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Arithmetic Fuchsian groups of signature (0;m1, m2, m3, m4)

C. Maclachlan†a and G. Rosenbergerb

Abstract. Here we determine the arithmetic data of arithmetic Fuchsian Groups
of signature (0;m1,m2,m3, m4).

1. Introduction

Let us call a Fuchsian group whose signature has the form (0;m1,m2,m3,m4) a VE
group (Vierecksgruppe). We want to determine all conjugacy classes of arithmetic VE
groups. There are several classification results in very special cases [1, 2, 9, 12, 19, 20, 24]
but these results are far from a complete classification. We took the existence of the
particular results as the motivation to determine all conjugacy classes of arithmetic
VE groups. We start by determining all commensurability classes (in the wide sense).
These commensurability classes are determined by the defining number field k and the
quaternion algebra A over k together with the associated arithmetic data.

This paper presents all the necessary theoretical results needed for the complete
classification like the bounds of the field degree [k : Q] and the possible torsion in
the arithmetic VE groups. These result are interesting and worth mentioning by their
own. Finally, as an application, we determine completely all conjugacy classes of the
arithmetic VE groups with [k : Q] ≥ 4 which are not subgroups of an arithmetic
triangle group. If [k : Q] ≤ 3 then the number of conjugacy classes of maximal
arithmetic VE groups is enormous (see for instance the lists for the special cases in
[1, 2, 9]). For this case [k : Q] ≤ 3 we give the complete classification in a forthcoming
paper together with the classification of VE subgroups of arithmetic triangle groups.

During the work on our project Colin Maclachlan died on 26 November 2012. The
second author lost a wonderful lifelong friend. He is thankful to Dorothy Maclachlan,
Rob Archbold and Michael Chung for the permission and the help to continue with
the project, especially for putting some material from Colin’s office at his disposal.
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2. Maximal arithmetic Fuchsian groups

Let k be a totally real number field and A a quaternion algebra over k. Let kν
denote the completion of k at the place ν so that Aν = A⊗k kν is a quaternion algebra
over kν . The algebra A is said to be ramified at ν if Aν is a division algebra. The set of
ramified places, Ram(A), is finite of even cardinality and it is the union of Ram∞(A),
the set of real ramified places and Ramf (A) the set of finite ramified places, each one
corresponding to a prime ideal P of k. For details on material in this and subsequent
sections see [3, 11].

For Fuchsian groups, we require that Ram∞(A) consist of all real places of k
except one so that there exists a k-embedding ρ : A → M2(R). An order O in A is a
complete Rk-lattice which is a ring with 1. If

O1 = {α ∈ O | n(α) = 1}
where n is the reduced norm, then Pρ(O1) is a Fuchsian group of finite co-area. The
class of arithmetic Fuchsian groups consists of all those subgroups of PSL(2,R) which
are commensurable with some such Pρ(O1).

Since the commensurator of Pρ(O1) in PGL(2,R) is Pρ(A∗), whereA∗ is the group
of invertible elements of A, it is convenient to drop the reference to the embedding
ρ so that the commensurability class determined by A will be all groups in P (A∗)
commensurable with P (O1). We thus consider k as a subfield of R and A unramified
at the identity real place. For α ∈ A∗, by Eichler’s norm theorem, n(α) ∈ k∗∞, where
k∗∞ consists of all those elements which are positive at all real places in Ram∞(A).
Furthermore, if P (α) lies in a Fuchsian group, then n(α) > 0 so that n(α) ∈ k∗+, the
group of all totally positive elements.

Let O denote a maximal order in A and E = O ∩ O′, the intersection of two
maximal orders, an Eichler order. Then E is said to be of square-free level S, where S
is a finite set of prime ideals of k, disjoint from Ramf (A), such that at each finite place
P 6∈ S, EP = OP = O′

P , and if P ∈ S, EP = OP ∩ O′
P has level P so that OP ,O′

P

are adjacent orders in the tree of maximal orders in AP
∼= M2(kP ). Let N(O), N(E)

denote the normalisers of O, E respectively in A∗.

Theorem 2.1. (Borel) Every arithmetic Fuchsian group in the commensurability
class determined by A is conjugate to a subgroup of some P (N(O)+) for O a maximal
order or of some P (N(E)+) for a Eichler order of square-free level.

The decoration ‘+′ indicates that all elements must have totally positive norm.

3. Co-areas of maximal groups

Let O be a maximal order in A. Then

(1) Co− area of P (O1) =
8πζk(2)∆

3/2
k

(4π2)[k:Q]

∏

P∈Ramf (A)

(NP − 1)

where ∆k is the discriminant of k, ζk the Dedekind zeta function of k and NP the
cardinality of the field Rk/P (see e.g. [11, §11.1]).
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If E is an Eichler order of square-free level S with E ⊂ O, then [3],[11, §11.5]
(2) [PO1 : PE1] =

∏

Q∈S

(NQ+ 1).

In the subsequent discussion, we allow S to be empty in which case E = O a maximal
order. Note also that since we are concerned with VE groups, which are cocompact,
A 6= M2(Q).

Now P (N(E)+)/P (E1) is a finite elementary abelian 2-group and under the norm

map is isomorphic to H(S) = H(S)/k∗2 where

H(S) = {x ∈ k∗+ | xRk ∈ DSI2k}
with D,S the subgroups of the ideal group Ik generated by prime ideals in Ramf (A),
S respectively and I2k the subgroup generated by squares of ideals [3, 7]. Recall that,

if k has class number one, then |H(S)| = [R∗
f∪S,+ : R∗

f∪S
2] where Rf∪S is the ring of

elements in k which are integral at all places outside Ramf (A) ∪ S. Now

(3) Co− area of P (N(E)+) = |H(S)| × Co− area of P (E1).

Thus from (1), (2), (3) and the determination of H(S), the co-area of maximal groups
P (N(E)+) can be calculated.

4. Torsion in maximal groups

If m > 2, then P (A∗) contains an element of order m if and only if 2 cos 2π/m ∈ k
and L = k(e2πi/m) embeds in A. In that case, there is, up to conjugacy, a unique
subgroup of order m in P (A∗) generated by P (1 + ξm) where ξm is the image of
e2πi/m in A. Furthermore we can deduce (see [4, 7]) that P (N(E)+) contains an
element of order m if and only if all the following conditions hold

(i) 2 cos 2π/m ∈ k,
(ii) no prime P ∈ Ramf (A) splits in L = k(e2πi/m),
(iii) (2 + 2 cos 2π/m)Rk ∈ DSI2k ,
(iv) for each Q ∈ S at least one of the following must hold

(a) the highest power of Q dividing (2 + 2 cos 2π/m)Rk is odd,
(b) Q splits in L,
(c) Q divides (2− 2 cos 2π/m)Rk.

For future reference, these conditions will be called the C(m) conditions.

If P (N(E)+) contains an element P (v) of order 2, there is an embedding σ :
L = k(u) → A where u2 = −n = −n(v). Now n ∈ H(S) and since P (v) is only

determined up to scalar multiples of v, n determines an element of H(S). Then an

element n ∈ H(S) gives rise to an element of order 2 in P (N(E)+) if and only if all
the following conditions hold

(i) no prime P ∈ Ramf (A) splits in L = k(
√−n),

(ii) nRk ∈ DSI2k ,
(iii) for each Q ∈ S at least one of the following must hold

(a) the highest power of Q dividing nRk must be odd,
(b) Q splits in L,
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(c) Q divides 2Rk.

For future reference, these conditions will be call the C2(n) conditions.

Let H2(S) denote the subset of H(S) such that conditions C2(n) are satisfied.
Thus if we let `2(S) denote the number of conjugacy classes of elements of order 2 in
P (N(E)+), which is the same as the number of even periods, then

(4) `2(S) =
∑

n∈H2(S)

`2(n)

where `2(n) ≥ 1 is the number of conjugacy classes of elements of order 2 with norm
n in P (N(E)+). Formulas for these numbers `2(n), and for the number of conjugacy
classes of elements of orders m > 2 are given in [7] (see also §9). However, these
formulas are quite complicated and require all the arithmetic data to be available for
their computation, so we first endeavour to obtain some general results which will
reduce the number of cases to be considered.

Let

|H(S)| = [P (N(E)+) : P (E1)] = 2m(S).

The following result was proved in [8].

Theorem 4.1. Let P (N(E)+) be a maximal arithmetic Fuchsian group. If H2(S) 6=
∅ then

|H2(S)| ≥ 2m(S)−r−2s′
2

where r is the number of primes in Ramf (A) and s′2 is the number of non-dyadic
primes in S.

