected graph G.

THEOREM 2.1. For every connected graph G,0 < f,1(G) < m1(G).

REMARK 2.1. The bounds in Theorem 2.1 are sharp. For the graph G = K, the
vertex set V' is the unique minimum edge monophonic set of G so that f,,1(G) = 0.
For the graph G given in Figure 2.1, m1(G) = 3 and f,,,1(G) = 1. Thus 0 < f,1(G) <
m1(G). Also for the graph G = Cy4,m1(G) = 2 and f,,,1(G) = 2 so that f,1(G) =

In the following we characterize graphs G for which bounds in the Theorem 2.1
attained and also graph for which f,,1(G) = 1.

THEOREM 2.2. Let G be a connected graph. Then
(a) fm1(G) =0 if and only if G has a unique minimum edge monophonic set.
(b) fm1(G) =1 if and only if G has at least two minimum edge monophonic sets, one
of which is a unique minimum edge monophonic set containing one of its elements,
and
(¢) fm1(G) = m1(G) if and only if no minimum edge monophonic set of G is the
unique minimum edge monophonic set containing any of its proper subsets.

DEFINITION 2.2. A vertex v of G is said to be an edge monophonic vertex of G if
v belongs to every minimum edge monophonic set of G.

EXAMPLE 2.2. For the graph G given in Figure 2.2, My = {v;,v3,v7} and My =
{v1,v4,v7} are the only two m1-sets of G. It is clear that v; and v; are edge monophonic
vertices of G.



90 J. JOHN AND P ARUL PAUL SUDHAHAR
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Figure 2.2

THEOREM 2.3. Let G be a connected graph and W be the set of all edge mono-
phonic vertices of G. Then f,,1(G) < m1(G) — |W|

COROLLARY 2.1. If G is a connected graph with k extreme vertices, then f,,1(G) <
ml(G) — k.

Proof. This follows from Theorem 1.1 and Theorem 2.3. [ |

REMARK 2.2. The bound in Theorem 2.3 is sharp. For the graph G given in
Figure 2.2, M; = {vy,vs,v7}, My = {v1,v4,v7} are the only two m;-sets so that
m1(G) = 3 and fn1(G) = 1. Also W = {wvy,v2} is the set of all edge monophonic
vertices of G and 8o f,1(G) = m1(G)—|W/|. Also the inequality in Theorem 2.3 can be
strict. For the graph G given in Figure 2.3, My = {v;, v3,v6}, Mo = {v1,v4,v7} , M3 =
{v1,vs,v7}, My = {v1, 04,06} are the only four m;-sets of G so that m;(G) = 3 and
fm1(G) = 1. Now wv; is the only edge monophonic vertex of G and so f;1(G) <
m1(G) — W]

U1

G
Figure 2.3

THEOREM 2.4. For a cycle G = Cp(p > 4),M = {u,v} is a minimum edge
monophonic set if and only if v and v are independent.

Proof. Let u and v be two independent vertices of G. It follows that M = {u, v}
is a minimum edge monophonic set of G. Now, let M = {u,v} be a minimum edge
monophonic set of G. Suppose that v and v are not independent. Then uv is a chord.
Therefore M = {u, v} is not an edge monophonic set of G, which is a contradiction. W
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THEOREM 2.5. For a cycle G = Cp(p = 5), fm1(G) = 2.

THEOREM 2.6. For a complete graph G = K,(p > 2) or a non-trivial tree G =
T, fm1(G) =0.

Proof. For G = K,, it follows from Theorem 1.1 that the set of all vertices of
G is the unique minimum edge monophonic set. Now, it follows from Theorem 2.2(a)
that f,,1(G) = 0. If G is a non-trivial tree, then by Theorem 1.2 the set of all end
vertices of G is the unique minimum edge monophonic set of G and so f,,1(G) = 0 by
Theorem 2.2(a). |

THEOREM 2.7. For the complete bipartite graph G = K, n(m,n > 2),

fml(G):{? ifm#n

ifm=n
Proof. Let m,n > 2. Without loss of generality, let m < n.

