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Maximum Likelihood Estimators Under
Continuity-Compactness Assumptions

Julio Saucedo-Zul and Haydée De la Garza Rodŕıguez

Abstract. This work concerns with the consistency property of maximum likeli-

hood estimators in a parametric statistical model. Assuming that the parameter
space is compact and that the density function is Lipschitz continuous on the

parameter, it is shown that the maximum likelihood technique generates estima-

tors that, as the sample size increases, converge to the true parameter value with
probability 1. The objective of the analysis is to illustrate the application of

three basic statistical and analytical results: the law of large numbers, Jensen’s

inequality, and the Heine-Borel property of compact sets

Key words: Consistency of estimators, Concave function, Law of large numbers,
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1. Introduction

This note is concerned with the maximum likelihood method for parameter es-
timation, and the main objective is to establish the consistency of the estimators
obtained from that technique. In contrast with the classical approach on the subject
[7, 11], the arguments in this paper are based on the continuity propertiest of the
underlying density, but not on its differentiability. On the other hand, it is known
that a maximizer of a continuous function does not necessarily exists unless its domain
is compact [5, 8], and for this reason, in this work the compactness of the parameter
space is assumed. Under mild Lipschitz continuity conditions, the main result of the
h paper, formulated as Theorem 3.1 of Section 3, establishes the consistency of the
sequence of maximum likelihood estimator The proof of this theorem is based on three
fundamental results:

(i) The law of large numbers, which states that, as the sample size increases, the
average of independent random variables with common distribution converges with
probability 1 to the population mean; see, for instance, [1, 3, 6, 10].
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(ii) Jensen’s inequality, which relates the ideas of expectation and concave function
[2, 10], and

(iii) The Heine-Borel theorem in an Euclidean space. This result is a fundamental
property of the real number system and is also known as the finite-sub-covering theo-
rem.

The subsequent material has been organized as follows: In section 2 the idea of
consistent sequence of estimators is introduced. In Section 3, the maximum likelihood
method is formulated, and it is shown that it renders consistent estimators when
the parameter space is finite. Next, in Section 4, the continuity and compactness
assumptions are introduced, and the consistency result under those assumptions is
formulated as Theorem 5.1 in Section 5. Finally, the presentation concludes in Section
6 with a proof of this last theorem.

2. Consistency

Let Y1,Y2,Y3, ... be a sequence of independent and identically distributed
k-dimensional random vectors, and assume that their common distribution has a den-
sity f(y, θ) with respect to a fixed (σ-finite) measure ρ on the Borel sets of Rk; ρ
is the the Lebesgue when the vectors Yi have a continuous distribution, whereas ρ
is a counting measure in the discrete case. On the other hand, θ stands for an un-
known parameter that belongs to a parameter space Θ contained in a Euclidean space
Rd. Thus, the observer does not know exactly the distribution of the vectors Yi,
but only knows that it has a density (with respect to ρ) that belongs to the family
{f(y; θ) | θ ∈ Θ}. In what follows, θ0 ∈ Θ denotes the true value of the parameter, so
that the common density of the vectors Yi is f(y; θ0); however, θ0 is not known to
the observer and the main objective is to use the observed data to estimate the value
of θ0 or, more generally, the value of a function g(θ0). An estimator of the unknown
value g(θ0) based on Y1,Y2, ...,Yn is a function

ĝn ≡ ĝn(Y1,Y2, ...,Yn),

which will be used by the observer as ‘an approximation’ of g(θ0). This idea is quite
general, and several techniques can be used to generate an estimator ĝn, for instance,
the methods of moments, frequency substitution, or maximum likelihood [2, 3, 6]. Re-
gardless of the approach used to construct the estimators ĝn, a reasonable requirement
on the sequence {ĝn} is that, as the number n of observations increases, the values
of ĝn(Yn, ...,Yn) ‘converge’ to g(θ0); in that case, the sequence of estimators {ĝn} is
called consistent. This idea can be formalized in several ways, and in this work the
following formulation is used.

Definition 2.1. Let Y1,Y2,Y3... be a sequence of independent random vectors
which are identically distributed, and suppose that their common distribution has
density f(y; θ), where θ ∈ Θ. Denote by θ0 the true value of the parameter and let
Pθ0 be the distribution corresponding to f(y; θ0). Given a function g(θ), a sequence
{ĝn(Y1, ...,Yn)} is consistent if, and only if,

Pθ0

[
lim
n→∞

ĝn(Y1, ...,Yn) = g(θ0)
]

= 1.
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This idea is referred to as strong consistency in the literature. On the other hand,
the weak consistency property (or consistency in probability), requires that for each
ε > 0,

lim
n→∞

Pθ0 [|ĝn(Y1, ...,Yn) = g(θ0)| > ε] = 0.