Corollary 4.2.

(5) 2m(S) ≤ 2r+2s′
2`2(S).

If P (N(E)+) has t periods which are multiples of 2m for some fixed m > 1 then

(6) 2m(S) ≤ 2r+2s′
2(`2(S)− (t− 1)).

Proof: The inequality (5) is immediate from the theorem and (4).
For each period which is a multiple of 2m, there is an element x such that 〈x〉

represents a conjugacy class of cyclic subgroups of order 2m in P (N(E)+). Now
k(e2πi/2m) embeds in A and so there exists j with (j, 2m) = 1 such that xj is conjugate

to P (1+e2πi/2m). Thus as elements ofH(S), n(xj) = n(1+e2πi/2m) = 2+2 cos2π/2m.

Since j is odd, n(x) = 2 + 2 cos 2π/2m in H(S). But then the element xm of order

2 defines the element t2m := (2 + 2 cos 2π/2m)m in H2(S). Thus by hypothesis,
`2(t2m) ≥ t. Hence

`2(S) ≥ `2(t2m) + |H2(S)| − 1 ≥ t− 1 + 2m(S)−r−2s′
2 .

2
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5. Bounding the field degree [k : Q]

As with most similar enumeration problems (see [2, 8, 9, 10, 22]), our approach
proceeds by first obtaining bounds on [k : Q], then bounds on ∆k and finally, by using
detailed information on totally real fields k of small degree and discriminants for which
tables of data are available.

First note that, for any arithmetic Fuchsian group of genus 0, [k : Q] ≤ 11 and if
it contains an element of order N , then

N ∈ {2, 3, 4, . . . , 15, 16, 18, 20, 22, 24, 26, 28, 30, 36}
(see [8]).

Any VE group is either a subgroup of a triangle group or a subgroup of a VE group
[17]. All arithmetic triangle groups have been determined [20] as have all arithmetic
VE groups of signatures of the form (0;N,N,N,N), (0; 2, 2, N,N), (0; 2, 2, 2, N) [9, 22].
Note also that any VE group of signature (0;N1, N1, N2, N2) is of index 2 in a VE
group of signature (0; 2, 2, N1, N2) [17].

Thus let Γ = P (N(E)+), where E is an Eichler order of square-free level S or a
maximal order, be a maximal arithmetic VE group of signature (0;m1,m2,m3,m4)
not of the form (0; 2, 2, 2, N). Note that the signature of P (N(E)+) depends only on
the level S [7]. [In our notation, we reserve O for maximal orders, while, as noted, E
can be either an Eichler order or a maximal order.]

(7) [Γ : PO1] =
[P (N(E)+) : PE1]

[PO1 : PE1]
=

2m(S)

∏

Q∈S(NQ+ 1)
.

(8) 2π(2−
4

∑

i=1

1

mi
)

2m(S)

∏

Q∈S(NQ+ 1)
=

2π4ζk(2)∆
3/2
k

(4π2)[k:Q]

∏

P∈Ramf (A)

(NP − 1).

We now employ lower bounds for ∆k where k is a totally real field with [k : Q] = n
due to Odlyzko [13, 14]. These are given in the form

(9) ∆k > Cn exp(f − E)

where C,E are constants. Furthermore f =
∑

fq where fq ≥ 0 is a contribution due
to the presence of a prime ideal in k of norm q. These fq also depend on a constant b
related to C,E and an optimal choice from the table of possibilities for C,E, b in [14]
is C = 28.668, E = 8.0001 and b = 3.0. We note that, with this choice, fq = 0 for
q > 401 and fq can be computed for the other values of q. These calculations yield
the following inequalities which will be used subsequently:

(10)
q + 1

q2
exp(

−3fq
2

) < 0.09;
q − 1

q2
exp(

−3fq
2

) < 0.06.

(see [8,Table 1]). Substituting (9) in (8) and bounding ζk(2) below by the Euler
product terms for primes in Ramf (A) and S, we obtain, after re-arrangement

(11)

(

C3/2

4π2

)[k:Q]

<
1

4
exp(3E/2)

∏

P∈Ramf (A)

NP + 1

NP2
exp(

−3fNP

2
)
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×
∏

Q∈S

NQ− 1

NQ2
exp(

−3fNQ

2
) (2 −

4
∑

i=1

1

mi
)2m(S).

Since P (N(E)+)/PE1 is an elementary abelian 2-group

2m(S) = |H(S)| = [P (N(E)+) : PE1] ≤ [Γ : Γ(2)] = 2`2(S)−1

provided `2(S) ≥ 1 and this index = 1 if all periods of Γ are odd.

In the inequality (11), we note that each of the terms involving primes in Ramf (A)
and S on the r.h.s. of the inequality is clearly less than 1 so we get an upper bound
by assuming Ramf (A) and S are empty and (2 − ∑

1/mi)2
m(S) < 16. This yields

[k : Q] ≤ 9.

[k : Q] = 9. In this case Γ can only have torsion mi ∈ {2, 3, 4, 6, 7, 9, 14, 18}. Using
the bounds in (10), it follows that (11) cannot hold if either Ramf (A) 6= ∅ or S 6= ∅.
Furthermore inequality (11) fails if 2m(∅) ≤ 2 and this will be true unless all periods
are even and no two are multiples of some 2m for m > 1 by (5) and (6). The r.h.s. of
(11) will then be maximal for a signature (0; 2, 4, 14, 18) in which case (11) does not
hold.

[k : Q] = 8. In this case, Γ can only have torsion mi ∈ {2, 3, 4, 5, 6, 8, 10, 12,
16, 20, 24, 30}. Since Ramf (A) must be non-empty in this case, a simple applica-
tion of (10) to (11) shows that Ramf (A) = {P} and S = ∅. Employing the same type
of argument as in the degree 9 case above but with signature (0; 2, 6, 10, 16) shows
that (11) must fail.

[k : Q] = 7. Here Γ can only have torsion mi ∈ {2, 3, 4, 6}. By (11), we obtain that
Ramf (A) is empty and S can consist of at most one prime. For degrees up to 7, tables
of fields with the smallest discriminants are available [15]. We thus re-arrange (8) and
approximate ζk(2) as before to obtain

(12) ∆
3/2
k ≤ (4π2)[k:Q]

4

∏

P∈Ramf (A)

NP + 1

NP2

∏

Q∈S

NQ− 1

NQ2
(2 −

∑

1/mi) 2
m(S).

In degree 7, with Ramf (A) empty and S = {Q} and signature (0; 4, 6, 6, 6), (12)
can only hold for the field of smallest discriminant 20,134,393 and NQ = 2. But this
field does not have a prime of norm 2 so that S = ∅ and the order E must be maximal.
But then, if P (N(O)+) has elements of orders 4 or 6, (iii) of C(4) and C(6) show that
2Rk or 3Rk is a product of even powers of primes. But this cannot arise when [k : Q]
is odd. The only candidate signature is then (0; 2, 3, 3, 3) and for this (12) fails.

6. More on Torsion

In the succeeding sections, we will consider the cases where the fields k are such
that [k : Q] ≤ 6. The torsion that may appear in the groups Γ = P (N(E)+) imposes
certain restrictions on the field k and the prime ideals in these fields via the C(m)
conditions.
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In addition, we will make extensive use of the inequality (12). As already noted
in the arguments for degrees 8 and 9 above, the term (2−∑

1/mi)2
m(S) on the r.h.s.

of (12) can be bounded by making use of (5) and (6) and we expand on that here.

Furthermore, the torsion in Γ and the term
∏

P∈Ramf (A)

NP + 1

NP2

∏

Q∈S

NQ− 1

NQ2
can

be linked using the C(m) conditions.
All these scenarios will be discussed in this section with a view to their application

in the subsequent investigations.

TA We make use of the following well-known results on cyclotomic fields CN =
Q(e2πi/N ) and kN = Q(cos 2π/N) where we assume that if N is even then
4 | N . Let RN denote the ring of integers in kN . If N = pk for some prime p
then p is totally ramified in CN and kN . Let Z∗

N denote the group of units
in ZN and let PN denote its quotient group where [i] ≡ [−i]. If prime p - N ,
then pRN = P1P2 . . .Pg with N(Pi) = pf where [p] has order f in PN . If

N = pkN ′ with N ′ > 1, then pRN = (P1P2 . . .Pg)
φ(pk) with N(Pi) = pf

where [p] has order f in PN ′ . In the cases where N 6= pk, it follows that
these ideals Pi in kN split in CN if and only if [p] has the same order in Z∗

N

or Z∗
N ′ as it has in PN or PN ′ respectively.
When kN ⊂ k, these results enable us to estimate the norms of primes

in k and the decomposition in the extension k(e2πi/m) as required by C(m)
(ii).