Let U = {uy,ug, ..., } and W = {wy, wa, ..., w, } be a bipartition of G. Let M = U.
We first prove that M is a minimum edge monophonic set of G. Any edge u;w;(1 <
i <m,i < j < n) lies on the monophonic path u;w;uy for k # ¢ so that M is an edge
monophonic set of G. Let T be any set of vertices such that |T| < |M|. If T C U, then
there exists a vertex u; € U such that u; ¢ T. Then for any edges u;w;(1 < j < n),
the only monophonic path containing w;w; are w;wjui(k # 4) and w;uwi(l # j) and
so u;w; cannot lie in a monophonic path joining two vertices of 7. Thus T is not an
edge monophonic set of G. If T' C W, again T is not an edge monophonic set of G
by a similar argument. If 7' C U U W such that T" contains at least one vertex from
each of U and W, then since |T| < | M|, there exist vertices u; € U and w; € W such
that u; ¢ T and w; ¢ T. Then clearly the edge uw;w; does not lie on a monophonic
path connecting two vertices of T so that T is not an edge monophonic set. Thus
in any case T is not an edge monophonic set of G. Hence M is a minimum edge
monophonic set so that m;(G) = |[M| = m. Now, let M; be a set of vertices such that
|Mq| = m. If M, is a subset of W, then since m < n, there exists a vertex w; € W
such that w; € M;. Then the edge uiwj(l < ¢ < m) does not lie on a monophonic
path joining a pair of vertices of M;. If M7 C U U W such that M; contains at least
one vertex from each of U and W, then since M; # U, there exists vertices u; € U and
w; € W such that u; ¢ My and w; ¢ My .Then clearly the edge u;w; does not lie on
a monophonic path joining two vertices of M7 so that M; is not an edge monophonic
set of G. It follows that U is the unique minimum edge monophonic set of G. Hence
it follows from Theorem 2.2(a) that f,,1(G) = 0. Now, let m = n. Then as in the
first part of this theorem, both U and W are minimum edge monophonic sets of G.
Now, let M’ be any set of vertices such that |[M’'| = m and M’ # U, M’ # W. Then
there exist vertices u; € U and w; € W such that u; ¢ M’ and w; ¢ M’. Then as
earlier, M’is not an edge monophonic set of G. Hence it follows that U and W are
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the only two minimum edge monophonic sets of G. Since U is the unique minimum
edge monophonic set containing {u;}, it follows that f,,1(G) = 1. |

3. Special Graphs

In this section, we present some graphs from which various graphs arising in the-
orem are generated using identification.

The graph H, is obtained from the F/s by identifying the vertices ¢;_; of F;_;
and s; of F;(2 < i < a), where Fj; : s;,u;, v, 1, 8:(1 < i < a) is a copy of the cycle Cy.

o DN O T LN

s1 uyp U1 1 =82 Uz V2 ty = sg Ug Vg tg

H,
Figure 3.1

Let J; : fi, li,mq, i, my, fi(1 < i < b) be a copy of the cycle C5. Let E; be the graph
obtained from J; by adding a new vertex h; and the edges f;h;, hin;, him;, hil;(1 <
i < b). The graph Ty, is obtained from E’s by identifying the vertices r;_; of E;_1 and
fiof Ei(2<i<D).

T
Figure 3.2

Let L; : wi, zi, yi, €5, ki, di,wi (1 < 4 < ¢) be a copy of the cycle Cg. Let S; be the
graph obtained from L; by adding the new edge d;y;(1 < i < ¢). The graph L. is
obtained from S;’s by identifying the vertices k;_1 of S;_1 and w; of S;(2 < i < ¢).
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4. Some realization results

THEOREM 4.1. For every pair a,b of integers with 0 < a < b and b > 2, there
exists a connected graph G such that f,,1(G) = fin(G) =0, m1(G) = a and m(G) = b.