For details about these consistency notions see [3, 7, 8]. It is known hat if a sequence
{ĝn} is consistent in the sense of Definition 2.1, then it is consistent in probability, so
that the notion in the above definition is, effectively, stronger than the idea of weak
consistency. A basic tool in the analysis if the idea of consistency is the the following
(strong) law of large numbers, whose proof is given, for instance, in [1].

Theorem 2.1. Let X1, X2, X3, ... be independent and identically distributed ran-
dom variables defined on a probability space (Ω,F , P ), and suppose that µ = E[Xi] is
well-defined. In this context, there exists an event Ω∗ such that

(i) P [Ω∗] = 1, and

(ii) For each ω ∈ Ω∗, lim
n→∞

X1(ω) +X2(ω) + ...+Xn(ω)

n
= µ.

3. Maximum Likelihood Estimation

In this section the maximum likelihood method is introduced. The basic conditions
for the analysis below are that all of the densities in the model have the same support,
and that different values of the parameter correspond to different distributions.

Assumption 3.1. For each θ, θ1 ∈ Θ with θ 6= θ1, the following properties (i) and
(ii) hold:

(i) The densities f(·; θ0) and f(·; θ1) have the same support, that is,

{y ∈ Rk | f(y, θ) > 0} = {y ∈ Rk | f(y, θ1) > 0};

(ii) [Identifiability.] There exist a (Borel set) A ⊂ Rk such that∫
A

f(y; θ) ρ(dy) 6=
∫
A

f(y; θ1) ρ(dy).

As usual, Eθ[H(Y)] stands for the expected value of the random variable H(Y)
under the assumption that the density of Y is f(Y; θ). In order to obtain information
about the true parameter value, the observer takes a sample (Y1,Y2,Y3, ...,Yn),
whose density belongs to the family

(3.1) fn(y1, ...,yn; θ) =

n∏
i=1

f(yi; θ), θ ∈ Θ.

Note that the true (but unknown) density of Y1,Y2, ...,Yn) is

(3.2) fn(Y1, ...,Yn; θ0) =

n∏
i=1

f(Yi; θ0).
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The maximum likelihood method of estimation is motivated by the following theorem,
whose proof relies on the law of large numbers in Theorem 2.1 and on the following
(strict) Jensen’s inequality [3, 9]: If W is a non-constant random variable taking values
in the interval J , and the real-alued function ϕ is strictly concave on J , then

(3.3) E[ϕ(W )] < ϕ (E[W ])

Theorem 3.1. (i) For each θ 6= θ0,

Eθ0

[
log

(
f(Y; θ)

f(Y; θ0)

)]
=: ν(θ) < 0.

(ii) With probability 1 respect to Pθ0 ,

lim
n→∞

1

n
log

(
fn(Y1, ...,Yn; θ)

fn(Y1, ...,Yn; θ0)

)
= ν(θ).

(iii) There exists an event Ω∗ satisfying P [Ω∗] = 1, for which the following property
holds: For each ω ∈ Ω∗, there exists an integer N(ω; θ) such that

fn(Y1(ω), ...,Yn(ω); θ) < fn(Y1(ω), ...,Yn(ω); θ0), n > N(ω; θ).

Proof. (i) Observe that for each θ 6= θ0, Assumption 3.1 implies that
f(Y; θ)/f(Y; θ0) is a non-constant random variable, whose values belong to the in-
terval J = (0,∞) with probability 1 with respect to Pθ0 . Thus, applying Jensen’s
inequality in (3.3) with the strictly concave function ϕ(w) = log(w) for w > 0, it
follows that

(3.4) Eθ0

[
log

(
f(Y; θ)

f(Y; θ0)

)]
< log

(
Eθ0

[
f(Y; θ)

f(Y; θ0)

])
.