For later reference, we also note that, if R̂N is the ring of integers in CN ,
then [R̂∗

N : 〈e2πi/N 〉R∗
N ] = 1 or 2 according as N is a prime power or not.

TB For other fields k, we may be able to use the following theorem of Hilbert
[6] on relative quadratic extensions to determine splitting as required in the
C(m) (ii) and C2(n)(i) conditions.

Theorem 6.1. Let L = k(
√
µ) be a quadratic extension of k.

(i) Let P be a non-dyadic prime. If P divides µRk to an odd power, then
P is ramified in L. Now suppose that P divides µRk to an even power.
We can adjust µ by a square to assume that (µRk,P) = 1. In that case,
P splits in L if and only if

µ ≡ x2(mod P)

has a solution with x ∈ Rk. Otherwise, P is inert in L.
(ii) Let P be a dyadic prime. Let a be the highest power of P dividing µRk

and let ` be the highest power of P dividing 2Rk. Then P is unramified
in L if and only if

µ ≡ x2(mod P2`+a)

has a solution with x ∈ Rk. If P is not ramified, then a can be taken to
be zero. In that case, P splits in L if and only if

µ ≡ x2(mod P2`+1)

has a solution with x ∈ Rk. Otherwise P is inert in L.
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This theorem can be used in many cases where the specific data is avail-
able. We note in particular the following general consequence:

Corollary 6.2. If E is an Eichler order of square-free level S and
P3 ∈ S ( resp. P2 ∈ S) with NP3 = 3 (resp. NP2 = 2), then P (N(E)+) has
no elements of order 4 (resp. 3).

Proof: Consider C(4)(iv) with P3 ∈ S. Clearly (a) and (c) do not
hold. Since L = k(

√
−1) and −1 ≡ x2(mod P3) has no solution, condition

(b) does not hold and there are no elements of order 4 in Γ. Now suppose
P2 ∈ S and L = k(

√
−3). Again (a) and (c) of C(3)(iv) do not hold.

Suppose that P`
2 is the highest power of P2 dividing 2Rk. Then x = 1

satisfies −3 ≡ x2(mod P2`
2 ). If −3 ≡ x2(mod P2`+1

2 ), then x = 1 + y with

y ∈ P`
2. So 4 + 2y + y2 ∈ P2`+1

2 . Now 4, 2y, y2 ∈ P2`
2 and P2`

2 /P2`+1
2 is a

one-dimensional vector space over Rk/P2 which is the field of two elements.

But 4 6∈ P2`+1
2 and 2y ∈ P2`+1

2 if and only if y2 ∈ P2`+1
2 . This contradiction

shows that C(3)(iv) does not hold and Γ has no elements of order 3.
TC In applying the inequality (12), one of the ingredients is to obtain as tight

an upper bound as possible for the product term

T = (2 −
4

∑

i=1

1

mi
) 2m(S).

To do this we make use of the bounds (5) and (6) and now introduce some
terminology for this. These inequalities are generally applicable when r +
2s′2 = 0 or 1. We say that the signature (0;m1,m2,m3,m4) satisfies the
even multiple condition 1 (EMC1) if all periods mi are even and no two are
multiples of 2m for some m > 1. Notice that 2m(S) is always ≤ 8 but if the
signature fails EMC1 then 2m(S) ≤ 2r+2s′

2 × 2. A signature for which EMC1
holds and gives a maximal value of 2 − ∑

1/mi will be called an extremal
EMC1 signature. When EMC1 fails, we say that the signature satisfies the
even multiple condition 2 (EMC2) if one the following conditions hold:

• `2(S) = 2 and both periods are not multiples of 2m for some m > 1,
• `2(S) = 3 and no three periods are multiples of 2m for some m > 1,
• `2(S) = 4 and not all periods are multiples of 2m for some m > 1.

A signature which fails EMC2 yields 2m(S) ≤ 2r+2s′
2 . Again a signature for

which EMC2 holds and gives a maximal value of 2 −∑

1/mi will be called
an extremal EMC2 signature.

TD One of the arguments used in degree 7 above will apply for any odd degree.
Thus, if [k : Q] is odd, Ramf (A) = ∅ and O is a maximal order, then
P (N(O)+) has no elements of orders 4 or 6. For, by C(4)(iii), 2Rk ∈ I2k .
Thus if 2Rk = Pe1

1 Pe2
2 . . .Peg

g , all ei are even and [k : Q] =
∑g

i=1 eifi would
be even. Similarily for C(6).
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TE To obtain good bounds for ∆k using (12), we would like to force the product
term

P =
∏

P∈Ramf (A)

NP + 1

NP2

∏

Q∈S

NQ− 1

NQ2

to be as small as possible. The existence of certain torsion in Γ forces either
primes of large norm or several primes to lie in Ramf (A) ∪ S and hence
decrease the size of this term.

Suppose 2 is not ramified in k. Thus 2Rk = P1P2 . . .Pg. If P (N(E)+)
has torsion of order 4 then {P1,P2, . . . ,Pg} ∈ Ramf (A) ∪ S by C(4)(iii).

We emphasise the simple case where Ramf (A) = {P}, O is a maximal
order and P (N(O)+) contains an element of order 4. This means that either
2 is ramified in k or NP = 2n where n = [k : Q].

Essentially the same statement can be made with 2 replaced by 3 and
4-torsion replaced by 6-torsion.

It may be possible to make similar statements about elements of order

2pt where (p,∆k/∆
[k:Q(cos 2π/pt)]
Q(cos 2π/pt) ) = 1.

7. Degree 6

We continue the assumption that Γ is a maximal arithmetic VE group which is
not of the form (0; 2, 2, 2, N). Where the defining field k has degree 6 over Q, Γ can
have torsion mi ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 26, 28, 36}. In addition to the
obvious connections to the work in [9, 22], our investigations here occasionally overlap
with other earlier work [8, 10], and we take advantage of this. Postulating the existence
of certain torsion will determine particular degree 6 fields and we consider these first
of all. Recall that, in all cases, Ramf (A) 6= ∅.
k = Q(cos 2π/36). The possible torsion in Γ is then {2, 3, 4, 6, 9, 12, 18, 36}. Now
∆k = 26.39 and k has a prime of norm 3, one of norm 8 and all others have norms
≥ 37 (see TA). By (12) we must have Ramf (A) = {P} and S = ∅ with NP = 3 or 8.
If NP = 8 then (12) fails unless the signature satisfies EMC1. But with this choice
of Ramf (A), condition C(36) holds since P does not split in C36 as described in TA

and 2 + 2 cos 2π/36 is a unit. So there must be 36 torsion in Γ. But then the only
signature satifying EMC1 is (0; 2, 2, 2, 36). If NP = 3, the signature of this group was
determined in [8] as (0; 2(4), 4, 36).

k = Q(cos 2π/28). The possible torsion is {2, 3, 4, 6, 7, 14, 28}. Here ∆k = 26.75 and k
has a prime of norm 7, of norm 8 and the rest of norms ≥ 27. By (12), Ramf (A) = {P}
and S = ∅ with NP = 7 or 8. If NP = 8, then P splits in k(e2πi/7) and there are no
elements of orders 7,14 or 28 in Γ. There is also no element of order 6 by TE. Using
the extremal signature (0; 2, 4, 4, 4) (12) fails. If NP = 7 then again this group has
been determined in [8] to have signature (0; 2(8), 4, 28).

k = Q(cos 2π/13). The possible torsion is {2, 3, 4, 6, 13, 26}. Here ∆k = 135 and k
has primes of norms 13,25,27,53,64 and the rest ≥ 79. By (12) Ramf (A) = {P} and
S = ∅ with NP ≤ 64. But then EMC yields NP ≤ 27.
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• NP = 13. This group has signature (0; 2(5), 26) by [8].
• NP = 25. Condition C(13) holds but C(26) does not. There are also no
elements of orders 4 or 6 byTE. So EMC1 cannot hold, an extremal signature
for EMC2 is (0; 2, 2, 3, 13) and (12) fails.

• NP = 27. Condition C(13) does not hold so there are no periods of orders
13, 26 and also none of order 4. An extremal EMC2 signature is then given
by (0; 2, 6, 6, 6) and (12) fails.

