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Certain weighted integral inequalities involving the fractional
hypergeometric operators

Mohamed Houas

ABSTRACT. In this paper, the Gauss hypergeometric function fractional integral
operator is used to generate some new weighted fractional integral inequalities.

1. Introduction

The fractional integral inequalities have many applications in fractional differ-
ential equations, numerical quadrature, transform theory, probability and statistical
problems. For details, we refer to [1, 2, 4, 6, 8, 10, 15, 16, 17, 18] and the
references therein. Recently, by applying the different fractional integral operators
such as Riemann-Liouville fractional integral operators, Hadamard fractional opera-
tors, fractional g—integral operators, Saigo fractional integral operators and fractional
hypergeometric operators, many researchers have obtained a lot of fractional integral
inequalities and applications, we refer to [3, 5, 13, 14, 15, 19, 20, 21, 22, 23, 24].
In [12] Dahmani established some new classes of fractional integral inequalities using
the Riemann-Liouville fractional integral operators. Dahmani et al. [10, 11] derived
certain integral inequalities involving the fractional ¢g—integral operators. Also, Chin-
chane et al. [7] and Yang [27] established some fractional integral inequalities using
Hadamard fractional integral operators and Saigo fractional integral operators respec-
tively. Recently, Baleanu et al. [3, 4], Choi [8] and Wang et al. [26] established
some integral inequalities by using the Gauss hypergeometric function fractional op-
erators, introduced by Curiel and Galue [9]. Motivated by the results presented in
[10, 11, 12], the main aim of this paper is to establish some new weighted fractional
integral inequalities involving the Gauss hypergeometric function fractional operators.
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2. Fractional Calculus

In this section, we give some necessary definitions and mathematical preliminaries
of fractional calculus operators which are used further in this paper, we can see [9,
17, 23, 25].

DEFINITION 1. A real valued function f(t), is said to be in the space C, ([0,00)),
w € R, if there exists a real number p > p such that f(t) = tPg(t), where g(t) €
C([0,00)).

DEFINITION 2. Let a > 0,0 > —1,3,n € R, then, a generalized fractional integral

If’ﬁ’"’” of order a for a real-valued continuous function f(t) is defined by

—a—pB—-2n

t
PR (f (1) = 2 r(a)*gmu (t =)
X oFy (a4 B+ p, =51 = %) f () de,

where, the function o F (.) appearing as a kernel for the operator (2.1) is the Gaussian
hypergeometric function defined by

(2.2) o Fy (6,5; Kit) = E (©)yle)y ¢ ,

(k),, n!

(2.1)

and (€),, is the Pochhammer symbol

(2.3) (e)n=€(e+1)..(e+n—=1), (e)o=1 .

It may be noted that the Pochhammer symbol in terms of the gamma function is defined
by

(2.4) (O =S, n>0,

where the gamma function is given by

— [ —u,e—-1
(2.5) T(e)= [, e “u"du .
For f(t) = t* in (2.1), we get
a,f,m, 11 — _L(utp)T(p—B+n) w—B—p—1
(2.6) I L F(pfﬁ)q“(p-lpra+n1u) (t—a) .

where a, B,n,p e Ryp> -1, u+p>0and p—+n>0.

3. Hypergeometric Fractional Integral Inequalilties

In this section, we firstly prove some weighted fractional integral inequalities con-
cerning the Gauss hypergeometric function fractional integral operators.

THEOREM 3. Let f be positive and continuous function on [0,00), and let w :
[0,00) = RT be positive continuous function. Then we have

- TP [ () 1740 (0)] T2 T (1)1 £ ()]
3.1
< IR [ (1) o0 (0)] 190 [ (017 79 (1))

forallt >0, >max(0,—8 —p),8<lu>—-1land B—1<n<O0.
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PROOF. Since the function f is positive and continuous on [0, 00), then for all
0c>0,0>0>0,z,y€(0,t),t >0, we can write
(3.2) (W f7 (x) =27 f7 () (F770 (x) = 7~ (y)) > 0,
which implies that
(3:3) w70 ) [ () + 2 fO0 () £ (y) Sy fTOT (@) +at fHO (y)

Consider

—a=B=2u py_ pya—1 N
¥ (t,x) =" [‘(a)(t I (a+B+p,—nosl—2)
aP(t—x)*  _a— B a+B+up)(—n)z! (t—x)* ,—a—B—2u—

(3.4) = %t B-2u 4 ( H%((Qj_)l) (=) y—a—p-2u—1

(a+B+u)(=n) (a+B+u+l) (—n+Da* (t—2)* !, _n_g—24—2
=t nazrﬁwz)n L) ety

where z € (0,t) and ¢t > 0. We observe that each term of the above series is positive in
view of the conditions stated with Theorem 3 and hence, the function ¢ (¢, z) remains
positive, for all z € (0,t), ¢ > 0.

