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An Extension of an Additive Selection Theorem of Z. Gajda
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Dedicated to the memory of Professor Zbigniew Gajda

Abstract. We prove an extension of an additive selection theorem of Z. Gajda
and R. Ger to closed-valued, 2–sublinear relations of commutative semigroups to

sequentially complete vector relator spaces. Thus, we obtain a further generali-

zation of the classical Hyers–Ulam stability theorem.

1. Introduction

Hyers [13] in 1941, giving a partial answer to a general problem formulated by
S. M. Ulam, proved a slightly weaker Banach space particular case of the following
stability theorem.

Theorem 1.1. If f is an ε–approximately additive function of a commutative
semigroup U to a Banach space X, for some ε > 0 , in the sense that

‖ f (u+ v )− f (u)− f (v) ‖ 6 ε

for all u , v ∈ U , then there exists an additive function g of U to X such that g is
ε–near to f in the sense that

‖ f (u)− g(u) ‖ 6 ε

for all u ∈ U .

Remark 1.1. Hence, by using the N–homogeneity of g , one can infer that

g(u) = lim
n→∞

n−1 f (nu )

for all u ∈ U . Therefore, the unicity of the additive function g is also true.
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To define g , Hyers originally used the subsequence
(

2−n f
(

2n u
))∞
n=1

since
its convergence can be more easily verified. Moreover, it can also be well used
when f is assumed to be only ε–approximately 2–homogeneous in the sense that
‖f ( 2u ) − 2 f (u) ‖ 6 ε for all u ∈ U . In this case, it can also be shown that the
Hyers sequence is uniformly convergent [ 42 ] .

By Ger [11, p. 4] , M. Laczkovich observed that a strict inequality form of the
U = N , X = R and ε = 1 particular case of the above theorem was already proved by
Pólya and Szegő [24, pp. 17, 171] in 1925. Moreover, this particular case is actually
equivalent to the X = R particular case of the original theorem.

Hyers’s stability theorem has later been generalized by several authors by repla-
cing ε by more general quantities and weakening the commutativity property of U .
These investigations have led to an enormous theory of the stability of additivity and
homogeneity properties.

The interested reader can get a rapid overview on the subject by consulting the sur-
veys of Hyers and Rassias [15] , Ger [11] , Forti [6] , Székelyhidi [45] , and Sánchez
and Castillo [30] , and the books of Hyers, Isac and Rassias [14] , Jung [17] and
Czerwik [5] .

However, it is now more important to note that Hyers’s theorem was also trans-
formed into set-valued settings by W. Smajdor [32] and Gajda and Ger [8] , in 1986
and 1987, respectively, by making use the following observations.

If f and g are as in Theorem 1.1 and A =
{
u ∈ U : ‖u ‖ 6 ε

}
, then

g(u)− f (u) ∈ A and f (u+ v )− f (u)− f (v) ∈ A ,

and hence

g(u) ∈ f (u) + A and f (u+ v ) ∈ f (u) + f (y) + A

for all u , v ∈ U .

Therefore, by defining

F (u) = f (u) + A

for all u ∈ U , we can get a set-valued function F of U to X such that g is a selection
of F and F is subadditive. That is,

g(u) ∈ F (u) and F (u+ v ) ⊂ F (u) + F (v)

for all u , v ∈ U . Thus, the essence of Hyers’s theorem nothing but the statement of
the existence of an additive selection of a certain subadditive set-valued function.

A similar observation, in connection with the Hahn–Banach extension theorems,
was already announced by Rodŕıguez-Salinas and Bou [28] in 1974 and Gajda, A.
Smajdor and W. Smajdor [9] in 1992. ( See also [16] , [34] and [38] .)

Moreover, the existence of additive and linear selection was formerly also investi-
gated by Á. Száz and G. Száz [44] , Godini [12] , W. Smajdor [33] , Nikodem [21] ,

A. Smajdor [31] , Lee and Nashed [19] , Gajda [7] , Sablik [29] , and Á. Száz [40] .

In particular, Gajda and Ger [8] in 1987 proved the following generalization of
Theorem 1.1. ( See also Gajda [7, Theorem 4.2] for a further generalization.)



AN ADDITIVE SELECTION THEOREM 35

Theorem 1.2. If F is a subadditive set-valued function of a commutative semi-
group U to a Banach space X such that the values of F are nonempty, closed and
convex, and moreover

sup
{

diam
(
F (u)

)
: u ∈ U

}
< +∞ ,

then F has an additive selection function f .