Thus we have deduced that there are no VE groups with 36,28,26 or 13 torsion.

k = Q(cos 2π/9, cos2π/5) so that Γ can have torsion {2, 3, 4, 5, 6, 9, 10, 18}. Now
∆k = 812.53 and k has primes of norm 9, 19 and ≥ 64. Thus Ramf (A) = {P} and
S = ∅ with NP = 9. With NP = 9, there are no periods of orders 4 or 10 so that
EMC1 cannot hold. An extremal signature for EMC2 is (0; 2, 9, 18, 18) and with that
(12) fails.

k = Q(cos 2π/7, cos 2π/5) giving torsion {2, 3, 4, 5, 6, 7, 10, 14}. Here ∆k = 492.53 and
k has primes of norms 29,41,49,64,71 and ≥ 97. Thus Ramf (A) = {P} and S = ∅
with NP ≤ 64.

• NP = 29. There are no elements of orders 4,6,7,10 or 14 and extremal
signature (0; 3, 5, 5, 5) shows that (12) fails.

• NP = 41. This time there are no elements of orders 4,6,10,14 and extremal
signature (0; 5, 7, 7, 7) gives a contradiction.

• NP = 49. There is no torsion of orders 4,6 or 10 so that EMC1 cannot hold.
For EMC2 the extremal signature (0; 2, 7, 14, 14) shows that (12) fails.

• NP = 64. Only possible torsion is 2,3,4,5 and contradiction follows.

k = Q(cos 2π/9, cos 2π/8). With the smallest prime in this field having norm 8, (12)
fails.

k = Q(cos 2π/7, cos 2π/8). Thus ∆k = 492.83 and k has primes of norm 7 and 8
and ≥ 41. Only possibilities are Ramf (A) = {P} and S = ∅ with NP = 7. In this
case, there is no 6 torsion and (12) fails unless EMC1 holds. An extremal signature is
(0; 2, 2, 8, 14) and for that (12) fails.

k = Q(cos 2π/7, cos2π/12). Again with the smallest prime having norm 8, it follows
that (12) fails.

We now consider other possible fields of degree 6 over Q and for this we make
use of the PARI archives of such fields of small discriminant [15] and also, where
appropriate, the PARI-gp calculator.

Suppose that Q(cos 2π/7) ⊂ k and is not one of the fields considered above. Then Γ
may have torsion of orders {2, 3, 4, 6, 7, 14}.Thus 492 | ∆k and the smallest discrimi-
nant of a field (not so far considered) with this property is 434,581. Furthermore, since
Q(cos 2π/7) has primes of norm 7,8,13,27,29 and larger, k cannot have primes of any
smaller norms. Thus (12) shows that Ramf (A) = {P} and S = ∅ and using the ex-
tremal signature (0; 2, 4, 6, 14) shows that NP ≤ 27. This implies that ∆k < 1160930
and there are 4 fields within this bound for which 492 | ∆k. By TE, we note that
either 2 | ∆k or P (N(O)+) has no torsion of order 4, either 3 | ∆k or P (N(O)+) has
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no 6-torsion and either 7 | ∆k/49
2 or P (N(O)+) has no 14-torsion. Examining ∆k in

each of the four cases shows that for all but one, P (N(O)+) has no 4,6 or 14 torsion.
But then using signature (0; 3, 7, 7, 7) shows that (12) fails.

We are left to consider the field with defining polynomial x6 − x5 − 6x4 + 6x3 +
8x2 − 8x + 1 which has discriminant 453789. In this case there is no 4 torsion and
(12) shows that NP = 27 is not possible. Furthermore, there are no primes of norms
8 or 13 in this field. Thus NP = 7. By TB, P splits in k(

√
−3) and so there is no

3-torsion. Using the PARI-gp calculator, we obtain that the rational
4 ζk(2)∆

3/2
k

(4π2)6
=

1

3
and 2m(∅) = [R∗

f,+ : R∗
f
2] = 4 (see §3). But then, see (8), there are no solutions to

(2−
4

∑

i=1

1

mi
)4 = 2

with mi ∈ {2, 7, 14}.
Now suppose that Q(cos 2π/9) ⊂ k. Thus 812 | ∆k and Γ can have torsion

{2, 3, 4, 6, 9, 18}. Proceeding as in the case above, the smallest discriminant of a can-
didate field is 1292517 and this shows that Ramf (A) = {P} and S = ∅ with NP = 3.
This gives an upper bound of 1876538 for ∆k and there are three candidate fields. But
two of the fields have no prime of norm 3. Thus we are left to consider the field with
defining polynomial x6 − 3x5 − 3x4 + 10x3 + 3x2 − 6x+ 1 and discriminant 1397493.
But using TB, we see that P splits in k(

√
−3) so there are no elements of order 3.

With only possible torsion of orders 2 and 4 we get a contradiction.

If Q(cos 2π/12) ⊂ k, then 123 | ∆k and Γ can have torsion of orders {2, 3, 4, 6, 12}.
Assuming Ramf (A) = {P} and NP = 2, the r.h.s. of (12) gives a bound of 4323956
and the only fields with discriminant such that 123 | ∆k have already been considered.

If Q(cos 2π/8) ⊂ k, then 83 | ∆k and Γ may have torsion of orders {2, 3, 4, 6, 8}.
The r.h.s. of (12) gives a bound of 4093275 assuming k has a prime of norm 2 and a
bound of 2887853 if not. There are five fields with 83 | ∆k satisfying the first bound
and two satisfying the second. Of the four largest ones, two do not have a prime of
norm 2 and the other two must have Ramf (A) = {P}, S = ∅ with NP = 2. In
both cases, (3,∆k) = 1 so there is no 6 torsion and using extremal EMC2 signature
(0; 2, 8, 8, 8), inequality (12) fails.

It remains to consider the field k where ∆k = 1081856, k = Q(x) where x6−6x4−
2x3+7x2+2x−1 = 0. This field has primes of norms 7 and 8 so that Ramf (A) = {P},
S = ∅ with NP = 7 or 8. Now Γ has no 6 torsion and so again using (0; 2, 8, 8, 8) (12)
fails.

If Q(cos 2π/5) ⊂ k, then 53 | ∆k and Γ can have {2, 3, 4, 5, 6, 10} torsion. Since k
cannot have primes of norms ≤ 4, we obtain ∆k < 2361112. There are 11 such fields.
For all of them (3,∆k) = 1, (5,∆k/5

3) = 1 and for all but two (2,∆k) = 1. Thus for 9
of these fields, we have either no 4,6 or 10 torsion or Ramf (A)∪S contains all primes

in at least one of the unramified products 2Rk, 3Rk or
√
5Rk as discussed in TE. In

any of the cases where Ramf (A) ∪ S contains these primes, this forces P to be small
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and hence (12) fails. If there is no 4,6 or 10 torsion, then the signature (0; 3, 5, 5, 5)
with P ≤ 5/16 gives ∆k ≤ 463430 which is smaller than the smallest discriminant of
the 11 fields. Of the remaining two fields, one has discriminant 1922000 and with no
6 or 10 torsion, (12) fails.

We are left to consider the field with ∆k = 722000 and defining polynomial x6 −
x5 − 6x4 + 7x3 + 4x2 − 5x + 1. This field does not have a prime of norm 5 but
2Rk = P3

4 . So we must have Ramf (A) = {P4} and S = ∅. Using PARI we get that

4ζk(2)∆
3/2
k

(4π2)6
=

7

10
, [R∗

k,+ : R∗
k
2] = 1 and that 2m(∅) = [R∗

f,+ : R∗
f
2] = 2. Using (8)

there could be a solution for a VE group with (0; 4, 4, 4, 5). So we need to look more
closely at the formula for the number of classes of elements of order 4 in P (N(O)+)
given in [7] (see also §9). Again using PARI we obtain that for L = k(

√
−1), h(L) = 1,

δL|k is trivial and P4 is ramified in L. The formula then yields only one conjugacy
class of elements of order 4 and we do not get a VE group in this case.

We now consider fields k which do not contain any of the fields Q(cos 2π/N)
different from Q in which case Γ can only have torsion of orders {2, 3, 4, 6}. First we
expand slightly on arguments used above resulting from TE which reduce the sizes of
P and T .