Multiplying both sides of (3.2) by v (t,z) w () f? (z) and integrating with respect
to x over (0,t), we get

Y7 OO () TP T (8) f717 ()] 4 f7 () IO w ()47 £ ()]

YL T (0 750 (0] + 1 ) 1P [w )17 (0)].

Now, multiplying both sides of (3.5) by ¢ (¢t,v) w (y) f? () and integrating with respect
to y over (0,t), we can write

TP [ () 1740 (0)] T2 T (1)1 £ ()]

(3.5)

50 TP L (1)1 2 (8] 18P L (1) £ (1)
3.6
< IPA [ () 740 (0] TP [ (1) 87 £ (1)]

I o ()1 £0 (0] 1070 [ (8) 474 (1]
which implies (3.1). O
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THEOREM 4. Let f be positive and continuous function on [0,00), and let w :
[0,00) — RT be positive continuous function. Then, for allt > 0 and for all § > 6 >
0,0 > 0, we have

TE L (1)1 2 (8)] 185 [ (1) £ (1)
TP L (1)1 £2 (1)) 1972 [ (1) £ (1)
<IN w ()17 f0 ()] TP T (1) £+ (1)]

PP (00717 (0] 12 [ (0074 1),
where a > max (0, —8 —p),8<l,u>-1,8-1<n<0,w>max(0,-A—w@),\ <
Lw>-1,A-1<~<0.
ProOF. Now multiplying both sides of (3.2) by the quantity ¢ (t,vy)w (v) £ (y),
where

(3.8)
(ty) =200 g (W At —mies 1 — L)y € (0,8) 6> 0
PLY T(a) 241 (W w, —w; Qg )Y s U)o ’

in view of the arguments mentioned above in the proof of Theorem 3. We can see
that the function ¢ (¢, y) remains positive under the conditions stated with Theorem 4.
Integrating the resulting inequality obtained with respect to y from 0 to ¢, we obtain

ay O TP [ ()17 19 (1)] + 27 50 () TN [ (1) 740 ()]
3.9
< FTE (@) TN L (617 0 (8)] + 2 LN [ (1) 70 (1)

Next, multiplying both sides of (3.9) by 9 (t,z) f (z) and integrating with respect to
x from 0 to t, we obtain

1 [ (007 (0] 2757 [w(0) 17 ()]

I w () £ @) IO [w (1) 87 £ (1)

(3.10)
< I w ()47 f0 ()] TP Jw (8) f70 (8)]
FIZA [u (1) £ (0] 10 o (1) 1777 (1)
which implies (3.7). O

REMARK 5. Applying Theorem 4 for a« = w, = A\,n =~ and p = w,we obtain
Theorem 3.
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THEOREM 6. Let f and h be two positive and continuous functions on [0,00) and
w : [0,00) = RT positive continuous functions. Then for allt >0 and § > 60 > 0,0 >
0, we have

TP o (1) £ (] 12 [ (0) 7 (2) £ (1)
(3.11)
< IO [ (1) £ (0] 0 [ (1) 17 (1)

where @ > max (0, —8 —pu), 8 <l,u>—-1and B —1<n<O.

PRrROOF. Let x,y € (0,y),t > 0, for any 6 > 6 > 0,0 > 0. Then we have

(3.12) (h7 (y) f7 () = b7 () f7 () (£~ (2) = f7%(y)) 2 0,
which implies that
(3.13)

he (y) fo=0 (y) £ (@) + 7 (y) he () 20 (x) < h7 (y) fOr70 () + f7H70 (y) b7 () .