Observing that

Eθ0

[
f(Y; θ)

f(y; θ0)

]
=

∫ [
f(y; θ)

f(y; θ0)

]
f(y; θ0) dy =

∫
f(y; θ) dy = 1,

it follows that the right hand side of (3.4) is zero, establishing the desired conclusion.
(ii) A glance at (3.1) and (3.2) yields that

(3.5) log

(
fn(Y1, ...,Yn; θ)

fn(Y1, ...,Yn; θ0)

)
= log

( ∏n
i=1 f(Yi; θ)∏n
i=1 f(Yi; θ0)

)
=

n∑
i=1

log

(
f(Yi; θ)

f(Yi; θ0)

)
;

additionally, the random variables Xi = log

(
f(Yi; θ)

f(Yi; θ0)

)
are independent and

identically distributed with respect to Pθ0 and their common expectation is

Eθ0 [Xi] = Eθ0

[
log

(
f(Yi; θ)

f(Yi; θ0)

)]
= ν(θ) < 0,

where the inequality is due to part (i). Therefore, the law of large numbers in Theorem
2.1 implies that there exists an event Ω∗ with Pθ0 [Ω∗] = 1, such that

ν(θ) = lim
n→∞

1

n

n∑
i=1

Xi(ω) = lim
n→∞

1

n

n∑
i=1

log

(
f(Yi(ω); θ)

f(Yi(ω); θ0)

)
, ω ∈ Ω∗,
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a relation that via (3.1) leads to

lim
n→∞

1

n
log

(
fn(Y1(ω), ...,Yn(ω); θ)

fn(Y1(ω), ...,Yn(ω); θ0)

)
= ν(θ), ω ∈ Ω∗.

This completes the argument since, as already mentioned, P [Ω∗] = 1.

(iii) Let Ω∗ be the event in part (ii). Combining the above display with the fact that
ν(ω) < 0, the definition of limit yields that, for each ω ∈ Ω∗, there exists an integer
N(ω, θ) such as

1

n
log

(
fn(Y1(ω), ...,Yn(ω); θ)

fn(Y1(ω), ...,Yn(ω); θ0)

)
< 0, n > N(ω, θ),

a relation that is equivalent to

log (fn(Y1(ω), ...,Yn(ω); θ)) < log (fn(Y1(ω), ...,Yn(ω); θ0)) , n > N(ω, θ),

that is, fn(Y1(ω), ...,Yn(ω); θ) < fn(Y1(ω), ...,Yn(ω); θ0) for all n > N(ω, θ), com-
pleting the proof. �

Given the observed data Y1, ...,Yn, define the corresponding likelihood function
on Θ by

(3.6) Ln(θ;Y1, ...,Yn) = fn(Y1,Y2, ...,Yn; θ), θ ∈ Θ.

If the vectors Yi are discrete, the value of Ln(θ;y1, ...,yn) is the probability of
observing the event [Y1 = y1,Y2 = y2, ...,Yn = yn] when θ is the parameter value.
The fundamental fact established in part (iii) of the previous theorem is that, for n
large enough, the likelihood function Ln(θ;Y1, ...,Yn) is not a maximized at θ 6= θ0,
so that it is reasonable to find good estimators of the unknown value of θ0 among the
maximizers of the likelihood function.

Definition 3.1 (Maximum Likelihood Estimators.). Let Y1,Y2, ...,Yn be a sam-
ple of a distribution with density f(y; θ), where θ ∈ Θ. An estimator

θ̂n ≡ θ̂n(Y1, ...,Yn) ∈ Θ

is a maximum likelihood estimator if θ̂n maximizes the mapping θ 7→ L(θ;Y1, Y2, ...,Yn),
θ ∈ Θ, that is,

Ln(θ̂n(Y1, ...,Yn);Y1, ...,Yn) > Ln(θ;Y1, ...,Yn), θ ∈ Θ

The following result shows that, if the parameter space is finite, then a sequence

{θ̂n} of maximum likelihood estimators is consistent. Note that the likelihood function
in (3.6) always has a maximizer when its domain Θ is finite.

Theorem 3.2. Let Y1,Y2, ...,Yn be a sample of a distribution with density f(y; θ),
where θ ∈ Θ, where the parameter space Θ is finite. Denote by θ0 ∈ Θ the true para-
meter value, and suppose that the Assumption 3.1 holds. In this context, there exists
an event Ω∗ satisfying the following properties (i) and (ii): (i) Pθ0 [Ω∗] = 1, (ii) For

each ω ∈ Ω∗, exists an integer N(ω) such as

θ̂n(Y1(ω), ...Yn(ω)) = θ0, n > N(ω).
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This results shows that, with probability 1, the maximum likelihood estimator
coincides with the true parameter value when the sample size n is large enough, and

then the sequence {θ̂n} of maximum likelihood estimators converges with probability
1 to the true value of the parameter θ0.

Proof. Write

(3.7) Θ = {θ0, θ1, ..., θr},
where θ0 is the true value of the parameter.
Using Theorem 3.1 (iii) for each i = 1, 2, ..., r there exists an event Ω∗i such as

(a) Pθ0 [Ω∗i ] = 1, and

(b) For each ω ∈ Ω∗i exists an integer N(ω, θi) such that

fn(Y1(ω), ...,Yn(ω); θi) < fn(Y1(ω), ...,Yn(ω); θ0), n > N(ω, θi).