Remark 1.2. Hence, by using the N–homogeneity of f and the above bounded-
ness condition on F , one can infer that

{f (u)} =

∞⋂
n=1

n−1 F (nu )

for all u ∈ U . Therefore, the unicity of the additive selection f is also true.

At the same time, Gajda and Ger [8] also proved a less attractive extension of
this theorem to a separated, sequentially complete topological vector space X. ( See
also Gajda [7, Theorem 4.3] for a further generalization.)

The importance of the observations of W. Smajdor, Gajda and Ger was soon
recognized by Hyers and Rassias [15] , [26] , Hyers, Isac and Rassias [14, pp. 204–
231] , and Czerwik [5, pp. 301–329] . Moreover, the results of Gajda and Ger [8]
have been generalized and improved by Popa [25] , Badora, Ger and Páles [1] , and
several other authors.

In the present paper, by using relations and relators instead of multifunction and
topologies, we shall proved the following more convenient

Theorem 1.3. If F is a closed-valued, 2–sublinear relation of a commutative
semigroup U to a separated, sequentially complete vector relator space X (R) such

that the sequence
(

2−n F
(

2n x
))∞
n=0

is infinitesimal for all u ∈ U , then F has an
additive selection f .

Remark 1.3. Hence, by using the N–homogeneity of f , the above infinitesimality
condition on F and the separatedness of X, we can again infer that

{f (u)} =

∞⋂
n=1

n−1 F (nu )

for all u ∈ U . Therefore, the unicity of the additive selection f is also true.

In the above theorem, R is a nonvoid family of relations on the vector space
X which is, to some extent, compatible with the linear operations in X . And the
infinitesimality of a sequence

(
An
)∞
n=1

of subsets of X (R) means only that for each

R ∈ R there exist x ∈ X and n ∈ N such that An ⊂ R (x) .

The necessary prerequisites concerning relations and relators, which are certainly
unfamiliar to the reader, will be briefly laid out in the next preparatory sections. More-
over, for the reader’s convenience, we shall also recall some basic facts on additively
written groupoids.
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2. A few basic facts on relations

A subset F of a product set U ×X is called a relation on U to X. If in
particular F ⊂ U 2, then we may simply say that F is a relation on U . Thus,
∆U = {(u, u ) : u ∈ U } is a relation on U .

If F is a relation on U to X, then for any u ∈ U and V ⊂ U the sets F (u) =
{x ∈ X : (u , x ) ∈ F } and F [V ] =

⋃
v∈V F (v) are called the images of u and

V under F , respectively.
Moreover, the sets DF = {u ∈ U : F (u) 6= ∅ } and RF = F [U ] = F [DF ] are

called the domain and range of F , respectively. If in particular DF = U (RF = X ) ,
then we say that F is a relation of U to X ( on U onto X ) .

If F is a relation on U to X, then F =
⋃
u∈U {u}×F (u) =

⋃
u∈DF

{u}×F (u) .

Therefore, a relation F on U to X can be naturally defined by specifying F (u) for
all u ∈ U , or by specifying DF and F (u) for all u ∈ DF .

For instance, if F is a relation on U to X, then the inverse relation F −1 of F
can be naturally defined such that F −1(x) = {u ∈ U : x ∈ F (u) } for all x ∈ X.
Thus, we also have F −1 = {(x, u) : (u, x) ∈ F } .

Moreover, if in addition G is a relation on X to Y , then the composition relation
G ◦F of G and F can be naturally defined such that (G ◦F )(u) = G [F (u) ] for all
u ∈ U . Thus, we also have (G ◦ F ) [V ] = G [F [V ] ] for all V ⊂ U .

A relation R on U is called reflexive, symmetric, and transitive if ∆U ⊂ R ,
R−1 ⊂ R , and R ◦ R ⊂ R , respectively. Moreover, a reflexive relation is called a
tolerance (preorder) relation if it is symmetric (transitive).

In particular, a relation f on U to X is called a function if for each u ∈ Df there
exists an x ∈ X such that f (u) = {x} . In this case, by identifying singletons with
their elements, we may write f (u) = x in place of f (u) = {x} .

If F is a relation on U to X, then a function f of DF to X is called a selection
of F if f ⊂ F , i. e. , f (u) ∈ F (u) for all u ∈ DF . Thus, the axiom of choice can
be briefly expressed by saying that every relation has a selection.

In particular, a function a of the set N of all natural numbers to X is called a
sequence in X . In this case, we usually write an , ( an)∞n=1 , and { an}∞n=1 in place
of a(n) , a , and R a , respectively.