Multiplying both sides of (3.13) by v (t,z) w (z) f? (z), then integrating the resulting
inequality with respect to = over (0,t), we obtain

11) h (y) 270 () TP T (8) £ (8)] + £ (y) I [w (8) b (2) f2 (¢)]
3.14
<he (y) ItOéﬁJhM [,w (t) f6+o (t)] + fo+679 (y) Itaﬁﬂ%H [,w (t) he (t) f@ (t)] )

Multiplying now both sides of (3.14) by v (t,y) w (y) f? (), then integrating the re-
sulting inequality with respect to y over (0,t), we obtain

P o (8) 7 ()] 7 [w (8) b (8) £ (8)]

IO [w (8 B (2) £ (0] TP Tw (8) £ (1)

(3.15)
< P [ (8) £ ()] IO [he (1) £ (1)
IR [ (8) O ()] I [w (1) £ (1))
Theorem 6 is thus proved. g

THEOREM 7. Let f and h be two positive and continuous functions on [0,00) and
let w : [0,00) — RT be positive continuous function. Then for any t > 0,6 > 0 >
0,0 > 0, we have

5.16) h (y) 270 () I8 T (8) £ (0)] + £ (y) I Jw (8) b (8) £2 (¢)]
3.16
<he (y) ItOéﬁJhM [’LU (t) f6+o (t)] + fo+6—9 (y) Ita,ﬁﬂ%u [,w (t) he (t) f@ (t)] ,

where a > max (0, -8 —pu),8<lu>-1,0—-1<n<0,w>max(0,-A—w), A <
Low>-1,A—1<~<0.
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PROOF. Multiplying the inequality (3.14) by ¥ (¢,%)w (y) f? (y) and integrating
with respect to y over (0,t), we get

L2 T (8) £ (D) I [w (8) B (8) £ (1))

IO [w (0 b (8) S0 ()] 7N T (8) £ (1)

(3.17)
< IR L () £O50 ()] TN [w (8) he (8) £0 (1)
PP [ (0 (0) £ 0] 120 [0 700 ).
The result is proved. O

REMARK 8. For a = w, 8 = A\,n = v and u = w, Theorem 7 immediately is
reduced to Theorem 6.

Next, we shall propose a new generalization of weighted fractional integral in-
equalities using a family of n positive functions defined on [0, c0) .

THEOREM 9. Let f;, i = 1,...,n be n positive and continuous fonctions on [0, 00)
and let w : [0,00) — R*. Then, for allt > 0,0 > 0,6 > 60, >0, ¢ € {1,...,n}, the
following fractional inequality

18P L () fg (O TTiy £ O] 177w () ¢ 13 (1) Tl 2 (1)
(3.18)

< 1P [ (027 Ty S7 O] 1057 [w (@) 5577 0TI, £ (0]
is valid for any a > max (0,—8 —p),B<1l,u>-1,—1<n<0.

PROOF. Suppose f;, i =1,...,n be n positive continuous fonctions on [0, cc) , then
we can write

(3.19) (v 7 @) =2 fg ) (" @) = £ ) =0,

for any fixed ¢ € {1,...,n} and for any 0 >0, >0, > 0, z,y € (0,t),t > 0.
From (3.19), we obtain

(320)  yofy " (y) £ (2) + £ (y) 2 fy 0 (@) Sy ST (@) + 0T ()2

Now, multiplying both sides of (3.20) by v (¢t,z)w (z) [T}, fiei (z) and integrating
with respect to z from 0 to ¢, we obtain

v F ) TP () 7 (0TI £ 1)

7 ) I [w (047 13 (1) Ty £ (1)
(3.21)

<y IO [ (0) 1240 (O T, £ (1)

O ) I [ (017 T 12 1)
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Next, multiplying the inequality (3.21) by % (t,y) w (y) [T, f% (y) and integrating
with respect to y from 0 to t, we can write

I L (8) 7 (6 TTy 12 O] 107 [ (027 3 (1) T, S7° ()]

IO (687 17 () TTig 47 (0] 1757 [ () 7 (T, £ ()]

(3.22)
< 1P L (8) £ (8) Ty S0 O] 1207 [ (027 T, £ (0)]
P L ()4 T 2 (0] 177 [ () 150 (O T, £ ()] -

This ends the proof of Theorem 9. O

THEOREM 10. Let f;, i = 1,...,n be n positive continuous fonctions on [0,00),
w : [0,00) = RT. Then for any t > 0 and for allc >0, § > 0, > 0,q € {1,...,n} we
have

I L (01 £ () TLigy £ )] 102 [ 0) 17 (O TLEZ, 7 (1)

IO [ (087 3 () Ty 7 (0] T2 [w @) £ (0TI, 17 )]
(3.23)

< 1P [ (0) 134 (0 Ty J2 O] 17 [ (017 T £ (1)
FIPA L (8) £377 (0 Ty £ O] 17 [ (017 T, £ ()]

where @ > max (0, -8 —pu),8<l,u>-1,0—-1<n<0,w>max(0,-A—w), A <
lw>-1,A-1<vy<0.