Thus suppose that 2 is unramified in k. Then either Γ has no 4 torsion or 2Rk =
P1P2 . . .Pg and {P1,P2, . . . ,Pg} ⊂ Ramf (A) ∪ S. If Pi has norm 2fi then

∑

fi = 6.
Considering the possible products for 2Rk we obtain that P ≤ (3/4)4.(5/16) ≈ 0.0989
which is the maximum value achieved with 4 primes of norm 2 and one of norm 4
all lying in Ramf (A). Note that in all cases, the signature (0; 4, 6, 6, 6) yields T ≤
(2 − (3/6) − (1/4))8 = 10. Thus if Γ has 4 torsion then PT < 10 × 0.0989. On
the other hand, if Γ has no 4 torsion, the signature (0; 2, 6, 6, 6) gives T ≤ 8 and
PT ≤ 3/4× 8 = 6 if k has a prime of norm 2 and PT ≤ 32/9 if not. Thus, from (12),
if 2 is unramified in k we have ∆k ≤ 3182974(2245625).

Now suppose that 3 is unramified in k. If Γ has 6 torsion, we get P ≤ (4/9)6.(3/4) ≈
0.00578 this maximum occuring when 3Rk decomposes completely and Ramf (A) con-
sists of these six primes of norm 3 together with one additional one of norm 2. On
the other hand, if there is no 6 torsion, the signature (0; 2, 4, 4, 4) yields T ≤ 6. Thus
if 3 is unramified we have PT ≤ max(3/4× 6, 0.00578× 10) if k has a prime of norm
2. As above this yields ∆k ≤ 2627487(1853722) with the second figure the bound if k
does not contain a prime of norm 2.

Now suppose that both 2 and 3 are unramified in k. Then from the four possible
cases, the largest value of PT arises if Γ has no 6 torsion but may have 4 torsion.
Note that with no 4 or 6 torsion, the only possible signature is (0; 2, 3, 3, 3) which
gives PT ≤ 3/4× 1/2. Thus in this case we have ∆k ≤ 824625(376407).

With no restrictions, we note that PT ≤ 3/4× 10 which gives the overall bound
of ∆k ≤ 3693514(2605817). We include the bounds in the cases where k does not have
a prime of norm 2 as, it is generally quite straightforward to decide if a field has a
prime of norm 2.
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A. Suppose that 2 - ∆k and 3 - ∆k. There is one field within the bound given
above. It does not have a prime of norm 2 and its discriminant exceeds the
bound in that case.

B. Suppose that 2 | ∆k but 3 - ∆k. There are three fields to consider. One field
has discriminant 1997632 and no prime of norm 2 so can be discarded. The
second has discriminant 2540864 and 2 is totally ramified in k. Since 3 is inert
in k, there are no elements of order 6 and we must have Ramf (A) = {P2}

and S = ∅. In this case we get that
4ζk(2)∆

3/2
k

(4π2)6
=

35

6
and 2m(∅) = 2 so that

(8) has no solution for a VE group. In the third case ∆k = 810448, 2Rk = P3
4

and the decomposition of primes shows that Ramf (A) = {P4} and S = ∅.

Further, we compute that
4ζk(2)∆

3/2
k

(4π2)6
=

5

6
and [R∗

f,+ : R∗
f
2] = 2. There is

then no 6 torsion and so no solution to (8) with mi ∈ {2, 3, 4}.
C. Suppose that 2 - ∆k and 3 | ∆k. There are two candidate fields. One

has discriminant 2565429 and no prime of norm 2. The other also has no
prime of norm 2 but discriminant 1387029. In this case, 2 is inert in k
and 3Rk = P2

3P34 . So there are no elements of orders 4 or 6 and we get a
contradiction.

D. Finally suppose that 6 | ∆k. There is one candidate field of discriminant
2847312. Here 2Rk = P3

4 and 3Rk = P3
3P33 and (12) is violated.

Thus there are no arithmetic VE groups with a defining field of degree 6 over Q.

8. Degree 5

We proceed as in degree 6. In this case the possible torsion is {2, 3, 4, 6, 11, 22}.
Recall that (see (8) from the equality

(13) (2 −
4

∑

i=1

1

mi
)2m(S) =

4ζk(2)∆
3/2
k

(4π2)5

∏

P∈Ramf (A)

(NP − 1)
∏

Q∈S

(NQ+ 1)

we deduced, in the notation of §7,

(14) ∆
3/2
k ≤ (4π2)5

4
× P × T

where P =
∏

P∈Ramf (A)

NP + 1

NP2

∏

Q∈S

NQ− 1

NQ2
and T = (2 −

∑

1/mi)2
m(S).

If Γ has 11 or 22 torsion, then k = Q(cos 2π/11). Then ∆k = 114 and, from TA,
k has primes of norms 11,23,32,43. Since Ramf (A) has an even number of primes,
(14) shows that Ramf (A) = ∅. But then P (N(O)+) has signature (0; 2, 3, 11) [16] and
(13) yields

(15) T = (2−
4

∑

i=1

1

mi
)2m(S) =

5

66

∏

Q∈S

NQ+ 1.
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Thus S = {Q} with NQ < 179. If Γ has an element of order 22, then NQ = 11. But
then P (N(E)+) has signature (0; 2, 2, 2, 22) [22] and there is only one conjugacy class of
such groups (see also §9). If NQ 6= 25, Γ has no 4 or 6 torsion. With mi ∈ {2, 3, 11},
T < 1.4 and so NQ < 19. If NQ = 32, Γ has no 6 or 22 torsion and from (15),
T = 5/2. But there is no solution to (2−∑

1/mi)2
m(S) = 5/2 with mi ∈ {2, 3, 11}.

Now consider other possible fields k of degree 5 and note that Γ can only have
torsion of orders {2, 3, 4, 6}. Furthermore, by TD, if Ramf (A)∪S = ∅, then Γ has no
4 or 6 torsion. If Γ has no 4 or 6 torsion, Γ must have signature (0; 2, 3, 3, 3) for which
T = 1/2. But then (14) gives ∆k < 52377. There are four such fields, one of which is
Q(cos 2π/11), fully discussed above. For the others, (14) shows that Ramf (A)∪S = ∅.
But then for each of these three fields P (N(O)+) has signature (0; 2, 2, 2, 3) [1, 9] and
the number of conjugacy classes of these groups is also given there (see discussion in
§9).

Thus for other fields we can assume that Ramf (A) ∪ S 6= ∅ and that Γ has either
4 or 6 torsion. For the three cases where, respectively, Γ has 4 and 6 torsion, only
6 torsion and only 4 torsion, we obtain T ≤ 10, 8, 6 respectively using the signatures
(0; 4, 6, 6, 6), (0; 2, 6, 6, 6), and (0; 2, 4, 4, 4). We consider 4 cases depending on the
ramification of 2 and 3 in k.

(1) 2 | ∆k, 3 | ∆k. An upper bound for PT is then 10/3 occuring when Γ has
4 and 6 torsion and Ramf (A) consists of primes of norm 2 and 3. Thus
∆k ≤ 185527.

(2) 2 - ∆k, 3 | ∆k. Then PT ≤ 8/3 occuring when Γ has 6 torsion and Ramf (A)
has primes of norms 2 and 3. Thus ∆k ≤ 159883.

(3) 2 | ∆k, 3 - ∆k. Then PT ≤ 54/16 with Γ having 4 torsion and Ramf (A) two
primes of norm 2. Thus ∆k ≤ 187071.

(4) 2 - ∆k, 3 - ∆k. Then PT ≤ 6.(3/4)5.(4/9) with Γ having 4 torsion and
Ramf (A) consisting of 5 primes of norm 2 and one of norm 3. Then ∆k ≤
61283.

We now use the Pari archive [15] to determine fields which satisfy these bounds and,
for those that do, we employ the PARI-gp calculator to find primes of small norm and,
where appropriate, to determine the rational

R =
4 ζk(2)∆

3/2
k

(4π2)5

appearing in (13).

(1) There are no fields satifying these bounds.
(2) There is one field with ∆k = 149169, 2Rk = P25 , 3Rk = P2

3P33 . But having
4 or 6 torsion, violates (14).

(3) There are 7 fields satisfying this bound. The bound was obtained assuming
that k had two primes of norm 2 but none of the 7 fields have such primes.
We obtain a bound of 131981 assuming a prime of norm 2 and one of norm 3.
There are two fields with discriminant less than this. One has ∆k = 126032,
R = 17/6 and has one prime of norm 2 and one of norm 3 and all others
have norms > 5. If Ramf (A) = ∅ and S = {P2}, then Γ has no elements
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of order 3 by TB and (13) has no solution. The only other possibility is
Ramf (A) = {P2,P3}, S = ∅. But with no 6 torsion (13) has no solution
with mi ∈ {2, 3, 4}. The other field has ∆k = 117688, a prime of norm 2,
norm 8 and norm 35. With R = 7/3 and either 4 or 6 torsion, (13) has no
solution.

