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Sums of four or fewer squares

Aashita Kesarwani and V. H. Moll

Abstract. A classical theorem of Lagrange states that every positive integer is
the sum of four squares. Properties of the sets obtained by fixing three, two or

one of these squares are discussed.

1. Introduction

The classical theorem of Lagrange states that every positive integer is a sum of
four squares. Thus, the set

(1.1) SQ ≡ SQ(x, y, z, w) = {x2 + y2 + z2 + w2 : x, y, z, w ∈ Z}

is N. Therefore, given an arbitrary m ∈ N, the set SQ contains elements divisible by
2m. This fact can be expressed in terms of valuations. Recall that, for a prime p, the
p-adic valuation of a ∈ Z is the highest power of p that divides a. This is denoted by
νp(a).

Lagrange theorem implies that the valuations νp(a), when a runs over SQ(x, y, z, w),
achieve every positive integer. The question considered here deals with the range of
valuations when some of the variables in SQ(x, y, z, w) are kept fixed. The result will
involve the class of triangular numbers; that is, integers of the form n = j(j + 1)/2,
with j ∈ N.

Several statements refer to the probability of A ⊂ N of cardinality |A|. This is

defined here as the limiting case of the uniform distribution: P (A) = lim
N→∞

|A|
N

.

2. Fix three variables

In this first case, fix the values of y, z, w and let n = y2 + z2 + w2. Then SQ
reduces to

(2.1) SQ3(n) = {x2 + n : x ∈ Z}.
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The numbers n appearing in this reduction are sums of three squares. Legendre’s
theorem [2, 4] states that such n is not of the form 4a(8`+ 7). Introduce the function

(2.2) λ3(n) = sup
x∈Z

{
ν2(x2 + n)

}
.

Theorem 2.1 below determines its values. It is interesting that the missing case 4a(8`+
7) is the only case when λ3 is not finite.

The analysis of valuations of polynomials has been discussed in [6] and the special
case of quadratic polynomials appears in [3]. A special result required in the discussion
presented here is reproduced next.

Theorem 2.1. The function λ3 satisfies

(1) λ3(4rk) = 2r + λ3(k),
(2) λ3(4k + 1) = 1. Moreover, ν2(x2 + 4k + 1) = 1 if and only if x ≡ 1 mod 2,
(3) λ3(4k + 2) = 1. Moreover, ν2(x2 + 4k + 2) = 1 if and only if x ≡ 0 mod 2,
(4) λ3(8k + 3) = 2. Moreover, ν2(x2 + 4k + 1) = 2 if and only if x ≡ 1 mod 2,
(5) λ3(8k + 7) =∞.

Proof. If x = 2m, then x2 +4k = 4(m2 +k) implies ν2(x2 +4k) = 2+ν2(m2 +k).
On the other hand, if x = 2m + 1, then x2 + 4k = 4(m2 + m + k) + 1 showing that
ν2(x2 + 4k) = 0. This proves (1) in the case r = 1. The general result follows
by induction. The proof of parts (2), (3), (4) are elementary. The last statement is
established in [3, 6]. �

Corollary 2.1. Assume n is not of the form 4r(8k + 1). Then

(2.3) λ3(n) = ν2(n) +


1 if n ≡ 1 mod 4,

0 if n ≡ 2 mod 4,

λ3(2k + 1) if n ≡ 0 mod 4, n = 4r(2k + 1)

2 if n ≡ 3 mod 8.

Corollary 2.2. Assume (a, b, c) 6= (0, 0, 0). Then

(2.4) λ3(a2 + b2 + c2) 6 2 + ν2(a2 + b2 + c2).

Proof. Legendre’s theorem states that a number that is the sum of three squares
is not of the form 4r(8k + 1). The result is a restatement of Corollary 2.1. �

Corollary 2.3. Assume n is not of the form 4r(8k + 7). The values of x ∈ Z
where ν2(x2 + n) achieves its maximum λ3(n) is a periodic sequence, with a period
that is a power of 2.

Proof. This follows directly from Theorem 2.1. �

Two auxiliary lemmas are stated next.