By (3.6), this relation is equivalent to

Ln(θi;Y1(ω), ...,Yn(ω)) < Ln(θ0;Y1(ω), ...,Yn(ω)), n > N(ω, θi),

and then Definition 3.1 yields that

For ω ∈ Ω∗i , θ̂n(Y1(ω), ...,Yn(ω)) 6= θi if

(3.8) n > N(ω, θi)

Now, define

Ω∗ : =

r⋂
i=1

Ω∗i ,

and note that Pθ0 [Ω∗] = 1, since Pθ0 [Ω∗i ] = 1 for i = 0, 1, ..., r. Next, recalling that
N(ω, θi) <∞ for ω ∈ Ω∗i , set

N(ω) : = max
i=1,2...,r

N(ω, θi) <∞.

Now, select ω ∈ Ω∗ and take n > N(ω). In this case ω ∈ Ω∗i and n > N(ω, θi) for

each i = 1, 2, ..., r, and then (3.8) implies that θ̂n(Y1(ω), ...,Yn(ω)) 6= θi; since the

maximizer θ̂n(Y1(ω), ...,Yn(ω)) belongs to Θ, it follows form (3.7) that if ω ∈ Ω∗ and

n > N(ω) then θ̂n(Y1(ω), ...,Yn(ω)) = θ0.
This completes the proof since, as already observed Pθ0 [Ω∗] = 1, and the integer

N(ω) is finite. �
By Theorem 3.2, the true parameter θ0 is estimated consistently by the sequence

{θ̂n} of maximum likelihood estimators. The remainder of the paper is dedicated to
extend this conclusion to the case of a compact parameter space.

4. The Continuity-Compactness Framework

In this section, additional conditions on the parameter space Θ and the likelihood
function L(·;Y1, ...,YN ) are introduced. Under the two assumptions stated below,

the maximum likelihood estimator θ̂n in Definition 3.1 is always well-defined, and it

is possible to establish the consistency of the sequence {θ̂n}, Recall that a nonempty
subset C ⊂ Rd is if, for every convergent sequence {cn} ⊂ C, the corresponding limit
also belongs to C. On the other hand, C ⊂ Rk is bounded if there exists a nonnegative
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constant B such as ‖c‖ 6 B for all c ∈ C. A subset C of Rd is compact if C is both
closed and bounded.

Assumption 4.1. The parameter space Θ is a compact subset of Rd.

The main property of compact subsets of Rd is stated in the next theorem, where
the following notation is used: For each point x ∈ Rd and ε > 0, the ball with center
x and radius ε > 0 is defined by

(4.1) B(x, ε) : = {y ∈ Rd : ‖y− x‖ < ε}.

Theorem 4.1. Let C be a compact subset of Rd. Given F ⊂ Rd, for each x ∈ F
let εx be a positive number, and assume that

C ⊂
⋃
x∈F

B(x, εx).

In this case, exists a finite subset {x1,x2...,xm} ⊂ F such as

C ⊂
m⋃
i=1

B(xi, εxi).

This result, which is a fundamental property of the system of the real number,
is known as the Heine-Borel theorem, or the finite sub-covering theorem; a proof can
be found, for instance, in [4, 8]. The following additional requirement will be used

to ensure the existence of maximum likelihood estimators θ̂n, and to establish the

consistency of the sequence {θ̂n}, Note that the support

Y : = {y : f(y; θ) > 0}

is the same for each θ ∈ Θ, by Assumption (3.1) (i).

Assumption 4.2. There exists a function B : Y → [0,∞) satisfying the the fol-
lowing properties (i) and (ii): (i) For every y ∈ Y,

(4.2) | log f(y; θ)− log f(y; θ1)| 6 ‖θ − θ1‖B(y), θ, θ1 ∈ Θ.

(ii) The random variable B(Y) has a finite expectation value regardless of the true
parameter value, i.e.,

(4.3) µB(θ) : = Eθ[B(Y)] <∞, θ ∈ Θ.

Condition (4.2) states that log(f(y; θ)) is a Lipschitz continuous function of θ, and
B(y) is referred to as a Lipschitz constant for log(f(y; ·)). On the other hand, condition
(4.3) makes it possible to use the law of large.numbers to analyze the consistency of the
sequence of maximum likelihood estimators. Examples satisfying Assumption (4.39
are discussed below.

