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The integrals in Gradshteyn and Ryzhik.
Part 29: Chebyshev polynomials

Victor H. Moll and Christophe Vignat

Abstract. The table of Gradshteyn and Ryzhik contains many integrals that
involve Chebyshev polynomials. Some examples are discussed.

1. Introduction

The Chebyshev polynomial of the first kind Tn(x) is defined by the relation

(1.1) cosnθ = Tn(cos θ).

The elementary recurrence

(1.2) cos(n+ 1)θ = 2 cos θ cosnθ − cos(n− 1)θ

yields the three-term recurrence for orthogonal polynomials

(1.3) Tn+1(x) = 2xTn(x)− Tn−1(x)

and, with initial conditions T0(x) = 1 and T1(x) = x, shows that Tn(x) is indeed a
polynomial in x. The polynomial Tn(x) is of degree n and its leading coefficient is
2n−1. These elementary facts follow directly from (1.3).

The Chebyshev polynomial of the second kind Un(x) is defined by the relation

(1.4)
sin(n+ 1)θ

sin θ
= Un(cos θ).

This polynomial satisfies the recurrence

(1.5) Un+1(x) = 2xUn(x)− Un−1(x),

(the same recurrence as (1.3)), this time with initial conditions U0(x) = 1 and U1(x) =
2x.

Some basic properties of Chebyshev polynomials are collected next. The first
result gives the classical generating function for these polynomials.
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32 V. MOLL AND C. VIGNAT

Proposition 1.1. The generating function for the Chebyshev polynomials is given
by

(1.6)

∞∑
n=0

Tn(x)tn =
1− xt

1− 2xt+ t2

and

(1.7)

∞∑
n=0

Un(x)tn =
1

1− 2xt+ t2
.

Proof. Multiply the recurrence (1.3) by tn and sum over n > 1. �

Binet’s formula for Chebyshev polynomials follows directly from their generating
functions (1.6) and (1.7).

Corollary 1.2. The Chebyshev polynomial Tn(x) is given by

(1.8) Tn(x) =
1

2

[
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

]
.

Similarly, the polynomial Un(x) is given by

(1.9) Un(x) =
1

2
√
x2 − 1

[
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

]
.

Proof. Expand the right-hand side of (1.6) and (1.7) in partial fractions and
expand the resulting terms. �

A useful expression for the Chebyshev polynomials is their Rodrigues formulas

(1.10) Tn(x) =
(−1)n2nn!

(2n)!

√
1− x2

(
d

dx

)n
(1− x2)n−1/2

and

(1.11) Un(x) =
(−1)n(n+ 1)!2n

(2n+ 1)!

1√
1− x2

(
d

dx

)n
(1− x2)n+1/2.

These will be used in some simplifications in the rest of the paper.

2. Some elementary examples

The classical table of integrals [2] contains a small collection of integrals with
Tn(x) or Un(x) in the integrand. The goal of this note is to provide self-contained
proofs of these entries. The most elementary entry is 7.343.1 that is equivalent to the
orthogonality of the family {cosnθ} on the interval [0, 2π]. Indeed, define

(2.1) 〈f, g〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx,

then the first example simply gives 〈Tn, Tm〉 = 0 if n 6= m.
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Example 2.1. Entry 7.343.1:

(2.2)

∫ 1

−1

Tn(x)Tm(x)√
1− x2

=


0 if m 6= n,
π
2 if m = n 6= 0,

π if m = n = 0.

The next couple of examples computes integrals involving powers of Chebyshev
polynomials.

Example 2.2. The evaluation

(2.3)

∫ 1

−1

Tn(x) dx =
(−1)n−1 − 1

(n− 1)(n+ 1)
, for n > 2,

is not included in [2]. To confirm this formula, let x = cos θ and use the identity

(2.4) cosnθ sin θ =
1

2
[sin(n+ 1)θ − sin(n− 1)θ]

to produce

(2.5)

∫ 1

−1

Tn(x) dx =
1

2

∫ π

0

[sin(n+ 1)θ − sin(n− 1)θ] dθ.

The result follows by computing the elementary trigonometric integrals.

The indefinite version of this entry appears in [4] as entry 1.14.2.1 in the form

(2.6)

∫
Tn(x) dx =

1

2

[
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

]
.

To verify this evaluation, let x = cos θ and observe that

(2.7)

∫
Tn(x) dx = −

∫
cos(nθ) sin θ dθ.

The result now follows from (2.4).