Lemma 2.2. Assume n is not of the form 4r(8k + 7). Then

(1) λ3(n) > 2r + 1 if and only if ν2(n) > 2r; that is, n = 4rk with k ∈ N,
(2) λ3(n) > 2r if and only if n has one of the forms 4rk or 4r−1(8k + 3).
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Proof. Assume the statement (1) holds with r replaced by r−1. Then if λ3(n) >
2r + 1, it follows that λ3(n) > 3. Theorem 2.1 shows that n must be divisible by 4,
say n = 4`. Then λ3(4`) = 2 +λ3(`) implies λ3(`) > 2r−1. The result now follows by
induction. For the converse, if n = 4rk, then λ3(n) = 2+λ3(4r−1k) > 2+2(r−1)+1 =
2r + 1. The proof of (1) is complete. The proof of (2) is similar. �

Lemma 2.3. A number of the form 8n+ 3 is a sum of three squares if and only if
n is a sum of three triangular numbers.

Proof. If 8n + 3 is a sum of three squares, these three squares must be odd
integers. Then

(2.5) 8n+ 3 = (2k + 1)2 + (2`+ 1)2 + (2m+ 1)2

is equivalent to

(2.6) n =
k(k + 1)

2
+
`(`+ 1)

2
+
m(m+ 1)

2
.

�

Note 2.4. Gauss’ Eureka theorem [1] states that every number is the sum of
three triangular numbers, hence every number of the form 8n + 3 is a sum of three
squares.

Theorem 2.4. Given v ∈ N, there are infinitely many triples (a, b, c) such that
the sequence SQ3(a2 + b2 + c2) = {x2 + a2 + b2 + c2 : x ∈ Z} has infinitely many
elements divisible by 2v.

Proof. Given v > 0, let r be defined in the following manner: if v is even, then
let r = v/2, else let r = (v−1)/2 so that in either case 2r > v. Since there are infinitely
many triangular numbers, Lemma 2.3 implies there are infinitely many triplets (a, b, c)
such that their sum a2 + b2 + c2 equals 4r−1(8k + 3). From Theorem 2.1, for any k,
λ3(4r−1(8k + 3)) = 2r > v and there are infinitely many x periodically spaced in the
number line such that x2 + 4r−1(8k + 3) is divisible by 2v. Hence, proved. �

Theorem 2.5. For an arbitrary, but fixed, (a, b, c) 6= (0, 0, 0), define n = a2 +
b2 + c2. Then the probability that the set SQ3(n) = {x2 + n : x ∈ Z} has an element
divisible by 2v is 2−f(v), where f(v) =

⌊
3v
2

⌋
− 1. That is,

(2.7) lim
L→∞

|{s ∈ SQ3(n) : 2v|s and |s| 6 L}|
|{s ∈ SQ3(n) : |s| 6 L}|

= 2−f(v).

Proof. The existence of x ∈ Z such that 2v divides x2 +a2 +b2 +c2 is equivalent
to λ3(n = a2 + b2 + c2) > v. Assume first that v is odd, say v = 2r + 1. Lemma 2.3
implies that n = 4rk. Then the probability in question is

(2.8) P
(
a2 + b2 + c2 ≡ 0 mod 4r

)
where a, b, c are taken independently over Z. Since a2 + b2 + c2 ≡ 0 mod 22r is
equivalent to a ≡ 0, b ≡ 0, c ≡ 0 modulo 2r, it follows that

(2.9) P
(
λ3(a2 + b2 + c2) > 2r

)
=

1

23r
=

1

2f(v)
.
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In the case v is even, say v = 2r, Lemma 2.3 shows that the corresponding
probability is

P
(
λ3(a2 + b2 + c2) > 2r

)
= P

(
λ3(a2 + b2 + c2) ≡ 0 mod 4r

)
+P

(
λ3(a2 + b2 + c2) ≡ 3 · 4r−1 mod 4r

)
= P (a ≡ 0, b ≡ 0, c ≡ 0 mod 2r)

+P
(
a ≡ 2r−1, b ≡ 2r−1 c ≡ 2r−1 mod 2r

)
=

(
1

2r

)3

+

(
1

2r

)3

=
1

23r−1
=

1

2f(v)
.