(4) Only the four fields with smallest discriminant, discussed above, can arise.
Examining the primes in these fields we obtain that, as Γ has either 4 or 6
torsion, Ramf (A)∪S contains a prime of norm 25, or one of norm 35 or one
of norm 3 together with one of norm 34. Also R = 1/6.1/3 or 11/3. Only
possibility for (13) is R = 1/6, Ramf (A) = ∅ and S = {P25}. But then (13)
has no solution with mi ∈ {2, 3, 4}.

Thus there are no new arithmetic VE groups with a defining field k with [k : Q] = 5
unless they occur as subgroups of the (0; 2, 3, 11) triangle group. Numerically there
are just two possibilities for this and both arise [2]. The groups have signatures
(0; 3, 3, 3, 11), (0; 2, 3, 11, 11) of indices 12 and 13 respectively. These and other exam-
ples arising from triangle groups will be discussed in a forthcoming paper.

9. Signatures and conjugacy classes of maximal arithmetic Fuchsian

groups

So far we have been engaged in eliminating many possible candidates as arithmetic
VE groups. For this, it has, in general, sufficed to use the results on the existence
of torsion in maximal arithmetic Fuchsian groups (see §4) and the allied results and
consequences which flow from that as given in TA to TE in §6. However, in the cases
of fields k where [k : Q] ≤ 4, we not only rule out cases but rule several in by showing
the existence of new maximal arithmetic VE groups. For this, we use the formula by
which the number of conjugacy classes of finite cyclic subgroups in maximal arithmetic
Fuchsian groups are enumerated [7]. Furthermore, for each new arithmetic VE group
which is established we must determine the number of conjugacy classes of such groups
in PGL(2,R) [9, 24]. These formulae are discussed in this section.

As noted in §4, finite cyclic subgroups of order m > 2 in maximal arithmetic
Fuchsian groups are generated by conjugates of images of u = 1+ e2πi/m and those of
order 2 by conjugates of images of u =

√−n where n represents an element of H2(S).
In all cases, L = k(u) is a totally imaginary quadratic extension of k. The number of
conjugacy classes of these finite cyclic subgroups in P (N(E)+), where E is a maximal
order or Eichler order of square-free level S is then a sum

∑

`(B)of integers `(B) ≥ 1
over suitable commutative orders B in L, called Candidate orders which contain u.

Describing the set of orders in such a quadratic extension which contain a fixed
element u is given in [16] and is as follows: Let

disc(u)Rk = A0(u)
2δL|k

where δL|k is the relative discriminant and A0(u) is an integral ideal in Rk. Then
there exists a0 ∈ Rk such that

RL = Rk ⊕A0(u)
−1(u− a0)
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and all orders B of L which contain u are of the form

B = B(A) := Rk +A−1(u − a0)

where A is an ideal of Rk dividing A0(u). The conductor f(B) in these cases is
A0(u)A−1 and. following Eichler [5], we extend the Legendre symbol as follows for an
order B in L and a prime ideal P in k

{

B

P

}

=

(

L

P

)

if P - f(B) and = 1 otherwise.

We also define Vu = {t ∈ k | tu ∈ RL} and Ju the integral ideal such that J−1
u = Vu.

Definition 9.1. A Candidate order for u is a commutative order B = B(A) in

L = k(u) as defined above which additionally satisfies the conditions that {BP } 6= 1 for

all P ∈ Ramf (A), {
B

Q} 6= −1 for all Q ∈ S and Ju | A | A0(u).

The term `(B) then gives the number of conjugacy classes of embeddings of L in
A which give the number of conjugacy classes of finite cyclic subgroups in P (N(E)+).

`(B) =
h(L)

h

1

[R∗
k,+ : R∗

k
2]

∏

P∈Ramf (A)

(

1−
{

B

P

})

∏

Q∈S

(

1 +

{

B

Q

})

(16) × t(A)

[R∗
L : B∗][H(S) : H(S) ∩NL|k(G(B,S))R∗

k,+k
∗2]

.

t(A) = Nk|Q(A0(u)A−1)
∏

P|A0(u)A−1

(1− (
L

P )NP−1)

and with H(S) as defined in §3,
G(B,S) = {α ∈ B | NL|k(α)Rk ∈ DSI2k , disc(α)/NL|k(α) ∈ Rk,Vαα ⊂ B}.

The following observations ease the computation of this rather complicated for-
mula in commonly occuring circumstances. Generally, if there are Candidate orders
for u, RL, the full ring of integers in L is a Candidiate order for u. When that occurs,
i.e. B = RL, then A = A0(u) and t(A) = [R∗

L : B∗] = 1.

a) In particular, if Vuu contains an element η such that {1, η} is a relative
integral basis of L over k, then Ju = A0(u) and RL is the only Candidate
order.

b) If each prime ideal P dividing A0(u) lies in Ramf (A), then RL is the only
Candidate order.

c) The ring RL is the only Candidate order in the following commonly occuring
situation.

Lemma 9.2. Let k be the cyclotomic field kN = Q(cos 2π/N) where, if
N is even, then 4 | N . Let p be an odd prime such that pα | N . Suppose
A is defined over k and Γ = P (N(E)+), where E is a maximal order or
Eichler order of square-free level, has an element of order 2pα. Then for
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each u = 1+ e2πi/2p
t

, 1 ≤ t ≤ α, k(u) = L = CN = Q(e2πi/N) and RL is the
only Candidate order for u.

Proof: Clearly kN (u) is a totally imaginary quadratic extension of kN
contained in CN so that kN (u) = CN . Now

(17) disc(u)Rk = (4 sin2 2π/2pt)Rk = A0(u)
2δL|k.

If N is composite, δL|k = Rk. In that case,
(1 + e2πi/2p

t

)2

(4 sin2 2π/2pt)
is a unit in RL.

Thus Vu = A0(u)
−1 and RL is the only Candidate order.

If N = pα, A0(u)
2 = (4 sin2 2π/2pt)/(4 sin2 2π/pα)Rk. Now

4 sin2 2π/pα

4 sin2 2π/2pt
(1 + e2πi/2p

t

)2 = (1 − e2πi/p
α

)2τ

where τ ∈ R∗
L. Note that Qp = (1− e2πi/p

α

)RL is a prime ideal in L. Thus

A0(u)
−1 ⊂ Vu and Vuu | Qp. So Vuu = RL or Qp. But e

2πi/pα 6∈ Vuu and so
Vu = A0(u)

−1 and RL is the only candidate order. 2

For brevity, we refer to the term [H(S) : H(S) ∩ N(G(B,S))R∗
k,+k

∗2] appear-

ing in (16) as the H-index. Recall from §3, if k has class number one, H(S)/k∗2 ∼=
R∗

f∪S,+k
∗2/k∗2. Clearly, if R∗

f∪S,+k
∗2 = R∗

k,+k
∗2 then the H-index is 1. Less obvi-

ously, we have

Lemma 9.3. Suppose that k has class number one, and that η ∈ Vuu where {1, η} is

a relative integral basis with, additionally, disc(η) ∈ R∗
k. If [R

∗
f∪S,+k

∗2 : Rk,+k
∗2] = 2,

then the H-index is 2.

Proof: Under these circumstances B = RL. Let α = a + bη, a, b ∈ Rk so
that NL|k(α) = a2 + b2|η|2 + 2abRe(η) and disc(α) = −b2disc(η). Now R∗

f∪S,+ can

be generated by z ∈ Rk where zRk is a square-free ideal. If α ∈ G(RL, S) has

NL|k(α) ∈ zR∗
k,+k

∗2, then zRk | bRk and so zRk | aRk. But that is a contradiction

since then z2Rk | NL|k(α)Rk. 2

Now let us consider the number of conjugacy classes of these maximal groups.
Clearly if two groups are conjugate in PGL(2,R), then they are commensurable in the
wide sense. But then the quaternion algebras are isomorphic and conjugacy is within
P (A∗). More precisely, we have (see [11,Theorem 8.4.7], [24,Theorem 3.5], [9]):

Lemma 9.4. The groups P (N(E1)+) and P (N(E2)+) are conjugate in
PGL(2,R) if and only if they are defined by quaternion algebras A1, A2 over the field k
which admits an automorphism τ such that τ(Ram(A1)) = Ram(A2) and the induced
isomorphism τ∗ : A1 → A2 is such that τ∗(E1) = cE2c−1 for some c ∈ A∗

2.