If ( an)∞n=1 is a sequence in the set R of all extended real numbers, then the
extended real numbers lim

n→∞
an = sup

n∈N
inf
k>n

ak and lim
n→∞

an = inf
n∈N

sup
k>n

ak are

called the lower and upper limits of the sequence ( an)∞n=1 , respectively.
Quite similarly, if (An)∞n=1 is a sequence in the family P (X ) of all subsets of

X , then the sets lim
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak and lim
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak are called

the lower and upper limits of the sequence (An)∞n=1 , respectively.
In particular, a function d of X 2 to [ 0 , +∞ ] is called a distance function on

X . The distance function d may be called a quasi-pseudo-metric if d (x , x ) = 0 ,
d (x , y ) < +∞ , and d (x , z ) 6 d (x , y ) + d ( y , z ) for all x , y , z ∈ X .
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Moreover, a function p of a vector space X over the number field K = Q , R or
C to [ 0 , +∞ [ is called a preseminorm on X if lim

λ→0
p (λx ) = 0 , p (λx ) 6 p (x)

and p (x+ y ) 6 p (x) + p (y) for all x , y ∈ X and λ ∈ K with |λ | 6 1 .

3. A few basic facts on groupoids

Definition 3.1. If U is a nonvoid set, then a function + of U 2 to U is called
an operation in U . And the ordered pair U (+) = (U , + ) is called a groupoid.

Remark 3.1. In this case, we may simply write u + v in place of + (u , v ) for
all u, v ∈ U . Moreover, we may also simply write U in place of U (+) .

Definition 3.2. If U is a groupoid, then for any n ∈ N and u ∈ U we define

nu = u if n = 1 and nu = (n− 1 )u if n 6= 1 .

By induction, we can easily prove the following two theorems.

Theorem 3.1. If U is a semigroup, then for any u ∈ U and n, m ∈ N we have

(1) (n+m )u = nu + mu , (2) (nm )u = n (mu ) .

Theorem 3.2. If U is a semigroup, then for any n, m ∈ N and u, v ∈ U , with
u+ v = v + u , we have

(1) nu+mv = mv + nu , (2) n (u+ v ) = nu + n v .

Definition 3.3. If U is a groupoid, then for any A, B ⊂ U and n ∈ N we
define

A+B =
{
u+ v : u ∈ A , v ∈ B

}
and nA =

{
nu : u ∈ A

}
.

Remark 3.2. If in particular U is a group, then we may also naturally define
−A = {−u : u ∈ A } and A−B = A + (−B ) for all A , B ⊂ U .

Moreover, if in particular X is a vector space over K , then we may also naturally
define λA = {λx : x ∈ A } for all λ ∈ K and A ⊂ X .

Note that thus only two axioms of vector spaces may fail to hold for the family
P (X ) . Namely, only the one-point subsets of X can have additive inverses. Moreover,
in general we only have (λ+ µ )A ⊂ λA + µA .

By using the above notations, we can briefly formulate the following

Definition 3.4. A subset A of a vector space X over K is called

(1) absorbing if X =
⋃∞
n=1 n A ;

(2) balanced if λ A ⊂ A for all λ ∈ K with |λ | 6 1 ;

(3) convex if λ A + ( 1− λ )A ⊂ A for all λ ∈ K with 0 < λ < 1 .

Concerning balanced sets, we can easily establish the following

Theorem 3.3. If A is a balanced subset of a vector space X over K , then for
any λ , µ ∈ K , with |λ | 6 |µ | , we have λ A ⊂ µ A .
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Hence, it is clear that in particular we also have

Corollary 3.1. If A is a balanced subset of a vector space X over K , then for
any λ ∈ K , we have λ A = |λ |A .

4. A few basic facts on 2–subhomogeneous relations

Definition 4.1. A relation F on one groupoid U to another V is called
n–subhomogeneous, for some n ∈ N , if for any u ∈ U we have

F (nu ) ⊂ n F (u) .

Remark 4.1. If the corresponding equality (converse inclusion) holds, then F is
called n–homogeneous (n–superhomogeneous).

However, in the sequel we shall actually be interested only in 2–subhomogeneous
relations on commutative semigroups to vector spaces.

Theorem 4.1. If F is a relation on a groupoid U to a vector space X over K
such that

F ( 2u ) ⊂ F (u) + F (u) and 2−1 F (u) + 2−1 F (u) ⊂ F (u)

for all u ∈ U , then F is already 2–subhomogeneous.

Proof. For any u ∈ U , we have

F ( 2u ) ⊂ F (u) + F (u) = 2
(

2−1 F (u) + 2−1 F (u)
)
⊂ 2 F (u) .