The proof is complete. �

3. Fix two variables

Now fix two variables and define n = z2 + w2. Then SQ reduces to

(3.1) SQ2(n) = {x2 + y2 + n : x, y ∈ Z},
and define

(3.2) λ2(n) = sup
x,y∈Z

{
ν2(x2 + y2 + n)

}
.

Since n is a sum of two squares, it follows that n = 2r(4k+ 1), for some r, k ∈ N;
see [5]. The converse is also true: every number of the form 2r(4k+ 1) is a sum of two
squares.

The analysis of the function λ2(n) involves the sequence of triangular numbers
Tj = 1

2j(j + 1). The next elementary statement will be used in this analysis.

Lemma 3.1. A number of the form 4`+ 1 is a sum of two squares if and only if `
is a triangular number or a sum of two such numbers.

Proof. If ` = Tn, then 4`+ 1 = n2 + (n+ 1)2. On the other hand if ` = Tn +Tm,
then 4`+1 = (m−n)2 +(m+n+1)2. To establish the converse write 4`+1 = c2 +d2.
Then c, d must be of opposite parity. Choose integers m, n such that c = m− n and
d = m+ n+ 1. Define

(3.3) `1 = Tm = 1
8

(
(c+ d)2 − 1

)
and `2 = Tn = 1

8

(
(d− c)2 − 1

)
.

Then ` = `1 +`2 is a sum of two triangular numbers if `1, `2 6= 0. Otherwise it reduces
to one such number. �

Theorem 3.2. Let n ∈ N. Then

(3.4) λ2(n) =

{
ν2(n) + 1 if n = 2r(4k + 1),

∞ if n = 2r(4k + 3).

Proof. Assume n = 2r(4k + 1), write x2 + y2 = 2s(4`+ 1) so that

(3.5) x2 + y2 + n = 2s(4`+ 1) + 2r(4k + 1).

If r 6= s, then ν2(x2 +y2 +n) = min(r, s) 6 r. On the other hand, if r = s, one obtains
x2 + y2 + n = 2r+1(2`+ 2k+ 1) and ν2(x2 + y2 + n) = r+ 1 = ν2(n) + 1. Thus, given
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the factorization n = 2r(4k+ 1), form the number 2r(4`+ 1) and find (x, y) such that
x2 +y2 = 2r(4`+1). Then the value r+1 is achieved for the valuation ν2(x2 +y2 +n)
and it follows that λ2(n) = r + 1.

Now if n = 2r(4k + 3) and writing x2 + y2 = 2s(4`+ 1) as before,

(3.6) ν2(x2 + y2 + n) = ν2(2s(4`+ 1) + 2r(4k + 3)) = min(r, s) if r 6= s.

So, in this case, ν2(x2 + y2 + n) 6 r is bounded. On the other hand, if r = s,

(3.7) ν2(x2 + y2 + n) = ν2(2r+2(`+ k + 1)) = r + 2 + ν2(`+ k + 1).

Now choose x, y so that in the factorization x2 + y2 = 2s(4` + 1), the integer ` is a
triangular number. The result now follows from the next statement. �

Lemma 3.3. Let r ∈ N be fixed and Tj be the triangular number. Then the
sequence {ν2(Tj + r) : j ∈ N} is unbounded.

Proof. Write Tj = 1
2j(j + 1) and let m = 2j + 1. Then Tj = 1

8 (m2 − 1), with m
odd. Therefore

(3.8) ν2(Tj + r) = ν2( 1
2 (m2 − 1) + r) = ν2(m2 + 8r − 1)− 3.

The result now follows from part (5) in Theorem 2.1, since 8r − 1 ≡ 7 mod 8. �

Theorem 3.4. Given v ∈ N, there are infinitely many pairs (a, b) such that
SQ2(a2 + b2) = {x2 + y2 + a2 + b2 : x, y ∈ Z} have infinitely many elements divisible
by 2v.