Example 2.3. Entry 7.341 states that

(2.8)

∫ 1

−1

T 2
n(x) dx = 1− 1

4n2 − 1
=

2(2n2 − 1)

(2n− 1)(2n+ 1)
.

The evaluation starts with (1.8) to obtain

(2.9)

∫ 1

−1

T 2
n(x) dx =

1

4

∫ 1

−1

(x+
√
x2 − 1)2n dx+

1

4

∫ 1

−1

(x−
√
x2 − 1)2n dx+ 1.

The change of variables x = cos θ gives

(2.10)

∫ 1

−1

(x+
√
x2 − 1)2n dx =

∫ π

0

e2inθ sin θ dθ.

The last integral is evaluated by writing sin θ = 1
2i

(
eiθ − e−iθ

)
. The second integral

is evaluated in the same manner and the stated formula is obtained from here. A
generalization of this result is given in Section 8.
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Example 2.4. Entry 7.341.2 is

(2.11)

∫ 1

−1

Tm(x)Tn(x) dx =
1

1− (m− n)2
+

1

1− (m+ n)2
if m+ n is even

and

(2.12)

∫ 1

−1

Tm(x)Tn(x) dx = 0 if m+ n is odd.

The proof is based on the identity

(2.13) Tn(x)Tm(x) =
1

2
[Tn−m(x) + Tn+m(x)]

coming from its trigonometric counterpart

(2.14) cosnθ cosmθ =
1

2
[cos(n+m)θ + cos(n−m)θ] .

The result now follows from (2.6).

Example 2.5. The integral

(2.15)

∫
(1− x2)

n−3
2 Tn(x) dx = − 1

n− 1
(1− x2)

n−1
2 Tn−1(x)

appears as entry 1.14.2.3 in [5]. It does not appear in [2]. The proof is elementary:
the change of variables x = cos θ gives

(2.16)

∫
(1− x2)

n−3
2 Tn(x) dx = −

∫
sinn−2 θ cosnθ dθ

and the elementary identity

(2.17) sinn−2 θ cosnθ =
1

n− 1

d

dθ

[
sinn−1 θ Tn−1(cos θ)

]
.

The companion entry 1.14.2.4 in [5]

(2.18)

∫
(1− x2)−

n+3
2 Tn(x) dx =

1

n+ 1
(1− x2)−

n+1
2 Tn+1(x)

is established in a similar manner.

3. The evaluation of a Mellin transform

The Mellin transform of a function f(x) is defined by

(3.1) M(f)(s) =

∫ ∞
0

xs−1f(x) dx.

In examples concerning Chebyshev polynomials, with kernel 1/
√

1− x2, it is natural
to consider their restriction to [−1, 1]. Entry 7.346 states that

(3.2)

∫ 1

0

xs−1Tn(x)
dx√

1− x2
=

π

s2s

[
B

(
1 + s+ n

2
,

1 + s− n
2

)]−1

, for Re s > 0.
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This entry gives the Mellin transform of the function

(3.3) f(x) =

{
Tn(x)/

√
1− x2 if 0 6 x 6 1

0 otherwise.

The change of variables x = cos θ transforms (3.2) to

(3.4)

∫ π/2

0

cos(nθ) coss−1 θ dθ =
π

s2s

[
B

(
1 + s+ n

2
,

1 + s− n
2

)]−1

.

This entry will be established in a future publication. Only a special case is required
here.

Special Case. Assume s = m+ 1 is a positive integer. Then (3.4) becomes

(3.5)

∫ π/2

0

cos(nθ) cosm θ dθ =
π

(m+ 1)2m+1

[
B

(
2 +m+ n

2
,

2 +m− n
2

)]−1

.

The reduction of this integral requires a simple trigonometric formula. This appears
as entry 1.320 in [2]. The proof of (3.5) is presented next.

Lemma 3.1. For m ∈ N,

(3.6) xm =
1

2m−1

⌊
m−1

2

⌋∑
k=0

(
m

k

)
Tm−2k(x) +

{
0 if m ≡ 1 mod 2

2−m
(
m
m/2

)
if m ≡ 0 mod 2.

Proof. Let x = cos θ and start with

cosm θ =
(eiθ + e−iθ)m

2m
(3.7)

=
1

2m

m∑
k=0

(
m

k

)
ei(2k−m)θ.

By symmetry, since this a real function, the real part yields

(3.8) cosm θ =
1

2m

m∑
k=0

(
m

k

)
cos(m− 2k)θ.