�

According to Gajda and Ger [8] , we may naturally introduce the following

Definition 4.2. If F is a relation on a groupoid U to a vector space X over K ,
then for any u ∈ U and n ∈ N0 , with N0 = {0} ∪ N , we define

Fn(u) = 2−n F
(

2n u
)
.

Concerning the Hyers sequence (Fn)∞n=1 , we can easily prove the following two
theorems.

Theorem 4.2. If F is a relation on a semigroup U to a vector space X over K ,
then for any u ∈ U and n ∈ N0 we have

Fn( 2u ) = 2 Fn+1(u) .

Proof. If u ∈ U and n ∈ N0 , then by Theorem 3.1 we have

Fn(2u ) = 2−n F
(

2n ( 2u )
)

= 2 2−(n+1 ) F
(

2n+1 u
)

= 2 Fn+1(u) .

�

Theorem 4.3. If F is a 2–subhomogeneous relation on a semigroup U to a vector
space X over K , then

(
Fn
)∞
n=1

is a decreasing sequence of subsets of F .
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Proof. If u ∈ U and n ∈ N , then by Theorem 3.1 we have

Fn(u) = 2−n F
(

2n u
)

= 2−n F
(

2
(

2n−1 u
))
⊂

⊂ 2−n 2 F
(

2n−1 u
)

= 2−(n−1 ) F
(

2n−1 u
)

= Fn−1(u) .

Therefore, the sequence
(
Fn(u)

)∞
n=1

is decreasing. Moreover, by induction, it is clear

that Fn(u) ⊂ F0(u) = F (u) also holds. �

Remark 4.2. If in particular, F is a 2–homogeneous relation on a semigroup U
to a vector space X over K , then we can quite similarly see that Fn = F for all
n ∈ N .

According to Gajda and Ger [8] , we may also naturally introduce the following

Definition 4.3. If F is a relation on a groupoid U to a vector space X over K ,
then we define

F ? =

∞⋂
n=1

Fn .

Concerning the relation F ?, we can easily prove the following two theorems.

Theorem 4.4. If F is a 2–subhomogeneous relation on a semigroup U to a vector
space X over K , then F ? is already 2–homogeneous.

Proof. If u ∈ U , then by Theorems 4.2 and 4.3 we have

F ?( 2u ) =

∞⋂
n=1

Fn( 2u ) =

∞⋂
n=1

2Fn+1(u) =

= 2

∞⋂
n=1

Fn+1(u) = 2

∞⋂
n=2

Fn(u) = 2

∞⋂
n=1

Fn(u) = 2 F ?(u) .

Namely, the mapping x 7→ 2x , being an injection of X, preserves intersections.
Moreover, in particular we have F2(u) ⊂ F1(u) , and thus F1(u) ∩ F2(u) = F2(u) .

�

Theorem 4.5. If F is a relation of a semigroup U to a vector space X over K
and f is a 2–homogeneous selection of F , then f is also a selection of F ? .

Proof. If u ∈ U , then by Remark 4.2 and the selection property of f we have

f (u) = fn(u) = 2−n f
(

2n u
)
∈ 2−n F

(
2n u

)
= Fn(u)

for all n ∈ N . Therefore, we also have f (u) ∈
⋂∞
n=1 Fn(u) = F ?(u) . �

Remark 4.3. Note that if f is an additive function of one groupoid U to another
V , then f is, in particular, n–homogeneous for all n ∈ N .
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5. A few basic facts on subadditive relations

Definition 5.1. A relation F on one groupoid U to another V is called
subadditive if for any u, v ∈ U we have

F (u+ v ) ⊂ F (u) + F (v) .

Remark 5.1. If the corresponding equality (converse inclusion) holds, then F is
called additive (superadditive).

Theorem 5.1. If F is a subadditive relation on a commutative semigroup U to
a vector space X over K , then Fn is also subadditive for all n ∈ N .

Proof. If u, v ∈ U and n ∈ N , then by Theorem 3.2 we have

Fn(u+ v) = 2−n F
(

2n (u+ v )
)

= 2−n F
(

2n u + 2n v
)
⊂

2−n
(
F
(

2n u
)

+ F
(

2n v
))

= 2−n F
(

2n u
)

+ 2−n F
(

2n v
)

= Fn(u) + Fn(v) .

�

Extending the terminology of W. Smajdor [33, p. 29] , we may also naturally
introduce the following

Definition 5.2. A relation F on one groupoid U to another V is called
M–subadditive, for some M ⊂ V , if for any u, v ∈ U we have

F (u+ v ) ⊂ F (u) + F (v) + M .