Proof. Take v > 0. The existence of infinitely many triangular numbers and
Lemma 3.1 give infinitely many pairs (a, b) such that a2 +b2 = 2v−1(4k+1). Theorem
3.2 shows λ2(2v−1(4k + 1)) = v for any k. Thus there are infinitely many x, y ∈ Z
such that x2 + y2 + 2v−1(4k + 1) is divisible by 2v. This completes the proof. �

Theorem 3.5. Fix (a, b) 6= (0, 0). Define n = a2 + b2. Then the probability that
the set SQ2(n) = {x2 + y2 + n : x, y ∈ Z} has an element divisible by 2v is 1/2v−1.
That is,

(3.9) lim
L→∞

|{s ∈ SQ2(n) : 2v|s and |s| 6 L}|
|{s ∈ SQ2(n) : |s| 6 L}|

=
1

2v−1
.

The proof requires an elementary result.

Lemma 3.6. For x, y ∈ Z and r > 0:

(1) x2 + y2 ≡ 0 (mod 22r) ⇐⇒ x ≡ y ≡ 0 (mod 2r).
(2) x2 + y2 ≡ 0 (mod 22r+1) ⇐⇒ x ≡ y ≡ 0 or 2r (mod 2r+1).

Proof of Theorem 3.5. The probability is the probability that λ2(a2+b2) > v.
This is computed according to the parity of v. Theorem 2.1 and Lemma 3.6 are used
in the proof.
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(1) For v odd, say 2r + 1:

Prob
(
λ2(a2 + b2) > 2r + 1

)
= Prob

(
ν2(a2 + b2) > 2r

)
= Prob

(
a2 + b2 ≡ 0 (mod 22r)

)
= Prob

(
a ≡ 0 & b ≡ 0 (mod 2r)

)
=

1

2r
· 1

2r
=

1

22r
=

1

2v−1

(2) For v even, say 2r + 2:

Prob
(
λ2(a2 + b2) > 2r + 2

)
= Prob

(
ν2(a2 + b2) > 2r + 1

)
= Prob

(
a2 + b2 ≡ 0 (mod 22r+1)

)
= Prob

(
a ≡ 0 & b ≡ 0 (mod 2r+1)

)
+

Prob
(
a ≡ 2r & b ≡ 2r (mod 2r+1)

)
=

(
1

2r+1

)2

+

(
1

2r+1

)2

=
1

22r+1
=

1

2v−1

This completes the argument. �

4. Fix one variable

In the last case, we fix one of the variables in SQ, say w and consider the set

(4.1) SQ1(n) = {x2 + y2 + z2 + n : x, y, z ∈ Z}.
Now let λ1(n) to be the highest power of 2 that divides an element of SQ1(n); that is,

(4.2) λ1(n) = sup
x,y,z∈Z

{
ν2(x2 + y2 + z2 + n)

}
.

The function λ1(n) is now determined for arbitrary n ∈ N. The special original case,
when n is a square, is described at the end of this section.

Lemma 4.1. Assume n = 4r(8k + 1) for some r, k ∈ N. Then λ1(n) = 2r + 2.

Proof. The number x2 + y2 + z2 has the forms

22s+1(2`+ 1), 4s(4`+ 1) or 4s(8`+ 3).

In the first case,

ν2(x2 + y2 + z2 + n) = ν2(22s+1(2`+ 1) + 4r(8k + 1)) = min(2r, 2s+ 1) 6 2r;

in the second case

ν2(x2 + y2 + z2 + n) = ν2(4s(4`+ 1) + n)

=

{
min(2r, 2s) 6 2r if r 6= s

2r + ν2(8k + 1 + 4`+ 1) = 2r + 1 if r = s.

Finally, in the third case,

ν2(x2 + y2 + z2 + n) =

{
min(2r, 2s) 6 2r if r 6= s

2r + ν2(8k + 1 + 8`+ 3) = 2r + 2 if r = s.