To obtain the stated formula, split the sum in half to obtain

(3.9) cosm θ =
1

2m

bm2 c∑
k=0

(
m

k

)
cos(m− 2k)θ +

1

2m

m∑
k=bm2 c+1

(
m

k

)
cos(m− 2k)θ.

In the case m odd, both sums have the same number of elements and the change of
indices j = k −m/2 shows that they are equal. In the case m even, there is an extra
term corresponding to the index m/2. �

Then (3.2) gives

(3.10)

∫ 1

0

xmTn(x)
dx√

1− x2
=

1

2m−1

⌊
m−1

2

⌋∑
k=0

(
m

k

)∫ 1

0

Tn(x)Tm−2k(x)√
1− x2

dx
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when m is odd and in the case m even there is the extra term producing
(3.11)∫ 1

0

xmTn(x)
dx√

1− x2
=

1

2m−1

⌊
m−1

2

⌋∑
k=0

(
m

k

)∫ 1

0

Tn(x)Tm−2k(x)√
1− x2

dx+

(
m
m/2

)
2m

∫ 1

0

Tn(x) dx√
1− x2

.

Now consider the special case m ≡ n mod 2. The extra term coming when m is
even now disappears because n > 2 is also even and

(3.12)

∫ 1

0

Tn(x) dx√
1− x2

=
1

2

∫ 1

−1

Tn(x) dx√
1− x2

= 0,

since Tn(x) is orthogonal to T0(x) = 1. For the remaining terms, observe that
Tn(x)Tm−2k(x) is an even polynomial and the integrals can be extended to [−1, 1]
to obtain

(3.13)

∫ 1

0

xmTn(x)
dx√

1− x2
=

1

2m

⌊
m−1

2

⌋∑
k=0

(
m

k

)∫ 1

−1

Tn(x)Tm−2k(x)√
1− x2

dx.

The orthogonality of Chebyshev polynomials implies that the integral in the sum-
mand vanishes unless n = m− 2k; that is, k = 1

2 (m−n). If m < n the integral on the
left of (3.10) vanishes. This matches the right-hand side of (3.5), as the beta function
value also vanishes. In the case m > n, it follows that

(3.14)

∫ 1

0

xmTn(x)
dx√

1− x2
=

1

2m

(
m

1
2 (m− n)

)∫ 1

−1

T 2
n(x)√

1− x2
dx.

Now, for n > 1,

(3.15)

∫ 1

−1

T 2
n(x)√

1− x2
dx =

∫ π

0

cos2(nθ) dθ =
π

2
,

and this produces

(3.16)

∫ 1

0

xmTn(x)√
1− x2

dx =
π

2m+1

(
m

1
2 (m− n)

)
=

π

2m+1

(
m

1
2 (m+ n)

)
.

This matches the answer given in (3.2).

Theorem 3.2. Let m, n ∈ N. If m ≡ n mod 2

(3.17)

∫ 1

0

xmTn(x)√
1− x2

dx =
π

2m+1

(
m

1
2 (m+ n)

)
if m > n

and

(3.18)

∫ 1

0

xmTn(x)√
1− x2

dx = 0 if m < n.
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Note 3.3. The reader is encouraged to verify that, when m and n have different
parity, the integral is given by

(3.19)

∫ 1

0

xmTn(x)√
1− x2

dx =


2m−1m!(m+n−1

2 )! (m−n−1
2 )!

(m+n)! (m−n)! if m+ 1 > n,

(−1)(n−m−1)/2 2mm!(m+n−1
2 )! (n−m−1)!

(m+n)!(n−m−1
2 )!

if m+ 1 6 n.

4. A Fourier transform

This section describes entries in [2] that are related to the Fourier transform of
the Chebyshev polynomials.

Entry 7.355.1

(4.1)

∫ 1

0

T2n+1(x) sin(ax)
dx√

1− x2
= (−1)n

π

2
J2n+1(a)

and entry 7.355.2

(4.2)

∫ 1

0

T2n(x) cos(ax)
dx√

1− x2
= (−1)n

π

2
J2n(a)

may be combined into the form

(4.3)

∫ 1

−1

Tn(x)eiax
dx√

1− x2
= inπJn(a),

where Jν(z) is the Bessel function defined by

(4.4) Jν(z) =

∞∑
k=0

(−1)k

k! Γ(ν + k + 1)

(z
2

)ν+2k

.