Example 4.1. Consider the family of densities on Rs given by

f(y; ξ) = a(ξ)−1h(y)eξ
′T (y), y ∈ Rs, ξ ∈ Ξ
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where h(·) is a nonnegative function on Rs, T (y) = [T1(y), T2(y), ..., Tk(y)]′ is a map-
ping from Rs to Rk, ξ ∈ Rk, and

a(ξ) :=

∫
Rk

h(y)eξ
′T (y) dy,

whereas Ξ consists of all the vectors in Rk for which a(ξ) is positive and finite. It is
assumed the Ξ is non empty, and in this case it follows that Ξ is a convex set [2, 6];
without loss of generality, it is supposed that the interior Ξ◦ of Ξ is non-empty. The set
{f(y; Ξ) : ξ ∈ Ξ} is a k-dimensional exponential family, and the following properties
are valid at each interior point ξ0 of Ξ [6]: (i) Each component Ti(Y) of T (Y) has

finite expectation with respect to f(·; ξ0), that is,

(4.4) Eξ0 [|Ti(Y)|] <∞, i = 1, 2, ..., k;

(ii) The function a(·) is differentiable at ξ0, and

∂ξra(ξ0) = a(ξ0)Eξ0 [Tr(Y )], r = 1, 2, ..., k;

(iii) The partial derivatives of a(ξ) are continuous at ξ0.

Note that the common support of the densities in this example is given by

Y = {y : h(y) > 0}.
Now, let Θ be a compact set satisfying that

Θ ⊂ Ξ◦,

and observe that Ξ◦ is convex, since so is Ξ. It will be verified that Assumption 4.3
is satisfied by the family {f(y; ξ) : ξ ∈ Θ}. To achieve this goal, first note that, for
y ∈ YY,

log f(y; ξ) = log[a(ξ)−1h(y)eξ
′T (y)] = ξ′T (y) + log(h(y))− log(a(ξ)),

and then

(4.5) f(y; ξ)− f(y; ξ1) = (ξ − ξ1)′T (y) + log[a(ξ)]− log[a(ξ1)], ξ, ξ1 ∈ Ξ, y ∈ Y.
Now, observe that the Cauchy-Schwarz inequality yields that

|(ξ − ξ1)′T (y)| 6 ‖ξ − ξ1‖ ‖T (y)‖,
where ‖w‖ denotes the Euclidean norm of the vector w, so that

‖T (y)‖ =
√
T1(y)2 + ...+ Tk(y)2 6 |T1(y)|+ ...+ |Tk(y)|,

and then

(4.6) |(ξ − ξ1)′T (y)| 6 ‖ξ − ξ1‖ ‖T (y) = ‖ξ − ξ1‖ [|T|(y)|+ ...+ |Tk(y)|].

Next, a bound for the difference of logarithms in (4.5) will be established. Let Θ̃ be

the union of all the segments that join points of Θ, that is, Θ̃ = {tθ+ (1− t)θ1 | θ, θ1 ∈
Θ, t ∈ [0, 1]}. As Θ is a compact set contained in Ξ◦, which is an open and convex

set, it follows that Θ̃ is also a compact subset of Ξ◦. Thus, the partial derivatives of
a(ξ), which are defined and continuous in Ξ◦, are bounded when ξ ∈ Θ̃, i.e., exists
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M̃ > 0 such as |∂ξia(ξ)| 6 M̃ for all i = 1, 2, ..., k and ξ ∈ Θ̃. Hence, the gradient
vector Da(ξ) = (∂ξ1a(ξ), ..., ∂ξka(ξ))′ satsifies that

‖Da(ξ)‖ =
√
∂ξ1a(ξ)2 + ...+ ∂ξka(ξ)2 6

√
M̃2 + ...+ M̃2 =

√
kM̃ =: M, ξ ∈ Θ̃.

Select now ξ, ξ1 ∈ Θ and, observe that the mean value theorem implies that there
exists t ∈ (0, 1) such that

a(ξ)− a(ξ1) = Da(tξ + (1− t)ξ1)′(ξ − ξ1),

Since tξ + (1− t)ξ1 ∈ Θ̃, it follows that

‖Da(tξ + (1− t)ξ1)‖ 6M,

and the, the Cauchy-Schwarz inequality leads to
(4.7)
|a(ξ)−a(ξ1)| = |Da(tξ + (1− t)ξ1)(ξ − ξ1)| 6 ‖Da(tξ + (1− t)ξ1)‖ ‖ξ−ξ1‖ 6M‖‖ξ−ξ1‖,
ξ, ξ1 ∈ Θ.

On the other hand, using that a(ξ) is continuous and positive for ξ in the interior of
Ξ, which contains the compact parameter space set Θ, it follows that there exists a
constant b such that

a(ξ) > b > 0, ξ ∈ Θ.

