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Evaluation of special definite integrals related to Gamma
Function

Lazhar Bougoffa

Abstract. In this note, an integral formula can be used to quickly evaluate
certain integrals not expressible in terms of elementary functions. Furthermore,

it is shown that the Ramanujan’s Master Theorem can be obtained, as a special

case, from this formula when n is a positive integer.

1. Introduction and lemma

In this note, we prove a new formula for the evaluation of definite integrals and
use it in several interesting cases such that the Euler integral of the second kind
[1, 2], integral representation of the beta function [3, 4], Gaussian integrals [5, 6],
etc. Furthermore, it is shown that the Ramanujan’s Master Theorem (RMT) when n
is a positive integer [7, 8, 9] can be derived, as a special case, from this formula, and
then we shall demonstrate that in certain cases this formula is a better tool and an
effective procedure for the evaluation of certain difficult integrals.
To tackle this problem, we begin by considering the following Cauchy-Frullani integral
[10]:

Lemma 1. Let f be a continuous function on any interval 0 < A ≤ x ≤ B < ∞
and assume that both f(∞) and f(0) exist. Then

(1.1)

∫ ∞
0

f(αx)− f(βx)

x
dx = (f(∞)− f(0)) ln

α

β
, α, β > 0.

This formula was first published by Cauchy in 1823, and more completely in 1827
with a beautiful proof.
Let us consider β = 1 in Lemma 1. Thus

(1.2)

∫ ∞
0

f(αx)− f(x)

x
dx = (f(∞)− f(0)) lnα, α > 0.
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Differentiating both sides of Eq.(1.2) n−times with respect to α, and using the chain

rule
d

dα
f(αx) =

d

d(αx)
[f(αx)]× d(αx)

dα
, we obtain

(1.3)

∫ ∞
0

xn−1 dn

d(αx)n
[f(αx)] dx = (−1)n−1 [f(∞)− f(0)]

(n− 1)!

αn
, α > 0.

The change of variable t = αx in the LHS of (1.3) yields

(1.4)
1

αn

∫ ∞
0

tn−1 d
nf(t)

dtn
dt = (−1)n−1 [f(∞)− f(0)]

(n− 1)!

αn
, α > 0.

Thus

Lemma 2. Let f ∈ Cn[0,∞) such that both f(∞) and f(0) exist. Then

(1.5)

∫ ∞
0

xn−1f (n)(x)dx = (−1)n−1 [f(∞)− f(0)] Γ(n), Γ(n) = (n− 1)!.

This is a new helpful tool in proving the Ramanujan’s Master Theorem [7, 8, 9]
for a positive integer n and calculating special integrals related to gamma function.

2. Applications

In order to verify the accuracy of our present formula, we present some elementary
examples.

2.1. Application 1: The Ramanujan’s Master Theorem. The Ramanu-
jan’s Master Theorem [7, 8, 9] states that:

Theorem 3. If F (x) is defined through the series expansion

(2.1) F (x) =

∞∑
k=0

φ(k)
(−x)k

k!
, φ(0) 6= 0.

Then

(2.2)

∫ ∞
0

xn−1
∞∑
k=0

φ(k)
(−x)k

k!
dx = Γ(n)φ(−n),

where n is a positive integer.

It was widely used by the indian mathematician Srinivasa Ramanujan (1887-1920)
to calculate definite integrals and infinite series.
Ramanujan asserts that his proof is legitimate with just simple assumptions [7]: (1)
F (x) can be expanded in a Maclaurin series; (2) F (x) is continuous on (0,∞); (3)
n > 0; and (4) xnF (x) tends to 0 as x tends to ∞.

We note below and note that the Ramanujan’s Master Theorem for a positive
integer n can be derived as a special case from Lemma 2.
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Proof. Assume that f(x) is expanded in a Maclaurin series f(x) =
∑∞
k=0 ψ(k) (−x)k

k!
with f(0) = ψ(0) 6= 0 and f(x) tends to 0 as x tends to ∞.
Then f (n)(x) = (−1)n

∑∞
k=0 ψ(n+ k) (−x)k

k! . Substituting into (1.5), we obtain

(2.3)

∫ ∞
0

xn−1
∞∑
k=0

ψ(n+ k)
(−x)k

k!
dx = f(0)Γ(n) = ψ(0)Γ(n).

We see that, in the notation of the Ramanujan’s Master Theorem, φ(k) = ψ(n+k), k =
0, 1, ... and hence φ(−n) = ψ(0), n ∈ N. This is precisely formula (2.2), and the proof
is complete. �

An immediate consequence of this is
Example 1 Let γ and s ∈ R. Then,

(2.4)

∫ ∞
0

xn−1

[ ∞∑
k=0

Γ(s+ k)γ−k
(−x)k

k!

]
dx = Γ(n)Γ(s− n)γn

is obtained by simply letting f(x; γ) = 1
(γ+x)m , where m ∈ R, f(∞) = 0 and f(0) =

γ−m.
Thus f (n)(x; γ) = (−1)nm(m+ 1)...(m+ n− 1) 1

(γ+x)n+m , n = 1, 2, ....

Using the property of the gamma function:

(2.5) Γ(m) =
Γ(m+ 1)

m
=

Γ(m+ 2)

m(m+ 1)
= ... =

Γ(m+ n)

m(m+ 1)...(m+ n− 1)

to obtain

(2.6)
1

m(m+ 1)...(m+ n− 1)
=

Γ(m)

Γ(m+ n)
,

and from the negative Binomial series:

(2.7)
1

(γ + x)s
=

∞∑
k=0

Γ(s+ k)

Γ(s)
γ−s−k

(−x)k

k!
, s = m+ n.