Proof. If a = b, let G = K,. Then by Theorem 2.6,f,,1(G) = fn(G) = 0 and
m1(G) = m(G) = a. For a < b, let G be the graph obtained from T,_, by adding new
vertices z, 21, 23, ..., 2¢—1 and joining the edges xf1,7p_a21,Tb—a22y cvrs Th—aZa—1. Let
Z ={x,21,22,..., z7a—1} be the set of end-vertices of G. Then it is clear that Z is the
unique monophonic set of G and so that m(G) = a and f,,(G) = 0.We see that Z is
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Let Q; : ay, i, 0, pi, Bi, a; be a copy of C5. Let D; be a graph obtained from Q);

by adding a new vertex ¢; and the edges 5;q;, ¢i0:, ¢;v:(1 < i < k). The graph Qy is
obtained from Dis by identifying the vertices p;_1 of D;_1 and «; of D;(2 < i < k)
B1
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not a edge monophonic set of G. Now it is easily seen that W = Z U {l1,l2, ..., lp—a}
is the unique mi-set of G so that m(G) = b and f,,1(G) = 0. |

THEOREM 4.2. . For every integers a,b and ¢ with 0 < a < b < c and ¢ > a + b,
there exists a connected graph G such that f,,,(G) = 0, fi1(G) = a,m(G) = b and
m1(G) =c.

Proof. Case 1. a = 0. Then the graph G constructed in Theorem 4.1 satisfies
the requirements of this theorem.

Case 2. a > 1. Let G be the graph obtained by identifying the vertex k, of L,
and f; of T._;_, and then adding new vertices x, 21, 29, ..., 2p—1 and joining the edges
W1, Te—boaZ1s Temboa?22y s Te—b—aZb—1- Let Z = {x, 21,29, ..., zp—1}be the set of end
vertices of G.Then it is clear that Z is a unique monophonic set G so that m(G) = b
and f,,(G) = 0. Next we show that m;(G) = c¢. Let M be any edge monophonic set
of G. Then by Theorem 1.1, Z C M. It is clear that Z is not an edge monophonic
set of G. For 1 < ¢ < a, let M; = {x;,y;,e;}. We observe that every m;j-set of G
must contain at least one vertex from each M; and each lj(l <j<c—b—a)so that
m1(G) = b+a+c—b—a = c. Now, W = ZU{ly, 12, ..., lLe—p—a }U{e1, €2, ..., €4 } is an edge
monophonic set of G so that m1(G) < b+c¢—a —b+ a = c. Thus m;(G) = ¢.Next

we show that f,,1(G) = a. Since every mi-set contains Z U {l1,la,....,le—p—qa}, it
follows from Theorem 2.3 that f,,1(G) < m1(G) —(b+c—b—a) =c—c+a = a.
Now, since m1(G) = ¢ and every m-set contains Z U {l1,la,....;lc—p—q}, it is easily

seen that every mq-set M is of the form Z U {ly,la,....;le—p—a} U{p1, P2, ..., Pa },where
pi € M;(1 < i< a). Let T be any proper subset of M with |T| < a. Then there exists
pj(1 < j < a) such that p; € T. Let e; be the vertex of M; distinct from p;. Then
W = (M —{p;})U{e;} is a m-set properly containing T. Thus M is not the unique
m1-set containing 7' so that 7' is not a forcing subset of M. This is true for all m-
sets containing G so that f,,1(G) = a |

and b > a + 1,

THEOREM 4.3. For every integers a,b and ¢ with 0 < a < b < ¢
= a,m(G) = b and

there exists a connected graph G such that f,,,1(G) = 0, fin(G)
m1(G) = c.

Proof. We consider two cases.
Case 1. a = 0. Then the graph G constructed in Theorem 4.2 satisfies the requirement
of this theorem.