To apply this we need to know about the Galois automorphisms of the field k
and also the number of conjugacy classes within a quaternion algebra of maximal or
Eichler orders of square-free level. These are referred to as type numbers. In these
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cases where the quaternion algebra satisfies the Eichler condition, i.e. there is an
infinite unramified place, the type number is the order of the group

TS(A) =
Ik

Pk,∞DSI2k
where Pk,∞ is the subgroup of principal ideals which have a generator in k∗∞. If the
order is maximal S = ∅ and S is trivial. It is useful to note that the order of the ray

class group Ik/Pk,∞ is
2[k:Q]−1h

[R∗
k : R∗

k,∞]
.

10. Degree 4

We continue with the assumption that Γ = P (N(E)+) is a maximal arithmetic
VE group whose signature is not of the form (0; 2, 2, 2, N). In the cases where [k :
Q] = 4, we can have torsion of orders {2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30}, and we
here consider in detail the fields which give rise to the higher orders of torsion. Note
that several examples of arithmetic triangle and VE groups are known to be defined
over fields of degree 4 [9, 20, 21, 22]. We make liberal use of these results and also of
the PARI-gp calculator to obtain number theoretic data on the fields involved. With
notation as before, for a maximal arithmetic VE group of signature (0;m1,m2,m3,m4)
we have

(18) (2−
4

∑

i=1

1

mi
)2m(S) = R

∏

P∈Ramf (A)

(NP − 1)
∏

Q∈S

(NQ+ 1).

Notationally, we will use P for primes in Ramf (A) and Q for primes in S and their
suffixes will give their norm.
A. k = Q(cos 2π/15) so that torsion of orders 2,3,4,5,6,10,15,30 is possible. Note
∆k = 1125, R = 1/15 and there are primes of norms 5,9,16,29,31,59,61,etc. From
(18), we must have Ramf (A) = {P} and S = ∅ or {Q}.

a) Ramf (A) = {P5} in which case P (N(O)+) has signature (0; 2, 3, 30) with

2m(∅) = 2 = [R∗
f,+ : R∗

f
2] = [R∗

k,+ : R∗
k
2]. So for S = {Q}, 2m(S) = [R∗

f∪S,+ :

R∗
f∪S

2] ≤ 4 and (18) yields NQ = 9 or 16.

(1) S = {Q9}. Since Q9 does not split in C15, there is no 30,15,10,6 or 5
torsion in Γ and there is also no 4 torsion. Thus (18) has no solution.

(2) S = {Q16}. NowQ16 splits in L = C15 so that Γ has torsion of all orders
dividing 30. Also [R∗

f∪S,+ : R∗
f∪S

2] = 4. Note that, for u = 1 + e2πi/30,

{1, u} is a relative integral basis and disc(u) ∈ R∗
k. Thus there is just one

Candidate order RL for u and `(RL) = 1 since h(L) = 1, (L/P5) = −1,
(L/Q16) = 1 and the H-index is 2 by Lemma 9.3. Likewise, there
is only one Candidate order RL for u = 1 + e2πi/15, and, as above,
`(RL) = 1.This is also true for u = 1 + e2πi/10 and u = 1 + e2πi/6 by
Lemma 9.2. For u = 1+ e2πi/5, A0(u) = P5 and, using remark b) in §9
there is again only one Candidate order for this u. Note that P5 splits
in k(

√
−1) and so there are no elements of order 4. For u = 1 + e2πi/3,

A0(u) = P9 and Vu = Rk. So there are two Candidate orders and at
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least two classes of order 3. Thus if Γ ha signature (g;m1,m2, . . . ,mr),
we have m1 = 30,m2 = 3, and the remaining mi ∈ {2, 3} with 2(g−1)+
∑r

i=1(1 − 1/mi) = 17/15. Thus Γ must have signature (0; 2, 2, 2, 3, 30)
and is not a VE group.

b) Ramf (A) = {P9} in which case P (N(O)+) has signature (0; 2, 5, 30), 2m(∅) =
2. So for S = {Q} then NQ = 5. But in that case, Γ has no torsion of orders
3,4,6,10,15 or 30 and 2m(S) = 4. But then (18) has no solution.

c) Ramf (A) = {P16}. Here 2m(∅) = 4 so S = ∅ or {Q5} or {Q9}. But P16 splits
in L = C15 and so none of these groups have torsion of orders 30,15,10,6,5
or 3. For Γ = P (N(O)+), this group has signature (0; 2, 2, 2, 4) and there is
one conjugacy class of such groups.

d) Ramf (A) = {P29} where this is one of the four primes of norm 29.We must

have S = ∅ and we compute that 2m(∅) = 2. Since P29 does not split in C15,
P (N(O)+) has torsion of all orders dividing 30. For u = 1 + e2πi/30, there
is only one Candidate order RL and easily `(RL) = 1. For u = 1 + e2πi/15

there is again only one Candidate order and by Lemma 9.2 this is also true
for u = 1 + e2πi/10 and u = 1 + e2πi/6. For u = 1 + e2πi/5, A0(u) = P5 and
Ju = Rk so there are two Candidate orders and at least two classes of order 5.
The same holds for u = 1+e2πi/3. Thus if Γ has signature (g;m1,m2 . . . ,mr),
we have m1 = 30, m2 = 5, m3 = 3 and the remaining mi ∈ {2, 3, 4, 5}. Thus
Γ must have signature (0; 2, 3, 5, 30) and is a maximal VE group. [This can
be consolidated by showing that `(B) = 1 for the non-maximal Candidate
orders B arising from u = 1 + e2πi/5 and u = 1 + e2πi/3 and a similar
calculation for elements of order 2, so giving one additional class of groups
of orders 2,3 and 5. For u = 1 + e2πi/5, we have B = Rk + Rke

2πi/5 and so
[R∗

L : B∗] = 6 (see TA) thus giving `(B) = 1. A similar argument holds for

u = 1 + e2πi/3. For elements of order 2, note that P29 splits in k(
√
−1) and

so there are no elements of order 4 or of order 2 corresponding to 1 ∈ H(∅).
Thus all elements of order 2 correspond to (2 + 2 cos 2π/30) in H(∅) giving
u = 2i sin 2π/30. Then RL = Rk ⊕ (2i sin 2π/30 + 2 cos 2π/30)/2Rk so that
B = Rk + 2e2πi/30Rk. Note that R∗

L/〈e2πi/15〉R∗
k has order 2 generated by

1 − e2πi/15 = −e2πi/302i sin 2π/30. Thus [R∗
L : B∗] = 15 and formula (16)

yields `(B) = 1].
In this case there are four commensurability classes of such groups and

the type number is one for each. Thus there are 4 conjugacy classes of such
groups.

e) The only remaining possibilities will be Ramf (A) = {P}, S = ∅ and NP =
31, 59, 61 or 89. When NP = 31, 61, P splits in C15 and Γ can only have
2 and 4 torsion so (18) has no solution. For NP = 59, 89 we compute that
2m(∅) = 2 and again (18) has no solution.

B. k = Q(cos 2π/24) so possible torsion is {2, 3, 4, 6, 8, 12, 24}. Here ∆k = 2304, R =
1/4 and k has primes of norms 2, 9, 23, 25, 47, 71, 73,etc. From (18), we have Ramf (A) =
{P} and S = ∅ or {Q}.
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a) Ramf (A) = {P2} in which case P (N(O)+) has signature (0; 2, 3, 24), [R∗
f,+ :

R∗
f
2] = [R∗

k,+ : R∗
k
2] = 2. Thus when S = {Q}, 2m(S) ≤ 4 and so NQ ≤ 27.

(1) S = {Q9}. With L = C24, Q9 splits in L and Γ has torsion of all
orders dividing 24. We compute that [R∗

f∪S,+ : R∗
f∪S

2] = 4 and so

2−∑4
i=1 1/mi = 5/8. With u = 1 + e2πi/24, RL is the only Candidate

order and by Lemma 9.3, the H-index is 2 so that `(RL) = 1. With u =
1 + e2πi/12, RL is again the only Candidate order. With u = 1 + e2πi/8

and u = 1+e2πi/4, A0(u) is a power of P2 and since P2 ∈ Ramf (A) RL

is the only Candidate order in these cases also. With u = 1 + e2πi/6,
RL is the only Candidate order by Lemma 9.2. With u = 1 + e2πi/3,
A0(u) = P9, Vu = Rk so there are two Candidate orders. If Γ has
signature (g;m1,m2, . . . ,mr) then 2(g − 1) +

∑

(1 − 1/mi) = 5/8 with
m1 = 24,m2 = 3 and the remaining mi ∈ {2, 3}. Thus γ must have
signature (0; 2, 2, 3, 24). Furthermore, since there is just one conjugacy
class of P (N(O)+), the triangle group (0; 2, 3, 24), there is also just one
conjugacy class of this arithmetic VE group of signature (0; 2, 2, 3, 24).