This form appears as Entry 2.18.1.9 in [4]. Indeed, for n = 2r even, the real part
of (4.3) gives

(4.5)

∫ 1

−1

T2r(x) cos(ax)
dx√

1− x2
= (−1)rπJ2r(a).

The expression (4.2) now comes from the parity of the integrand.
The proof of (4.3) begins with the change of variables x = cos θ to produce

(4.6)

∫ 1

−1

Tn(x)eiax
dx√

1− x2
=

∫ π

0

cos(nθ)eia cos θ dθ.

Symmetry now gives∫ π

0

cos(nθ)eia cos θ dθ =
1

2

∫ π

0

ei(−nθ+a cos θ) dθ +
1

2

∫ π

0

ei(nθ+a cos θ) dθ(4.7)

=
1

2

∫ 0

−π
ei(nθ+a cos θ) dθ +

1

2

∫ π

0

ei(nθ+a cos θ) dθ

=
1

2

∫ π

−π
ei(nθ+a cos θ) dθ.
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Aside from a scaling factor of 2π, this is the classical integral representation for the
Bessel function

(4.8) Jn(z) =
1

2π

∫ π

−π
e−niθ+iz sin θ dθ,

which is Entry 8.411.1 in [2].

An alternative proof of this entry uses Rodrigues formula for Chebyshev polyno-
mials

(4.9) Tn(x) =
(−2)nn!

(2n)!

√
1− x2

dn

dxn

[
(1− x2)n−1/2

]
.

Integrating by parts and using the fact that the boundary terms vanish yields∫ 1

−1

Tn(x)√
1− x2

eipx dx =
(−2)nn!

(2n)!

∫ 1

−1

eipx
dn

dxn

[
(1− x2)n−1/2

]
dx

=
2nn!

(2n)!

∫ 1

−1

(1− x2)n−1/2 d
n

dxn
eipx dx

= (ip)n
2nn!

(2n)!

∫ 1

−1

(1− x2)n−1/2eipx dx.

Entry 3.771.8 implies that

(4.10)

∫ 1

−1

(1− x2)n−1/2eipx dx =
√
π

(
2

p

)n
Γ
(
n+ 1

2

)
Jn(p),

which produces the result. A verification of (4.10), as well a many other entries in [2],
will appear in a future publication.

A third proof of the present evaluation can be deduced from the operational
formula given in the next lemma.

Lemma 4.1. The J-Bessel function of order n can be computed as

(4.11) Jn(z) = inTn

(
i
d

dz

)
J0(z)

where Tn is the Chebychev polynomial of the first kind.

Proof. Starting from the integral representation [1, 9.1.21]

Jn (z) =
1

πın

∫ π

0

eız cos θ cos (nθ) dθ,
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we compute, with Tn (z) =
∑n
k=0 tn,kz

k,

ınTn

(
ı
d

dz

)
J0 (z) =

ın

π

∫ π

0

Tn

(
ı
d

dz

)
eız cos θdθ

=
ın

π

∫ π

0

n∑
k=0

tn,k

(
ı
d

dz

)k
eız cos θdθ

=
ın

π

∫ π

0

Tn (− cos θ) eız cos θdθ

=
(−ı)n

π

∫ π

0

cos (nθ) eız cos θdθ = Jn (z) ,

where the parity property Tn(−x) = (−1)nTn(x) has been used. �

Using the former result and the Fourier identity

(4.12)

∫
xnf(x)exp(−ipx) dx =

(
i
d

dp

)n
f̂(p),

we deduce that, for any polynomial P ,

(4.13)

∫
P (x)f(x)exp(−ipx) dx = P

(
i
d

dp

)
f̂(p).

Now use entry 3.753.2

(4.14)

∫ 1

−1

cos px dx√
1− x2

= πJ0(p)

to obtain

(4.15)

∫ 1

−1

Tn(x)√
1− x2

cos(px) dx = Tn

(
i
d

dp

)
πJ0(p) =

π

in
Jn(p).

5. An entry with two parameters

Section 7.342 consists of the single entry

(5.1)

∫ 1

−1

Un

[
x(1− y2)1/2(1− z2)1/2 + yz

]
dx =

2

n+ 1
Un(y)Un(z), for |y| < 1, |z| < 1.

The parameters y, z can be expressed in trigonometric form by denoting

(5.2) y = cosα, z = cosβ

transforming (5.1) to

(5.3) I :=

∫ 1

−1

Un [x sinα sinβ + cosα cosβ] dx =
2

n+ 1
Un(cosα)Un(cosβ).