On the other hand, since d log(x)/dx = 1/x, the mean value theorem implies that
exists a constant s ∈ (0, 1) such as

log a(ξ)− log a(ξ1) =
1

sa(ξ) + (1− s)a(ξ1)
[a(ξ)− a(ξ1)];

when ξ and ξ1 belong to Θ, the inequalities a(ξ), a(ξ1) > b are satisfied, and then the
inclusion s ∈ (0, 1) implies that sa(ξ) + (1 − s)a(ξ1) > b, and this inequality and the
previous display together imply that

| log a(ξ)− log a(ξ1)| 6 1

b
|a(ξ)− a(ξ1)|, ξ, ξ1 ∈ Θ;

via (4.7), this relation leads to

| log a(ξ)− log a(ξ1)| 6 M

b
‖ξ − ξ1‖, ξ, ξ1 ∈ Θ.

Combining this inequality with (4.5) and (4.6) it follows that, for every y ∈ Y,

|log f(y; ξ)− f(y; ξ1)| 6
[
|T1(y)|+ ...+ |Tk(y)|+ M

b

]
‖ξ − ξ1‖, ξ, ξ1 ∈ Θ,

so that the first part of Assumption 4.3 holds with B(Y) : = |T1(Y)+...+Tk(Y)]+M
b ,

whereas, recalling that Θ ⊂ ξ0, the inequality (4.4), valid when ξ0 ∈ ξ0, implies that

Eθ [B(Y)] = Eθ [|T1(Y)|] + ...+ Eθ [|Tk(Y)|] +
M

b
<∞, θ ∈ Θ,

showing that the second part of Assumption 4.3 is also valid.
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The following example, concerned with a non-exponential family of densities,
shows that the Assumption 4.3 can be satisfied even when log f(y; θ) is not differ-
entiable with respect to θ.

Example 4.2. Let f(y; ξ) be the Laplace’s with center ξ, i.e.,

f(y; ξ) =
1

2
e−|y−ξ|, y ∈ R, ξ ∈ R

In this case log f(y; ξ) = −|y − ξ| − log 2, and then

log f(y; ξ)− log f(y; ξ1) = |y − ξ| − |y − ξ1|.

Observing that | |y − ξ| − |y − ξ1| | 6 |(y − ξ) − (y − ξ1)| = |ξ1 − ξ|, by the tangle
inequality, it follows that |log f(y; ξ)− log f(y; ξ1)| 6 |ξ − ξ1|, and then Assumption
4.3 is satisfied with B(y) = 1 for every y ∈ R.

5. Main Theorem

In this section, a general result on the consistency of maximum likelihood estima-
tors is stated. First, observe that, under the Assumptions 4.2 and 4.3, the likelihood
function Ln(θ;Y1, ...,Yn) depends continuously on θ, and then, since the parameter

space is compact, a maximizer θ̂n = θ̂n(Y1, ...,Yn) always exists [4, 8].

Theorem 5.1. Let Y1,Y2,Y3, ... be a sequence of independent random vectors
with a common distribution, whose density belongs to the family {f(Y; θ) : θ ∈ Θ}, and
suppose that Assumptions 4.2 and 4.3 are valid. Denote by θ0 the true value of the

parameter and let θ̂n be an estimator of maximum likelihood based on Y1,Y2, ...,Yn.
In these circumstances,

(5.1) Pθ0

[
lim
n→∞

θ̂n = θ0

]
= 1.

This result establishes that the true parameter θ0 is estimated consistently by the
sequence of maximum likelihood estimators; this is the classical conclusion, but it must
be observed that Assumptions 4.2 and 4.3 are weaker than the usual regular conditions
used, for instance, in [2, 6]. The proof of the Theorem 5.1 is somewhat technical and is
presented in the following section. The argument relies on the following result, which
is an extension of Theorem 3.1.

Theorem 5.2. Suppose that Assumptions 4.2 and 4.3 hold, and let θ∗ ∈ Θr{θ0}
be arbitrary. In this case, there exist a real number ε∗ = ε(θ) and s an event Ω∗

satisfying

Pθ0 [Ω∗] = 1 and ε∗ > 0,

as well as the following property:

For each ω ∈ Ω∗, there exists an integer N(ω; θ∗) such that, for all θ ∈ B(θ∗, ε∗),

fn(Y1(ω), ...,Yn(ω); θ) < fn(Y1(ω), ...,Yn(ω); θ0), n > N(ω; θ∗);

see (3.1).
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This theorem implies that, if θ∗ is not equal to the true parameter value θ0, then
the ball B(θ∗, ε∗) does not contain any maximizer of the likelihood function whenever
the sample size n is large enough, i.e., n > N(ω, θ∗).

