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Decomposing graphs into internally-disjoint

induced paths

Mayamma Joseph and I. Sahul Hamid

Abstract. Let G be a non-trivial, simple, finite, connected and undirected graph.
An acyclic graphoidal decomposition (AGD) of G is a collection ψ of non-trivial
paths in G that are internally vertex-disjoint such that every edge of G lies in
exactly one path of ψ. By imposing the condition of induceness on the paths in
ψ, the concept of induced acyclic graphoidal decomposition (IAGD) of a graph G
has been defined in [2]. The minimum number of paths in such a decomposition
of G is called the induced acyclic graphoidal decomposition number denoted by
ηia(G). In this paper we obtain certain bounds of the parameter ηia(G) and
initiate a study on graphs admitting an IAGD satisfying the Helly property.

1. Introduction

The graphs considered here are non-trivial, simple, finite, connected and undi-
rected. The order and size of a graph G = (V,E) are denoted by n and m respectively.
For terms not defined here we refer to [6].

A decomposition of a graph G is a collection ψ of its subgraphs such that every
edge of G lies in exactly one member of ψ. Several variations of decomposition have
been introduced and well studied by imposing conditions on the members of the de-
composition. Path cover [7], unrestricted path cover [8], (a, b)- decomposition [11] are
some such variations. In this sequence, Acharya and Sampathkumar [1] introduced
the notion of graphoidal decomposition(GD) which is a decomposition ψ of a graph
G into internally-disjoint paths and cycles (that is, every vertex of G is an internal
vertex of at most one member of ψ). The graphoidal decomposition number η(G)
is the minimum cardinality of a GD of G. Arumugam and Suseela [4] called a GD
none of whose members is a cycle as an acyclic graphoidal decomposition (AGD) and
studied the corresponding parameter ηa(G). An AGD wherein any two paths have
at most one vertex in common is a simple acyclic graphiodal decomposition (SAGD)
and the minimum cardinality of such a decomposition is ηas(G); this was introduced
in [3]. Motivated by the observation that every path in a SAGD is an induced path
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but not conversely, Arumugam [2] defined the concept of induced acyclic graphoidal
decomposition as an AGD all of whose members are induced paths and he used ηia(G)
to denote the minimum cardinality of such a decomposition. The study of this pa-
rameter was initiated in [9] where they determined the value of ηia for several families
of graphs such as complete graphs, complete bipartite graphs,wheels, unicyclic graphs
and bicyclic graphs. We now extend the study of this parameter ηia(G) further by
obtaining some bounds along with characterization of graphs attaining these bounds
and investigating graphs admitting an IAGD satisfying some specified property.

We need the following theorem that gives an expression for ηia(G) in terms of the
order of G and the interior vertices which is similar to the one presented in [10].
By internal vertices of a path P, we mean the vertices on P other than its end vertices.
For an IAGD ψ of G, a vertex v is said to be interior to ψ if v is an internal vertex
of an element of ψ and is called exterior to ψ otherwise.

Theorem 1.1. For every induced acyclic graphoidal decomposition ψ of a graph
G, let tψ denote the number of vertices interior to ψ and let tia(G) = max tψ, where
the maximum is taken over all the induced acyclic graphoidal decompositions ψ of G.
Then ηia(G) = m− tia(G).

Remark 1.2. If there exists an edge-disjoint collection S of internally disjoint
induced paths of G such that every vertex of G is an internal vertex of an element in
S, then ηia(G) = m−n. This is because S together with the edges of G not belonging
to members of S yield an IAGD ψ of G with tia(G) = n.

2. Bounds of ηia

In this section we obtain some sharp bounds of ηia and investigate the extremal
graphs attaining these bounds.

Theorem 2.1. For any graph G, ηia(G) 6 m with equality holding only for com-
plete graphs.

Proof. The inequality ηia(G) 6 m is obvious as the edge set E(G) itself is a
trivial IAGD for any graph G. Now assume that ηia(G) = m and G is not complete.
Then G contains at least one pair of non-adjacent vertices u and v. Let P be a shortest
u− v path in G. Since P is an induced path, the collection ψ = {P}∪ (E(G)rE(P ))
is an induced acyclic graphoidal decomposition of G with |ψ| < m and hence ηia 6= m.
Converse follows as any induced path in a complete graph is of length one. �

Now we proceed to obtain a bound for ηia for a given graph G in terms of its
diameter and characterize graphs for which the bound is attained. In this connection
we describe a graph K(u,v) as follows.
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The graph K(u,v) is obtained by pasting at least two complete graphs of order
more than two on the same edge uv as shown in Figure 1. Note that complete graphs
cannot be considered as the graph K(u,v).