The basic relation among the two kinds of Chebyshev polynomials

(5.4)
d

dx
Tn(x) = nUn−1(x)
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gives

(5.5)

∫
Un(ax+ b) dx =

1

a(n+ 1)
Tn+1(ax+ b).

Therefore

(n+ 1) sinα sinβ × I = [Tn+1(x sinα sinβ + cosα cosβ)]
∣∣∣1
x=−1

= Tn+1(sinα sinβ + cosα cosβ)− Tn+1(− sinα sinβ + cosα cosβ)

= Tn+1(cos(α− β))− Tn+1(cos(α+ β))

= cos[(n+ 1)(α− β)]− cos[(n+ 1)(α+ β)].

The elementary identity

(5.6) cosu− cos v = −2 sin
u+ v

2
sin

u− v
2

now produces

(5.7) I =
2

n+ 1

sin(n+ 1)α

sinα

sin(n+ 1)β

sinβ
.

This is the stated result.

6. An example involving Legendre polynomials

The integral

(6.1)

∫ b

a

1√
(x− a)(b− x)

Tn

(x
b

)
dx =

π

2

[
Pn

(a
b

)
+ Pn−1

(a
b

)]
,

where b > a > 0 and Pn(x) is the Legendre polynomial, appears as entry 7.349 in [2]
in the form

(6.2)

∫ 1

−1

1√
1− x2

Tn(1− x2y) dx =
π

2
[Pn(1− y) + Pn−1(1− y)] .

An automatic proof of this entry has been given in [3]. Its companion 7.348 is

(6.3)

∫ 1

−1

1√
1− x2

U2n(xz) dx = πPn(2z2 − 1), |z| < 1.

The proof of (6.3) begins with the generating function

(6.4)

∞∑
n=0

Un(x)tn =
1

1− 2xt+ t2
,

then dissection produces

∞∑
n=0

U2n(xz)t2n =
1

2

[
1

1− 2xtz + t2
+

1

1 + 2xtz + t2

]
(6.5)

=
1

(1 + t2)(1− a2x2)
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with

(6.6) a =
2tz

1 + t2
.

Now observe that an elementary argument gives

(6.7)

∫ 1

−1

1√
1− x2

dx

1− a2x2
=

1

2

∫ π

0

dθ

1 + a cos θ
+

1

2

∫ π

0

dθ

1− a cos θ
=

π√
1− a2

,

since both integrals evaluate to π/
√

1− a2. Replacing into (6.5) gives, after some
elementary simplifications, the identity

(6.8)

∞∑
n=0

t2n
∫ 1

−1

1√
1− x2

U2n(xz) dx =
π√

(1 + t2)2 − 4t2z2
.

The result now follows from

(6.9)

∞∑
n=0

Pn(2z2 − 1)t2n =
1√

(1 + t2)2 − 4t2z2
.

This last expression comes from the generating function

(6.10)

∞∑
k=0

tkPk(z) =
1√

1− 2tz + t2

for the Legendre polynomials, given as entry 8.921 in [2].

7. A Hilbert transform

The two entries 7.344.1

(7.1)

∫ 1

−1

1

x− y
(1− y2)−1/2Tn(y) dy = −πUn−1(x)

and 7.344.2

(7.2)

∫ 1

−1

1

x− y
(1− y2)1/2Un−1(y) dy = πTn(x)

are examples of the Hilbert transform defined by

(7.3) H(u)(x) =
1

π
p.v.

∫ ∞
−∞

u(y)

x− y
dy.

Actually, the integral in (7.1) has to be written as a principal value integral and x
must be restricted to −1 < x < 1. Otherwise, the correct version of (7.1) is

(7.4) p.v.

∫ 1

−1

1

x− y
(1− y2)−1/2Tn(y) dy = −πUn−1(x) +

h(x)√
x2 − 1

πTn(x)

where

(7.5) h(x) =


−1 if x < −1

0 if − 1 < x < 1

1 if x > 1,

with a similar correction term for (7.2).
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The evaluation of these entries uses the relation between the Fourier û and the
Hilbert transform Ĥ(u) given by

(7.6) Ĥ(u)(ω) = −i sign(ω) û(ω).

Choosing

(7.7) u(x) =

{
Tn(x)√
1−x2

, for − 1 < x < 1,

0 otherwise,

then (4.3) gives

û(ω) = ınπJn (ω)

so that

Ĥ (u) (ω) = −ın+1π sign (ω) Jn (ω)

and the inverse Fourier transform is computed as

(7.8) H (u) (x) =
1

2π

[
−ın+1π

∫ +∞

−∞
sign (ω) Jn (ω) eıωxdω

]
.