Proof. Note that

Eθ0

[
log

(
f(Y; θ∗)

f(Y; θ0

)]
= ν(θ∗) < 0,

byTheorem 3.1 (i), and then there exists a positive number ε∗ = ε∗(θ∗) such that

(5.2) ν(θ∗) + ε∗Eθ0 [B(Y )] < 0,

where B(·) is the function in Assumption 4.3. Therefore,

Eθ0

[
log

(
f(Y; θ∗)

f(Y; θ0)

)
+ ε∗B(Y)

]
= ν(θ∗) + ε∗Eθ0 [B(Y )] < 0.

and combining this fact with the law of large numbers in Theorem 2.1, it follows that
there exists an event Ω∗ satisfying that

P [Ω∗] = 1 and, for all ω ∈ Ω∗, and

lim
n→∞

1

n

n∑
i=1

[
log

(
f(Yi(ω); θ∗)

f(Yi(ω); θ0)

)
+ ε∗B(Yi(ω))

]
= ν(θ∗) + ε∗Eθ0 [B(Y )].

Since the right-hand side of the last equality is negative, the definition of limit
yields that, for each ω ∈ Ω∗, there exists a positive integer N∗ = N∗(ω) such that

(5.3)

n∑
i=1

[
log

(
f(Yi(ω); θ∗)

f(Yi(ω); θ0)

)
+ ε∗B(Yi(ω))

]
< 0, n > N∗(ω), ω ∈ Ω∗.

Now, let θ in B(θ∗, ε∗) be arbitrary. In this case

(5.4) ‖θ − θ∗‖ < ε∗,

and part (i) of Assumption 4.3 yields that

| log f(y; θ)− log f(y; θ∗)| 6 ‖θ − θ∗‖B(y) 6 ε∗B(y), y ∈ Y,

and then

log

(
f(y; θ)

f(y; θ0)

)
−log

(
f(y; θ∗)

f(y; θ0)

)
= [log f(y; θ)−log f(y; θ0)]−[log f(y; θ∗)−log f(y; θ0)]

= log f(y; θ)− log f(y; θ∗) 6 ε∗B(y),

so that

log

(
f(y; θ)

f(y; θ0)

)
6 log

(
f(y; θ∗)

f(y; θ0)

)
+ ε∗B(y), y ∈ Y.

This relation immediately leads to
n∑
i=1

log

(
f(yi; θ)

f(yi; θ0)

)
6

n∑
i=1

[
log

(
f(yi; θ

∗)

f(yi; θ0)

)
+ ε∗B(yi)

]
.
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Combining this inequality with (5.3), and recalling that θ ∈ Θ is an arbitrary param-
eter that satisfies (5.4), it follows that

(5.5)

n∑
i=1

log

(
f(Yi(ω); θ)

f(Yi(ω); θ0)

)
< 0, ω ∈ Ω∗, n > N∗(ω), θ ∈ B(θ∗, ε∗).

Via (3.1) , this yields that, for every ω ∈ Ω∗ and θ ∈ B(θ∗, ε∗),

log fn(Y1(ω), ...,Yn(ω); θ) < log fn(Y1(ω), ...,Yn(ω); θ0), n > N∗(ω),

and the conclusion follows, since P [Ω∗] = 1, �

6. Proof of the Main Theorem

DemMainIn this section Theorem 5.1 will be established. The argument relies on
the following consequence of Theorem 5.2.

Theorem 6.1. Let ε > 0 be a fixed number. Under Assumptions 4.2 and 4.3,
there exists an event Ωε with the following properties:

P [Ωε] = 1,

and For each ω ∈ Ωε and θ ∈ Θ ∩ B(θ0, ε)
c there exists an integer Nε(ω) such as

log fn(Y1(ω), ...,Yn(ω); θ) < log fn(Y1(ω), ...,Yn(ω); θ0), n > Nε(ω).

This theorem implies that , with probability 1, log fn(Y1(ω), ...,Yn(ω); ·) is not
maximized at any point of Θ ∩B(θ0, ε)

c when n is large enough, so that a maximizer
must belong to B(θ0, ε).