Case 2. a > 1.
Subcase 2a. b = c¢. Let G be the graph obtained from @, by adding new

vertices x, 21, 22, ..., 2p_a—1 and joining the edges xwi, kqz1, ka2, .oy kaZb—a_1. Let
Z = {x,21,29, ..., 2b—a—1}- It is clear that Z is not a monophonic set of G. For
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1<i<a,let N; ={¢;,7,09;}. We observe that every m-set of G must contain at least
one vertex from each N; so that m(G) 2 b—a+a =b. Now W = ZU{q1,¢2,43, .-, 4a }
is a monophonic set of G so that m(G) < b —a + a = b. Thus m(G) = b. Next we
show that f,,(G) = a. Since every m-set contains M, it follows from Theorem 1.3
that f(G) < m(G) — |Z] = b— (b— a) = a. Now, since m(G) = b and every m-set
contains Z, it is easily seen that every m-set M is of the form Z U {dy,ds,ds,...,ds},
where d; € N;(1 < i < a).Let T be any proper subset of Mwith |T'| < a .Then there
exists dj(1 < j < a) such that d; € T' .Let e; be the vertex of N; distinct from d;.
Then W = (M — {dj}) U {e;} is a m-set properly containing T'. Thus M is not the
unique m-set containing 7' so that 7' is not a forcing subset of M. This is true for
all m-set of G so that f,,(G) = a. Next, we show that m1(G) = b. Let M be any
monophonic set of G. Then by Theorem 1.1, Z C M. It is clear that Z is not an edge
monophonic set of G. Now Wy, = Z U {q1,¢2,..-,44} is the unique edge monophonic
set of G so that m;(G) = b. It is clear that f,,1(G) = 0.

Subcase 2b. b < c¢. Let G be the graph obtained by identifying the vertex k,
of @, and f; of T,_;, and adding new vertices x, z1, 29, ..., Zb—q—1 and joining the
edges TW1,Tep21, Te—b22y ooy Te—bZb—a—1- Let Z = {x, 21,29, ..., 2p—a—1} It is clear
that Z is not a monophonic set of G. For 1 < i < a, let N; = {q;,7i,0:}. We
observe that every m-set of G must contain at least one vertex from each N, so that
m(G) 2 a+b—a=bNowW =ZU{q,qo, ..., qa} is & monophonic set of G so that
m(G) <b—a+a =>b. Thus m(G) = b. Next we show that f,,(G) = a. Since every m-
set contains Z, it follows from Theorem 1.3 that f,,,(G) < m(G)—|Z| = b—(b—a) = a.
Now, since m(G) = b and every m-set contains Z, it is easily seen that every m-set M
is of the form Z U {dy,ds,ds, ..., d,}, where d;(1 < i < a) such that d; € T. Let e; be
the vertex of N; distinct from d;. Then W = (M — {dj}) U {e;} is a m-set properly
containing 7. Thus M is not the unique m-set containing 7" so that 7" is not a forcing
subset of M. This is true for all m-set of G so that f,,(G) = a. Next, we show that
mi(G)=c. W =2ZU{q1,q2,,qa} U{l1,12, ..., lc—p }is the unique m; set of G so that
m1(G) = c and f1(G) =0.

|

THEOREM 4.4. For every integers a,b and ¢ with 0 < a < b < cand c > a+0b,
there exists a connected graph G such that f,,1(G) = fn(G) = a, m(G) = b and
m1(G) = c.

Proof. We consider two cases.
Case 1. a = 0, Then the graph G constructed in Theorem 4.1 satisfies the require-
ments of this theorem.
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Case 2. a > 1.