Theorem 2.2. If G is a graph with diameter d, then ηia(G) 6 m − d + 1.
Further, equality holds if and only if G is isomorphic to a graph all of whose blocks
are either complete or the graph K(u,v) with u and v as cut vertices of G such that the
block-cutpoint graph of G is a caterpillar.

Proof. Let P = (v1, v2, . . . , vd+1) be a diametrical path in G. Obviously P is
an induced path. Therefore, the inequality ηia(G) 6 m− d+ 1 is immediate; because
ψ = {P} ∪ (E(G)r E(P )) is an IAGD of G with cardinality m− d+ 1.

Now, let G be a graph with ηia(G) = m − d + 1. Obviously, G is complete in
the case when d = 1. Assume d > 2. Denote the vertices of G lying outside P by
u1, u2, . . . , un−d−1. Now, if there exists an induced path P ′ having a vertex uk, where
1 6 k 6 n − d − 1, as an internal vertex then the paths P and P ′ together with
the edges not covered by these paths form an IAGD of G with cardinality less than
m− d+ 1, which is a contradiction. We will get a similar contradiction if we assume
that one of the end vertices v1 and vd+1 of the path P is an internal vertex of an
induced path in G. Thus none of the vertices u1, u2, . . . , un−d−1, v1, and vd+1 is an
internal vertex of any induced path in G.
Further, for a vertex uk lying outside P , if d(uk, P ) > 2, let vk be a vertex on P nearest
to uk and let P ′ be a shortest path between uk and vk. Then P ′ will be an induced
path of length more than one containing a vertex us not lying on P as an internal
vertex. But this is impossible as seen in the above paragraph. Therefore every vertex
of G not on P is adjacent to a vertex on P.
Thus what we have proved is that for any diametrical path P , the following conditions
hold.

(a) No vertex in the set consisting the end vertices of P along with the vertices
outside P can be internal vertex of any induced path.

(b) Every vertex outside P has a neighbour on P .

Now, one can observe that the following are some immediate consequences of the
above two conditions.

(i) If vi and vj are two vertices on P adjacent to a vertex uk not on P , then vi
and vj are adjacent.

(ii) If uk is a vertex not on P , then uk is adjacent to at most two vertices of P .
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(iii) If ur and us are two adjacent vertices outside P , then N(ur) ∩ V (P ) =
N(us)∩ V (P ). That is, every pair of adjacent vertices ur and us will form a
triangle with each of the vertices of P to which ur and/or us are adjacent.

It is not difficult to see that all the above observations lead us to the desired graph.
Conversely, suppose G is the graph given in the statement of the theorem. As the
block-cutpoint graph of G is a caterpillar, we see that for any diametrical path P of
G, the condition (a) observed above holds and hence tia(G) 6 d − 1 which implies
that ηia(G) > m− d+ 1. Since the other inequality always holds, we have the desired
result. �

Example 2.3. The graph given in Figure 2 illustrates a graph described in the
statement of the above theorem. Here d = 13, m = 45 and ηia = 33.
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Figure 2

Theorem 2.4. For any graph G, we have ηia(G) > ∆(G) − 1 and the bound is
sharp.

Proof. As a vertex in G is an internal vertex of at most one vertex of a path in
any IAGD, the inequality follows. Further, the bound is attained for several classes
of graphs. One familiar class is the graph obtained from the wheel Wn = K1 + Cn−1

where n > 5 by subdividing the (n − 1) spokes. Some more families of graphs for
which the bound is attained is given in Figure 3. Note that graphs homeomorphic to
these families also attain the bound ηia = ∆− 1. �
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The problem of characterizing the graphs attaining the lower bound given in the
above theorem seems to be difficult. However, here we settle the small case when
∆ = 3.

Theorem 2.5. Let G be a connected graph with ∆ = 3 which is not a tree. Then
ηia(G) = ∆ − 1 if and only if G is homeomorphic to one of the graphs G1, G2, G3,
G4, G5 and G6 given in Figure 4.
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Proof. Let us first prove that for any graph G with ηia(G) = ∆ − 1, where
∆ > 3, the number n∆ of vertices of degree ∆ is given by

(2.1) n∆ 6







4 if ∆ = 3
3 if ∆ = 4
2 if ∆ > 5

Let ψ be a minimum IAGD of G. Then ψ contains ∆− 1 paths and hence there
exist at most 2(∆ − 1) vertices of G that are end vertices of some paths in ψ. Note
that each of the n∆ vertices is an end vertex of at least ∆−2 paths in ψ and hence we

have n∆(∆−2) 6 2(∆−1) so that n∆ 6
2(∆−1)
∆−2 which implies the required inequality.