Proof. To begin with, note that the ball B(θ0, ε) is open, and then Assumption
4.2 yields that Θ ∩ B(θ0, ε)

c is a compact set [4, 8]. Now, let θ∗ ∈ Θ ∩ B(θ0, ε)
c be

arbitrary. In this case ‖θ∗ − θ0‖ > ε, so that θ∗ 6= θ0. By Theorem 5.2, there exist an
event Ω(θ∗) and a positive number ε(θ∗), such that

(6.1) P [Ω(θ∗)] = 1,

and, for each ω ∈ Ω(θ∗), the following property is satisfied by a positive integer
N(ω, θ∗): if ‖θ − θ∗‖ < ε(θ∗), then n > N(ω, θ∗) implies that

(6.2) log fn(Y1(ω), ...,Yn(ω); θ) < log fn(Y1(ω), ...,Yn(ω); θ0).

Next, observe that

Θ ∩B(θ0, ε)
c ⊂

⋃
θ∗∈Θ∩B(θ0,ε)

B(θ∗, ε(θ∗));

since Θ∩B(θ0, ε)
c is a compact set, by the Heine-Borel property in Theorem 4.1, there

exists a finite set {θ∗1 , θ∗2 , ..., θ∗r} contained in Θ ∩B(θ0, ε) such that

(6.3) Θ ∩B(θ0, ε)
c ⊂

r⋃
i=1

B(θ∗i , ε(θ
∗
i )).
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Now, set

(6.4) Ωε : =

r⋂
i=1

Ω(θ∗i ),

and observe that P [Ωε] = 1, by (6.1). Next, define

(6.5) Nε(ω) : = max
i=1,2,...,r

N(ω, θ∗i ), ω ∈ Ωε.

It will be shown that the conclusion of the theorem is satisfied by Ωε and Nε(ω)
specified above. Let θ ∈ Θ ∩ B(θ0)c and ω ∈ Ωε be arbitrary, It follows that θ ∈
B(θ∗i , ε(θ

∗
i )) for some i between 1 and r, by (6.3), whereas ω ∈ Ω(θ∗i ), by (6.4), Now,

observe that n > Nε(ω) implies that n > N(ω, θ∗i ), by (6.5), and then (6.2) implies
that

log fn(Y1(ω), ...,Yn(ω); θ) < log fn(Y1(ω), ...,Yn(ω); θ0).

Thus, it has been shown that, if θ ∈ Θ∩B(θ0)c, ω ∈ Ωε and n > Nε(ω), then the above
inequality occurs, this completes the argument since, as already noted, P [Ωε] = 1. �

Proof of Theorem 5.1 For each integer m = 1, 2, ..., let Ω1/m the event in the
Theorem 6.1 corresponding to ε = 1/m, and define

(6.6) Ω∗ =

∞⋂
m=1

Ω1/m.

In this case, Ω∗c =
⋃∞
m=1 Ωc1/m so that P [Ω∗c] 6

∑∞
m=1 P

[
Ωc1/m

]
= 0, and then

(6.7) P [Ω∗] = 1.

It will be shown that, for each ω ∈ Ω∗, if θ̂n(Y1(ω), ...,Yn(ω)) ∈ Θ is a maximizer of
the likelihood function, then

lim
n→∞

θ̂n(Y1(ω), ...,Yn(ω)) = θ0.

To achieve this goal, let ω ∈ Ω∗ and δ > 0 be arbitrary, select an integer m > 0 such
as 1/m < δ, and note that ω ∈ Ω1/m by (6.6). Now, let N1/m(ω) be the integer in
Theorem 6.1, so that if n > N1/m(ω), then for each θ ∈ Θ∩B(θ0, 1/m)c, the inequal-
ity log f(Y1(ω), ..., Yn(ω); θ) < log f(Y1(ω), ..., Yn(ω); θ0) holds. This implies that,
for n > N1/m(ω), the function

θ 7→ log f(Y1(ω), ..., Yn(ω); θ)

is not maximized at any point of θ ∈ Θ ∩B(θ0, 1/m)c, so that

θ̂n(Y1(ω), ...,Yn(ω)) ∈ Θ ∩B(θ0, 1/m) ⊂ B(θ0, 1/m);

it follows that

‖θ̂n(Y1(ω), ...,Yn(ω))− θ0‖ <
1

m
< δ, n > N1/m(ω),
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a relation that, by the definition of limit, yields that

lim
n→∞

θ̂n(Y1(ω), ...,Yn(ω)) = θ0.

Since ω ∈ Ω∗ is arbitrary and P [Ω∗] = 1, it follows that {θ̂n} is a consistent sequence
of estimators of θ0, by Definition 2.1.
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de Continuidad, Tesis de Maestŕıa en Estad́ıstica Experimental, Universidad Autónoma Agraria
Antonio Narro, Buenavista, Saltillo COAH, México.
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