The integral in (7.8) is written as

−
∫ 0

−∞
Jn (ω) eıωxdω +

∫ ∞
0

Jn (ω) eıωxdω = −
∫ ∞

0

(
Jn (−ω) e−ıωx − Jn (ω) eıωx

)
dω.

Each term is now computed using 6.611 in [2] to obtain

∫ ∞
0

e−αωJν (βω) dω =

(√
α2 + β2 − α

)ν
βν
√
α2 + β2

to give ∫ ∞
0

eıωxJn (ω) dω = ın
(
x+
√
x2 − 1

)n
√

1− x2

and ∫ ∞
0

e−ıωxJn (−ω) dω = ın
(
x−
√
x2 − 1

)n
√

1− x2

and it follows that

H (u) (x) =
1

2
ı2n+1

[(
x+
√
x2 − 1

)n
√

1− x2
−
(
x−
√
x2 − 1

)n
√

1− x2

]
= π(−1)n−1Un−1 (x) .

The result now follows from (7.3).
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8. Integrals of powers

Entry 7.341 of [2] contains the entry

(8.1)

∫ 1

−1

T 2
n(x) dx = 1− (4n2 − 1)−1 =

4n2 − 2

4n2 − 1
.

This has been described in Example 2.3 and it is a special case of the next result.

Theorem 8.1. For n, r ∈ N, the integral

(8.2) In,r =

∫ 1

−1

T rn(x) dx

is given by

(8.3) In,r = − (−1)nr + 1

2r

r∑
`=0

(
r
`

)
n2(2`− r)2 − 1

.

In particular, aside from an elementary factor, the integral In,r is a rational function
in the variable x = n2.

Proof. Using the representation

(8.4) Tn(x) =
1

2

[
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

]
the integral becomes, after the change x = cos θ,

(8.5) In,r =
1

2r

r∑
`=0

(
r

`

)∫ π

0

einθ`e−inθ(r−`) sin θ dθ.

Now use the expression of sin θ in terms of complex exponentials to obtain

(8.6) In,r =
1

i2r+1

r∑
`=0

(
r

`

)∫ π

0

(
eiθ(n(2`−r)+1) − eiθ(n(2`−r)−1)

)
dθ.

The result now follows by direct integration. �

Remark 8.1. The rational function mentioned above has intriguing arithmetic
properties. These will be described in a future publication.

The expression for In,r given above is now written in hypergeometric form. An
elementary proof comes from writing the hypergeometric sum and using

(8.7) (−r)m =
(−1)m r!

(r −m)!
.

Lemma 8.1. For n, r ∈ N, one has

(8.8)

r∑
`=0

(
r

`

)
1

n(2`− r) + 1
=

1

1− nr 2F1

(
1−nr

2n ,−r
1 + 1−nr

2n

∣∣∣∣−1

)
and

(8.9)

r∑
`=0

(
r

`

)
1

n(2`− r)− 1
=

1

1 + nr
2F1

(
− 1+nr

2n ,−r
1− 1+nr

2n

∣∣∣∣−1

)
.
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The hypergeometric sum appearing in the previous lemma is given in [5, volume
3, 7.3.5.18] in terms of the Jacobi polynomials:

(8.10) 2F1

(
−r, b
c

∣∣∣∣−1

)
=
r!(−2)r

(c)r
P (−b−r,c−1)
r (0).

Therefore, the integral In,r is now expressed in terms of Jacobi polynomials.

Theorem 8.1. Let n, r ∈ N. The integral of a power of the Chebyshev polynomial
of the first kind

(8.11) In,r =

∫ 1

−1

T rn(x) dx

is given in terms of the Jacobi polynomial

(8.12) P (α,β)
n (x) =

1

2n

n∑
j=0

(
n+ α

j

)(
n+ β

n− j

)
(x− 1)n−j(x+ 1)j

by

In,r = (−1)rr!
1 + (−1)nr

4n

[
(1 + α)−1

r

α
P (β,α)
r (0)− (1 + β)−1

r

β
P (α,β)
r (0)

]
,

with α = 1−rn
2n and β = − 1+rn

2n .

Note 8.2. It is an interesting question to develop similar formulas for the integral

(8.13) Jn,r =

∫ 1

−1

Urn(x) dx.

This is left to the interested reader.
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