Thus, the n−th derivative f (n)(x; γ) becomes

(2.8) f (n)(x; γ) =
(−1)n

Γ(s− n)

∞∑
k=0

[
Γ(s+ k)γ−(s+k) (−x)k

k!

]
.

Letting f (n)(x; γ) with f(∞) = 0 and f(0) = γ−m in Eq.(1.5), where m = s − n, we
obtain the desired result.
We see that, in the notation of the Ramanujan’s Master Theorem, φ(k) = Γ(s+k)γ−k,
which is consistent with this result.

2.2. Application 2: Integral representation of the beta function.

Definition 4. The beta function B(u; v) is also defined by means of an integral
[3, 4]:

(2.9) B(u, v) =

∫ 1

0

tu−1(1− t)v−1dt, <(u) > 0, <(v) > 0.
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This integral is often called the beta integral.

The connection between the beta function and the gamma function is given by
the following theorem:

Theorem 5.

(2.10) B(u, v) ==
Γ(u)Γ(v)

Γ(u+ v)
, <(u) > 0, <(v) > 0.

From the definition and this theorem we easily obtain [3, 4]

Theorem 6.

(2.11) B(n,m) =

∫ ∞
0

xn−1 1

(1 + x)n+m
dx =

Γ(n)Γ(m)

Γ(n+m)
, m, n = 1, 2, ..., .

Proof. This follows simply by letting f(x) = 1
(1+x)m , f(∞) = 0, f(0) = 1 and

f (n)(x) = (−1)nm(m+ 1)...(m+ n− 1) 1
(1+x)n+m , n = 1, 2, ... in (1.5)(Lemma 2), and

using the above property of the gamma function. �

2.3. Application 3: Integrals involving Hermite and Laguerre polyno-
mials Ln(x).

Definition 7. The Rodrigues formula for the Hermite polynomials:

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
, n = 0, 1, 2, ..., −∞ < x < +∞.(2.12)

The first few Hermite polynomials are:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, ..., .(2.13)

Definition 8. The Laguerre Polynomials are:

Ln(x) =

n∑
k=0

(−1)k
n!

(n− k)!(k!)2
, n = 0, 1, 2, ..., 0 ≤ x < +∞.(2.14)

Example 2 Consider the integral involving Hermite polynomials Hn(x)∫ ∞
0

xn−1Hn−1(x)e−x
2

dx =

√
π

2
Γ(n).(2.15)

This follows simply by letting f(x) = erf(x) in (1.5) and using the Rodrigues formula
for the Hermite polynomials:

dn

dxn
[erf(x)] = (−1)n−1 2√

π
Hn−1(x)e−x

2

.(2.16)

Example 3 Consider the integral involving Laguerre polynomials Ln(x)∫ ∞
0

xn−1Ln(x)e−xdx = 0.(2.17)

This follows simply by letting f(x) = xne−x, f(∞) = 0 = f(0) in (1.5) and using the
Rodrigues formula for the Laguerre polynomials:

dn

dxn
[
xne−x

]
= n!Ln(x)e−x.(2.18)
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2.4. Application 4: Integrals involving other functions.

Example 4 Consider now other integrals involving special functions

(2.19)

∫ ∞
0

xn−1

[ ∞∑
k=1

(−1)k−m−1kne−kx

]
dx =

π

2
Γ(n).

The evaluation of this integral follows directly from f(x) = (1 + ex)−1 and

(2.20) (−1)n
dn

dxn
[
(1 + ex)−1

]
=

∞∑
k=1

(−1)k−1kne−kx.

Example 5

(2.21)

∫ ∞
0

xn−1 1

(1 + x2)
n
2

sin

[
n arcsin

(
1√

1 + x2

)]
dx =

π

2
.

The evaluation of this integral follows directly from f(x) = arctan(x), f(∞) =
π
2 , f(0) = 0 and

(2.22)
dn

dxn
(arctanx) =

(−1)n−1(n− 1)!

(1 + x2)
n
2

sin

[
n arcsin

(
1√

1 + x2

)]
.

Example 6

(2.23)

∫ ∞
0

xn−1

[
e−

1
x

n∑
k=1

(−1)kL(n, k)x−(n+k)

]
dx = Γ(n),

where L(n, k) are the Lah numbers defined by L(n, k) = n!
k!

(n−1)!
(k−1)!(n−k)! , 1 ≤ k ≤

n, L(0, 0) = 1 [11].

The evaluation of this integral follows directly from f(x) = e−
1
x , f(∞) = 1, f(0) = 0

and the following explicit formula for computing the general derivative of the expo-
nential function f(x) = e−

1
x [11].

(2.24)
dn

dxn
(e−

1
x ) = (−1)ne−

1
x

n∑
k=1

(−1)kL(n, k)x−(n+k).

Example 7

(2.25)

∫ ∞
0

xn−1

[ ∞∑
k=n

(−1)kBk
xk−n

(k − n)!

]
dx = (−1)n

1− e
e

Γ(n),

where Bk are the Bell numbers [12].

The evaluation of this integral follows directly from f(x) = ee
−x

, f(∞) = 1, f(0) = e
and the following explicit formula for computing the general derivative [12]

(2.26)
dn

dxn
(ee

−x

) = e

∞∑
k=n

(−1)kBk
xk−n

(k − n)!
.
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