Subcase 2a. b = c¢. Let G be the graph obtained from H, by adding new ver-
tices x, 21, 22, ..., Zb_q—1 and joining the edges =si,tq21,t022, -, ta2b—a_1. Let Z =
{z, 21,22, ..., Zb—aq—1} It is clear that Z is not a monophonic set of G. For 1 < i < a,let
N; = {u;,v;}. We observe that every m-set of G must contain at least one vertex
from each N; so that m(G) > a+b—a =0b. Now, W = Z U {uy,us,us,...,us} is
a monophonic set of G so that m(G) < b —a+a = b. Thus m(G) = b. Next, we
show that f,,,(G) = a. Since every m-set contains Z it follows from Theorem 1.3 that
fm(G) <m(G) —|Z] =b— (b—a) = a.Now since m(G) = b and every m-set contains
Z, it is easily seen that every m-set M is of the form Z U {dy,ds,ds,...,d,}, where
d; € N;(1 < i< a). Let T be any proper subset of M with |T'| < a. Then there exists
d;(1 < j < a) such that d; € T. Let e; be the vertex of N; distinct from d;. Then
W = (M —dj)Ue; is a m-set properly containing T'. Thus M is not the unique m-set
containing 7" sot that T is not a forcing subset of M. This is true for all m-sets of G
so that f,,(G) = a. Similarly we can prove that m,(G) = ¢ and f,,1(a) = a.

Subcase 2b. b < c¢. Let G be the graph obtained by identifying the vertices ¢, of
H, and f, of T,_, and adding the new vertices x, z1, 29, ..., 2p_q—1 and joining the edges
XS1, TembZ1, Femb22y ooy Te—bZb—a—1- L&t Z = {x, 21,22, ..., Zb—a—1} . Then it is clear that
Z is not an edge monophonic set. For 1 < ¢ < a, let N; = {u;,v;}. We observe that
every mq-set of G must contain at least one vertex from each N; and each [;(1 < j <
¢—b) so that m1(G) = b—a+a+c—b =c. Now, W = ZU{l1,la, ... Lc—p }U{u1, ug, ..., uq }
is an edge monophonic set of G so that m(G) < b—a+a+c—b=c. Thus m;(G) = c.
Next, we show that f,1(G) = a. Since every mq-set containing Z U {ly,1la,...,lc—p},
it follows from Theorem 2.3 that f,,,1(G) < m1(G) —(b—a+c—b)=c+a—c=a.
Now, since m1(G) = ¢ and every m;-set contains Z, it is easily seen that every m;-set
M is of the form ZU{ly,la,....,lc—p} U {d1,da,...,d,} where d; € N;(1 < i < a). Let
T be any proper subset of Mwith |T'| < a. Then there exists d;(1 < j < a) such that
dj € T. Let e; be the vertex of N distinct from d;. Then W = (M — {d;})U{e;} is a
m1-set properly containing 7. Thus M is not the unique m-set containing T so that
T is not a forcing subset of M. This is true for all mi-sets of G so that f,,,1(G) = a.
Next, we show that m(G) = b and f,,(G) = a . This follows from Subcase 2a |

THEOREM 4.5. For every integers a,b,c and d with 0 < ¢ < d,a < b < d and
¢ > a+1 there exists a connected graph G such that f,1(G) = a, fm(G) = b,m(G) =c¢
and m1(G) =d.

Proof. We consider four cases.
Case 1. a = 0,b > 0. Then the graph G constructed in Theorem 4.4 satisfies the
requirement of this theorem.
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Case 2. a > 0,b = 0. Then the graph G constructed in Theorem 4.2 satisfies the
requirement of this theorem.

Case 3. 0 < a = b. Then the graph G constructed in Theorem 4.3 satisfies the
requirement of this theorem.

Case 4. 1 <a<b.