SUMS OF FOUR OR FEWER SQUARES 61

Therefore ν2(x2 + y2 + z2 + n) 6 2r + 2. The final step of the argument requires
to find x, y, z ∈ N such that x2 + y2 + z2 = 4r(8` + 3). This is simple: choose
variables X, Y, Z such that x = 2rX, y = 2rY, z = 2rZ and then pick integers to
satisfy X2 + Y 2 + Z2 = 8` + 3. This produces infinitely many integers (x, y, z) such
that x2 + y2 + z2 + n is divisible by 22r+2. �

Lemma 4.2. Assume n 6= 4r(8k + 1) for any r, k ∈ N. Then λ1(n) =∞.

Proof. The number n must have one of the forms

22r+1(2k + 1), 4r(4k + 3), 4r(8k + 5).

In the first case, n = 22r+1(2k + 1), assume there are integers x, y, z such that

(4.3) x2 + y2 + z2 = 22r+1(2`+ 1).

Then,

ν2(x2 + y2 + z2 + n) = ν2(22r+1(2`+ 1) + 22r+1(2k + 1))(4.4)

= 2r + 2 + ν2(`+ k + 1).

It is now shown that, by choosing x, y, z ∈ Z, the value of ` in (4.3) may be chosen so
that ν2(`+k+1) is arbitrarily large. Let a ∈ N and take ` = 2ab−k−1 with b ∈ N. Then
ν2(`+k+1) = a and (4.3) is solvable since 22r+1(2`+1) = 4r(2a+2b−4k−2) 6= 4r(8t+7)
and so it is a sum of three squares. It follows that λ1(n) is not finite. A similar
argument works for the other forms of n. �

In summary,

λ1(n) = sup
x,y,z∈Z

{
ν2(x2 + y2 + z2 + n)

}
=

{
ν2(n) + 2 if n is of the form 4r(8k + 1),

∞ if not.

Lemma 4.3. A number of the form 8k+1 is a square if and only if k is a triangular
number; that is, k = j(j + 1)/2 for some j ∈ N.

Proof. The expression k = Tn is equivalent to 8k + 1 = (2n+ 1)2. �

Theorem 4.4. Assume n is a square. Then λ1(n) is always finite.

Proof. This follows from Lemmas 4.1 and 4.2. �

In the original setting, the number n is a square. Therefore, the next statements
deal with the set SQ1(a2) = {x2 + y2 + z2 + a2 : x, y, z ∈ Z}.

Theorem 4.5. Given v ∈ N, there are infinitely many a ∈ Z such that SQ1(a2)
have infinitely many elements divisible by 2v.

Proof. Given v > 0 let r = bv/2c, so that 2r > v. Lemma 4.3 and the existence of
infinitely many triangular numbers give infinitely many a’s of the form a2 = 4r−1(8k+
1). Lemma 4.1 yields λ1(4r(8k+1)) = 2r > v, for any k. Therefore there are infinitely
many x, y, z ∈ Z such that x2 + y2 + z2 + 4r(8k + 1) is divisible by 2v. �
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Theorem 4.6. Let a 6= 0 be fixed. Then the probability that SQ1(a2) has an
element divisible by 22v is 1/2v−1. That is,

(4.5) lim
L→∞

∣∣{s ∈ SQ1(n) : 22v|s and |s| 6 L}
∣∣

|{s ∈ SQ1(n) : |s| 6 L}|
=

1

2v−1
.

Proof. The requested probability is the probability that λ(a2) > 2v. Lemma 4.1
and 4.2 imply that , λ1(a2) = 2v is equivalent to a2 = 4v−1(8k+1) and also equivalent
to ν2(a) = v−1. It follows that λ1(a2) > 2v occurs precisely when a ≡ 0 (mod 2v−1).
Therefore, Prob(λ1(a2) > 2v) = Prob(a ≡ 0 (mod 2v−1)) = 1

2v−1 . �

5. Conclusions

According to a classical theorem of Lagrange, the range of the function x2 + y2 +
z2 + w2 as x, y, z, w run over all integers is the set N of non-negative integers. The
results presented here involve restrictions of this function when some of variables are
fixed.
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