Now, for the given graph G, if ∆(G) = 3 and ηia(G) = ∆ − 1, then by the
inequality (2.1), we have n∆ 6 4. Let ψ = {P1, P2} be a minimum IAGD of G. Then
by examining all possible configurations of P1 and P2, it can be seen that when n∆ = 1,
G is homeomorphic to G1; when n∆ = 2, G is homeomorphic to G2 or G3; for n∆ = 3,
G is homeomorphic to G4 and finally when n∆ = 4, G is homeomorphic to either G5

or G6. �

We close this section by presenting a bound for ηia in terms of the clique number.

Theorem 2.6. If G is a graph with clique number ω, then ηia(G) >
(

ω

2

)

and the

bound is sharp.

Proof. If H is a maximum clique in G, then every edge of H is a member of any

IAGD of G and therefore ηia(G) > |E(H)| =
(

ω

2

)

. Obviously, the bound is attained
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for complete graphs. Anther example is the graph G obtained from a complete graph
H by attaching a path of any length at each vertex of H . In this case

ηia(G) = |E(H)| =
(

ω(G)

2

)

. �

3. ηia and other Path Decomposition Parameters

This section establishes relationship of ηia with some graphoidal decomposition
parameters such as ηa and ηas.

We have observed that induced acyclic graphoidal decomposition and simple
acyclic graphoidal decomposition are special cases of acyclic graphoidal decomposition.
Further, for a given graph G any simple acyclic graphoidal decomposition of G will
be an induced acyclic graphoidal decomposition and any induced acyclic graphoidal
decomposition of G will be an acyclic graphoidal decomposition of G. Hence we have
the following result.

Theorem 3.1. For any graph G, we have ηa(G) 6 ηia(G) 6 ηas(G).

Remark 3.2. The inequalities given in the above theorem are strict. That is, all
can be equal or they are all distinct as evident from the graphs given in Figure 5.
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For the graph G1, we see that ηa(G1) = 2, ηia(G1) = 3 and ηas(G1) = 4. On the other
hand all the three parameters are equal to 4 if we consider the graph G2.

From the following theorems we infer that the differences of ηia with each of the
graphoidal decomposition parameters ηa and ηas can be arbitrarily large.

Theorem 3.3. Given any positive integer k, there exists a graph G such that
ηia(G)− ηa(G) = k.

Proof. Consider the graph G given in Figure 6 obtained by attaching k triangles
at a single vertex, say v. Then G is of order 2k + 1 and size 3k.
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Now, if k = 1, then G = K3 so that ηa(G) = 2 and ηia(G) = 3. Further, when n > 2
for any IAGD of G the only vertex that can be made interior is the vertex v and
therefore from Theorem 1.1 it follows that ηia = 3k − 1. A similar argument shows
that ηa(G) = 3k − k − 1 and hence ηia(G)− ηa(G) = k. �

Theorem 3.4. Given any positive integer k, there exists a graph G such that
ηas(G)− ηia(G) = k.

Proof. Consider the graph G given in Figure 7 obtained by attaching k cycles
of length four at one single vertex v.
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By the similar argument given in the proof of the theorem above, we can prove
that ηas(G)− ηia(G) = k. �

4. IAGD and Helly Property

Recall that a collection F of subsets of a non-empty set has the Helly Property
if the members of each pairwise intersecting subfamily F ′ of F has an element in
common. Suppose F is a collection of paths in a graph G. Then F has the Helly
property means that whenever any two paths in a subfamily F ′ of F have a vertex in
common, there must be a vertex common to all the paths in F ′.

For example, if G is the graph given in Figure 8, the collection
ψ1 = {(v1, v2, v4, v3), (v4, v5, v8), (v2, v6, v7)} has the Helly property, whereas the col-
lection ψ2 = {(v1, v2, v4), (v4, v5, v8), (v2, v6, v5)} does not have the Helly property.
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In this section we investigate the graphs admitting an induced acyclic graphoidal
decomposition that satisfies the Helly property.
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Theorem 4.1. Every triangle-free graph admits an IAGD satisfying the Helly
property.