Subcase 4a. ¢ = d. Let G be the graph obtained by identifying the vertices ¢, of H,
and a1 of Qy_, and adding the new vertices z, 21, 22, ..., 2._p—1 and joining the edges
XS1, Po—aZls Pb—a?2s ey Po—aZe—b—1- Let Z ={x, 21,29, ..., 2c—p—1 - Then it is clear that
Z is not an edge monophonic set of G. For 1 < i < a, let N; = {u;,v;}. We observe that
every mi-set of G must contain at least one vertex from each N; and ¢;(1 < j <b—a)
so that m;1(G) > b—a+a+c—b = c. Next, let W = ZU{u1,uz2, ..., ua }U{q1, 92, ..., b—a }
is an edge monophonic set of G so that m;(G) < b—a+a+c—b=c. Thus m;(G) = c.
Next, we show that f,,1(G) = a. Since every my-set contains Z U {q1, G2, ..., Gp—a }, it
follows from Theorem 2.3 that f,,,1(G) < m1(G)— (b—a+c—b) = c+a—c = a. Now,
since m1(G) = ¢ and every m-set contains Z, it is easily seen that every my-set M is
of the form Z U {d;,ds,...,d.} U{q1, 2, -, @p—a} where d; € N;(1 < i < a). Let T be
any proper subset of Mwith |T| < a. Then there exists d; € N;(1 < j < a) such that
d; ¢ T. Let e; be the vertex of N distinct from d;. Then W = (M — {d;}) U {e;} is
a mi-set G so that f,,1(G) = a.Similarly we can prove that m(G) = cand f,,(G) =b.

Subcase 4b. ¢ < d. Let R be the graph obtained by identifying the vertex ¢, of
H, and a3 of Qp_,. Let G be the graph obtained by identifying the vertices kp_q_1
of R and f1 of T;_. and adding new vertices x, z1, 23, ---, 2c—p—1 and joining the edges
TS1,Td—cZ1y Td—c?2y s Td—cZe—b—-1- Let Z = {x, 21,22, ..., Ze—p—1} -Then mi-set M is
of the form M = ZU{c1,ca,¢3, ..., ca}U{q1, 42,43, -, p—a } U{l1, 12,13, ..., l4—.}, where
each ¢; € N;(1 < ¢ < a) so that m1(G) = d and f,1(G) = a.The m-set is of the
form M = ZU{ecy,¢a,¢5,....¢q} U{d1,da,ds,...,dp—q} , where ¢; € N;(1 < i < a) and
d; € Fj ={q,v,0:}(1 <i<b—a)so that m(G) = c and f,,,(G) = d. |

THEOREM 4.6. For every integers a,b,c and d with a < b<c<dand c>b+1,
there exists a connected graph G such that f,,(G) = a, fm1(G) = b,m(G) = ¢ and

Proof. Case 1. @ = 0,b > 0. Then the graph G constructed in Theorem 4.1
satisfies the requirements of this theorem.

Case 2. b=0,a > 0. Then the graph G constructed in Theorem 4.2 satisfies the
requirement of this theorem.
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Case 3. 0 < a = b. Then the graph G construed in Theorem 4.3 satisfies the
requirement of this theorem.

Case4. 1<a<b

Subcase 4a. ¢ = d. Then the graph G constructed in Theorem 4.5 satisfies the
requirement of this theorem.

Subcase 4b. ¢ < d. Let X be the graph obtained by identifying the vertices ¢, of
H, and a7 of Qp_,. Let G be the graph obtained by identifying the vertices py_, of X
and f1 of T;_. and adding the new vertices x, z1, 22, ..., 2c—p—1 and joining the edges
TWY, Tde 21y Fd—c22y ooy Td—cZe—b—1- Lt Z = {x, 21, ..., Ze—p—1}. Then the m-set is of
the form M = Z U {c1,¢a,...,cat U{q1,G2, -, @o—a} U {l1,l2,...,l4—} wherec; € N; =
{ui,v;} (1 < i <d—c)so that mi(G) = d and f,,1(G) = b. The m-set is of the form
Z U{er,ca,y ., c—at U{q1,q2, ..., @p—a} where ¢; € N; = {u;,v;} (1 < ¢ < a) so that
m(G) = c and f,(G) = a. |
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