PrROOF. We multiply the inequality (3.21) by ¢ (t,y)w (y) [Tr—, f7* (y) then we
integrate the result with respect to y on (0,t), we can write

17 @) I [w (81 12 (0 Ty 17 ()]
2o £ @) I [w (8) £ (O T, £ (1)
(3.24)

<SP @) I lw () T 2 (1)

I w (1) £ (0TI, £ (8)] -
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Therefore,

1A L (017 £3 () Ty S2 O] 1207 [w (8) £ (O T £ (1)

IO [ (087 3 () Ty 7 (0] 127 [w @) £ (0TI, 17 )]

(3.25)
< 1P [ (0) 134 (O Ty J7 O] 17 [ (017 T £ ()]
N [ () £ () T, £ O] 100w ()17 T £ ()]

This completes the proof. O

REMARK 11. If we take o = w, 8 = A\,n = v and p = w, in Theorem 10, we
obtain Theorem 9.

THEOREM 12. Let f;; i = 1,...,n and h be positive continuous functions on
[0,00),w : [0,00) — R*. Then, for all ¢ > 0,6 > 6, > 0,q € {1,...,n}, the fol-
lowing fractional inequality

1227 L (8) £ (O TT S7 O] 122 [w () 97 () 2 () Ty % ()]
(3.26)

< IO L () S50 (0 Ty % 0] T2 w () 97 (0TI, S ()] -
holds for any t > 0, > max (0, =8 —u),8 < Lp>-1,0—-1<n<O0.

PrOOF. Let z,y € (0,t),t >0, for any ¢ > 0,6 >80, > 0,¢q € {1,...,n}. Then we
have

(21) () f5 @) = h @) W) (f @) - £ w) 20

Consider
(3.28)

e (y) fa " () £3 (@) + 13 (y) he () fa 0 () < B (y) fa 7770 (@) + £ 70 () e () -

Multiplying both sides of the above inequality by v (¢,z) w (z) [T;—, ff1 (z) and inte-
grating with respect to  over (0,t), we obtain

B () fa " ) TP w0 () £ (0 TT, £ ()]
7 W) IO [w ()R (8) 15 (8) Ty 1% ()]
(3.29)
< () 10 w0 (8) 357 (0TI, £ ()]

—i—]g”g’n’“ [w (t) he (1) H?:l ff’z (t)} f§+tf*0q (y) .
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Integrating both sides of (3.29) with respect to y over (0,t), we obtain
2007 [ (0) £ (O TTiy S7 O] B0 [w () 97 () 3 () Ty % ()]

(3.30)
<212 L (8) £ () Ty S O] 1207 [ (8) 97 (0TI, S ()]
This ends the proof. O
THEOREM 13. Let f;; i = 1,...,n and h be positive continuous functions on

[0,00),w : [0,00) = R*. Then, for allt > 0, ¢ > 0, > 6, > 0,q € {1,...,n},
we have

1A L (0 (1) £5 () i 12 (0] 1207 [w (1) £ 0TI £ )]

_|_Ita,5m“u [w (t) ke (t) f(f (t) H?;éq f(if, (t)} I;}Aﬁaw [w (t) fg (t) H?:l ffl (t)}
(3.31)

< IO L (@) £357 (0 Ty 1 O] 1227 fw () b (0TI, £ ()]

HIPA w0 (1) £ () Ty 1% O] 1207 [ (8) 97 (0 Ty S ()]

where @« > max (0, -8 —pu),8<1l,u>-1,0—-1<n<0,w>max(0,-A—w), A <
lLwm>-1,A-1<vy<0.

PROOF. Multiplying (3.28) by ¢ (t,y) w (y) [1i—, f7 (y) then we integrate the re-
sulting inequality with respect to y on (0,t), we obtain

1 @) I lw () 7 (8) £ (6) Ty £ ()]

+h7 (@) f3 " (@) N [ @) £ (O T, £ )]
(3.32)

< ST @) 1 [w (6 b (O T £ ()]

R (@) I [ (8) 15+ (0TI, S (1))

The integration of (3.32) gives
TN (51 () £ (0 Ty £ O] 187 [ 0) 77 (O T 7 (1)
IO [ (05 (8) 3 () Ty £ (] T [w (@) f7 (0TI, £ ()]
(3.33)
< I Lw () e (O TI 7 (0] 177 [ () £25 () Ty £ (1)

LA [w (8) £+ (0TI /" (t)} Pk [w (t) h (&) [Ty £ (t)} :
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The proof is completed. O

REMARK 14. Applying Theorem 18 for a« = w, = X\,n =~ and u = @, we obtain

Theorem 12.
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