(2) S = {Q23} where Q23 is one of the primes of norm 23. But Q23 does
not split in C24 so there is no torsion of order > 2 and so Γ cannot be
a VE group.

(3) S = {Q25} where Q25 is one of the two primes of norm 25. In this case
Γ has torsion of all orders dividing 24 and we compute that [R∗

f∪S,+ :

R∗
f∪S

2] = 4. For u = 1 + e2πi/24 there is just one Candidate order RL

and by Lemma 9.3, the H-index is 2 and `(RL) = 1. As above there is
only one class of subgroups of each of the orders 12,8,6,4 and at least
two of order 3. Solving 2(g − 1) +

∑

(1 − 1/mi) = 13/8 does not yield
a VE group.

b) Ramf (A) = {P9}. But P9 splits in C24 so that there is only 2 torsion at
most and Γ is not a VE group.

c) Ramf (A) = {P23}. In this case we must have S = ∅ and P (N(O)+) will

have torsion of all orders dividing 24. Now 2m(∅) = 2 ( This follows from
the formula for `(RL). It shows that the H-index must be one. If 2m(∅) =
4, then Lemma 9.3 would imply that the H-index was 2). But then (2 −
∑4

i=1 1/mi)2 = 11/2 has no solutions.
d) The remaining possibility is Ramf (A) = {P25} which, as at b) above, does

not give a VE group.

C. k = Q(cos 2π/20). Thus ∆k = 2000, R = 1/6 and k has primes of norms
4,5,19,41,59,61,79,81. Γ will have possible torsion of orders {2, 3, 4, 5, 6, 10, 20}. As
before we have Ramf (A) = {P} and S = ∅ or {Q}.

a) Ramf (A) = {P4}. Then P (N(O)+) has signature (0; 2, 5, 20) and [R∗
f,+ :

R∗
f
2] = [R∗

k,+ : R∗
k
2] = 2. Thus the only possibility is S = {Q5}. Now

Q5 splits in C20 and P (N(E)+) has torsion of all orders dividing 20 and

furthermore [R∗
f∪S,+ : R∗

f∪S
2] = 4. Arguing as before, for u = 1 + e2πi/20,

there is just one Candidate order RL and `(RL) = 1 using Lemma 9.3.
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For u = 1 + e2πi/10 there is only one Candidate order by Lemma 9.2. For
u = 1 + e2πi/5, A0(u) = P5 and since u is a unit, there are two Candidate
orders and at least two classes of groups of order 5. Since P4 splits in k(

√
−3)

there are no elements of orders 3 or 6. For u = 1 + e2πi/4, A0(u) = P2
4 and

with P4 ∈ Ramf (A), there will only be one Candidate order. In solving
2(g − 1) +

∑r
i=1(1 − 1/mi) = 3/4 with m1 = 20, m2 = 5 and the remaining

mi ∈ {2, 5} we obtain that P (N(E)+) must have signature (0; 2, 2, 5, 20).
There will be just one conjugacy class of such arithmetic VE groups. For
there is just one commensurability class and the type number of this Eichler
order will be one as TS(A) is a factor group of T∅(A) which must be one
since it gives the triangle group (0; 2, 5, 20).

b) Ramf (A) = {P5}. Since P5 splits in C20 no group in the commensurability
class has elements of orders 20,10,5 or 4. Now P (N(O)+) has signature
(0; 2, 2, 2, 3). Here [R∗

k,+ : R∗
k
2] = 2 and [R∗

f,+ : R∗
f
2] = 4. Thuis if S = {Q}

then Q = Q4. But then Γ has no 6 torsion and cannot be a VE group.
c) Ramf (A) = {P19} where P19 is one of the prime ideals of norm 19. We must

have S = ∅ and Γ has torsion of all orders dividing 20. We calculate that
[R∗

f,+ : R∗
f
2] = 2 and observe that Γ has no 6-torsion. With u = 1 + e2πi/20,

there is just one Candidate order RL and `(RL) = 1. By Lemma 9.2, there
is just one Candidate order for u = 1 + e2πi/10. But with m1 = 20 and the
remaining mi ∈ {2, 3, 4, 5} Γ cannot be a VE group.

D. k = Q(cos 2π/16). In this case ∆k = 2048, R = 5/24 and k has primes of norms
2,17,31,47,49. Γ may have torsion of orders 2,3,4,6,8,16. Now [R∗

k,+ : R∗
k
2] = 1 and

so we must have Ramf (A) = {P2} and S = ∅ or {Q}. Here P (N(O)+) has signature

(0; 2, 3, 16) and [R∗
f,+R

∗
f
2] = 2. The only possibility is that S = {Q17}. Now Q17 splits

in C16 and so there is torsion of all orders dividing 16. We calculate that [R∗
f∪S,+ :

R∗
f∪S

2] = 4. For u = 1 + e2πi/16, L = C16, δL|k = P2 and A0(u) = Rk. So there is

just one Candidiate order RL. Taking Q17 = (2x− 1)Rk where x = 2 cos 2π/16, then
R∗

f∪S,+ contains (2x−1)uwhere u ∈ R∗
k. But then a similar argument as that employed

in Lemma 9.3 shows that this element does not belong to NL|k(G(RL, S))R
∗
k,+k

∗2 so

that the H-index is 2 and `(RL) = 1. Since Ramf (A) = {P2}, there is only one

Candidate order for each of u = 1 + e2πi/8 and u = 1 + e2πi/4. Also Q17 does not
split in k(

√
−3) so there are no elements of orders 3 or 6. But then with only possibly

2-torsion remaining (18) has no solution.
For the remaining fields of degreee 4, taking the above arguments together with

the arithmetic data and the results in [1, 2, 9, 18, 19, 20, 21, 22] we easily obtain all
conjugacy classes of the arithmetic VE groups with [k : Q] = 4 which are not subgroups
of an arithmetic triangle group. The list will appear in a forthcoming paper.

11. Concluding remarks

Finally, for maximal arithmetic VE groups, we are left with the field degrees
[k : Q] ≤ 3. Here the computational calculations are time consuming and the number
of conjugucy classes of maximal arithmetic VE groups is enormous.
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As already mentioned any VE group is either a subgroup of a triangle group or a
subgroup of a VE group. Hence, for the final classification, first we have to determine
the conjugacy classes which belong to maximal arithmetic VE groups with [k : Q] ≤ 3
and, hence, to arithmetic VE groups with [k : Q] ≤ 3 which are not subgroups of an
arithmetic triangle group (see [1, 2, 9] for a list of such VE groups). Second, we have to
determine the conjugacy classes which belong to subgroups of some arithmetic triangle
groups. The arithmetic triangle groups can be found in [21]. Again, this number is
also enormous. We give here two examples.

Example 1 In the triangle groups (0; 2, 3, 24) we have -up to conjugacy- subgroups of the
following signatures:

Signature Index Number of conjugacy classes
(0;2,2,2,8) 3 1
(0;2,2,3,6) 4 1
(0;2,2,8,8) 6 1
(0;3,3,3,4) 6 1

(0;2,2,6,12) 6 1
(0;2,2,6,8) 7 1

(0;2,3,4,24) 7 2
(0;3,3,6,6) 8 1

(0;3,3,4,12) 8 1
(0;2,4,12,24) 9 1
(0;2,6,8,12) 9 1
(0;3,3,24,24) 10 1

(0;3,12,24,24) 12 1
(0;4,8,12,24) 12 1
(0;6,6,12,12) 12 1
(0;8,8,8,8) 12 1

Example 2 In the triangle group (0; 2, 3, 30) we have -up to conjugacy- subgroups of the
following signatures:

Signature Index Number of conjugacy classes
(0;2,2,2,10) 3 1
(0;2,3,3,6) 5 1
(0;3,3,3,5) 6 1
(0;2,2,10,10) 6 1
(0;2,2,6,30) 6 1
(0;2,3,6,15) 7 1
(0;2,3,5,30) 7 2
(0;3,3,5,15) 8 1
(0;2,6,10,30) 9 1
(0;2,5,15,30) 9 1
(0;3,6,10,15) 10 1
(0;6,6,30,30) 12 1
(0;5,10,15,30) 12 1
(0;10,10,10,10) 12 1
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We will give the complete classification for [k : Q] ≤ 3 in a forthcom-
ing paper, together with the VE groups which are subgroups of arithmetic
triangle groups.
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