Proof. Let G be a graph with no triangles. Consider the IAGD ψ = |E(G)|, the
edge set of G. Then the members of any pairwise intersecting subfamily of ψ form a
star in G and so the center vertex of this star is a vertex common to all the members
of the subfamily. Hence ψ satisfies the Helly property.
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Corollary 4.2. Every bipartite graph admits an IAGD satisfying the Helly prop-
erty.

Note that the converse of Theorem 4.1 is not true. For example, the graph given in
Figure 9 contains a triangle. But the collection ψ = {(a, b, b′, v), (b, c, c′, v), (c, a, a′, v)}
is an IAGD satisfying the Helly property.

The following observation was made in the book by Balakrishnan and Ranganathan
[5].

Theorem 4.3 ([5]). Every family of subtrees of a tree satisfies the Helly property.

It is obvious from the above theorem that every IAGD of a tree satisfies the Helly
property. In this connection, it is quiet natural to ask the question: “ Are there
any other classes of graphs wherein every IAGD satisfies the Helly property?”. The
following theorem answers this question.

Theorem 4.4. Every induced acyclic graphoidal decomposition of a graph G sat-
isfies the Helly property if and only if G is a tree.

Proof. Suppose G is a graph in which every IAGD satisfies the Helly property.
Let G contains a cycle C = (v1, v2, . . . , vk, v1) where k > 3. Let P1 = (v1, v2), P2 =
(v2, v3) and P3 = (v3, v4, . . . , vk, v1). Then ψ = {P1, P2, P3} ∪ {E(G) r E(C)} is an
IAGD of G. Clearly, {P1, P2, P3} is a pairwise intersecting subfamily of paths in ψ,
whereas there exists no vertex in G common to the paths P1, P2 and P3. Thus ψ does
not satisfy the Helly property, which is a contradiction. Therefore, G is acyclic and
hence is a tree. The converse follows from Theorem 4.3. �
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As seen in the proof of Theorem 4.1, in the absence of triangles, the edge set
serves as a required IAGD with the Helly property. Certainly, the edge set will not be
a minimum IAGD for a graph, of course other than complete graphs. So, looking for
graphs admitting a minimum IAGD with the Helly property would be an interesting
problem. Certainly, trees are such graphs as seen in Theorem 4.4. Here, we provide
more classes of such graphs.

Example 4.5. If G is the graph obtained from a cycle C of length greater than
three by attaching a path of any length to every vertex of C, then G has a minimum
IAGD satisfying the Helly property.

Proof. Let C = (v1, v2, . . . , vk, v1), where k > 4. Let Q1, Q2, . . . , Qk be the
paths attached to the vertices v1, v2, . . . , vk respectively with vi as the terminal vertex.
Now, for each i = 1, 2, . . . , k − 1, let Q′

i be the path consisting of Qi followed by
the edge vivi+1 and let Q′

k be the path Qk followed by the edge vkv1. Then ψ =
{Q′

1, Q
′
2, . . . , Q

′
k} is a minimum IAGD satisfying the Helly property as any pairwise

intersecting subfamily of paths in ψ contains at most two paths. �

Example 4.6. Let G be a graph consisting of exactly two vertices of degree ∆ > 3,
say u and v, and all other vertices are of degree two as in Figure 10. Denote the edge-
disjoint u− v paths with u as origin by P1, P2, . . . , P∆. Also, assume that at least one
of these paths, say the path P1 has length more than three and all others have length
at least two. Let x be an internal vertex of P1.
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Let Q1 be the path consisting of the (x, u)−section of P1 followed by the path P2 and
let Q2 be the path consisting of the (x, v)−section of P1 followed by the path P3

−1.
Then Q1 and Q2 are induced paths and consequently ψ = {Q1, Q2, P4, P5, . . . , P∆} is
a minimum IAGD satisfying the Helly property.
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5. Open Problems

Here we list some interesting problems for further investigation.

(1) Find a characterization of graphs G for which
(i) ηia(G) = m− n.

(ii) ηia(G) = ∆(G) − 1.

(iii) ηia(G) =
(

ω

2

)

.

(2) In the case of trees, the parameters ηa, ηia and ηas are equal and consequently
the class of graphs for which these parameters are equal is non-empty. In this
direction, determination of classes of graphs with ηa = ηia = etaas would be
interesting although little challenging.

(3) We have observed that triangle-free graphs admit an IAGD satisfying the
Helly Property and however the following problems are left open.

(i) Obtain a necessary and sufficient condition for a graph to admit an
IAGD satisfy the Helly property.

(ii) What are the graphs admitting a minimum IAGD satisfy the Helly
property?

(iii) What are the graphs where every minimum IAGD satisfy the Helly
property?
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