Remark 5.2. Note that if the groupoid V has a zero element 0 with 0 ∈ M ,
then the subadditivity of F implies the M–subadditivity of F .

Definition 5.3. If F is a relation on one groupoid U to another V and M ⊂ V ,
then for any u ∈ U we define

(F + M )(u) = F (u) + M .

Theorem 5.2. If F is an M–subadditive relation on a groupoid U to a commu-
tative semigroup V , then F + M is already subadditive.

Proof. If G = F + M , then for any u, v ∈ U we have

G (u+ v ) = F (u+ v ) + M ⊂
⊂ F (u) + F (v) + M + M = F (u) + M + F (v) + M = G (u) + G (v) .

�

Theorem 5.3. If F is a relation on a groupoid U to a commutative monoid V
and M is a submonoid of V such that F + M is M–subadditive, then F is also
M–subadditive.

Proof. If G = F + M , then for any u, v ∈ U we have

F (u+ v ) ⊂ F (u+ v ) + M = G (u+ v ) ⊂ G (u) + G (v) + M =

F (u)+M +F (v)+M +M = F (u)+F (v) + M +M +M ⊂ F (u)+F (v)+M .

�
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Now, as an immediate consequence of Theorems 5.2 and 5.3 and Remark 5.2, we
can also state

Corollary 5.1. If F is a relation on a groupoid U to a commutative monoid V
and M is a submonoid of V , then the following assertions are equivalent :

(1) F is M–subadditive ; (2) F + M is subadditive .

Theorem 5.4. If f is a function of a groupoid U to a commutative group V
and M is a subgroup of V such that f + M has an additive selection g , then f is
M–subadditive.

Proof. For any u ∈ U we have

g (u) ∈ ( f +M )(u) = f (u) +M , and thus f (u) ∈ g (u)−M ⊂ g (u) +M .

Hence, it is clear that for any u, v ∈ U we also have

f (u+ v ) ∈ g (u+ v ) + M = g (u) + g (v) + M ⊂
⊂ f (u)+M + f (v)+M +M = f (u)+f (v)+M +M +M ⊂ f (u)+f (v)+M .

�

To prove a certain converse of this theorem, we shall need the following

Lemma 5.1. 5.1 If M is a subspace of a vector space X , then there exists a linear
selection q of ∆X + M such that q (x) = 0 for all x ∈M .

Hint. By [4, p. 15] , there exists a subspace N of X such that

X = M + N and M ∩ N = {0} .
Therefore, for each x ∈ X , there exists a unique pair (m, n ) ∈ M × N such that
x = m + n . Thus, in particular, for each x ∈ X , there exists a unique q (x) ∈ N
such that

x− q (x) ∈ M .

Hence, because of 0 ∈ N , it is clear that q (x) = 0 for all x ∈M . Moreover, by using
the linearity properties of M , we can also easily see that q is linear. Furthermore,

q (x) = x−
(
x− q (x)

)
∈ x −M ⊂ x + M = ∆X(x) + M =

(
∆X + M )(x) .

�

Remark 5.3. Note that if q is as in the above lemma, then we also have
M = q−1(0) and q2 = q . Moreover, N = {x ∈ X : q (x) = x } is a subspace
of X such that X = M + N and M ∩ N = {0} .

Furthermore, from [40, Theorem 4.1] we can see that F = ∆X + M is a linear
equivalence relation on X . Thus, in particular F −1(0) = F (0) =

(
∆X + M

)
(0) =

M . Therefore, Lemma 4.11 is actually a particular case of [ 40 , Corollary 9.6 ] .

Now, we are ready to prove a useful reformulation of [3, Lemma 1] of Z. Boros
whose origin goes back to Rätz [27, p. 241] , Baron [2] , and Gajda–Smajdor–
Smajdor [9, p. 249] .
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Theorem 5.5. If f is an M–subadditive function of a groupoid U to a vector
space X , for some subspace M of X , then f + M has an additive selection.

Proof. Let q be as in Lemma 5.1 and define g = q ◦ f . Then, for any u ∈ U ,
we evidently have

g (u) = q
(
f (u)

)
∈
(

∆X + M
)(
f (u)

)
= f (u) + M =

(
f + M

)
(u) .

Moreover, if u, v ∈ U , then by using the M–subadditivity of f we can easily see that

g (u+ v )− g (u)− g (v) = q
(
f (u+ v )

)
− q

(
f (u)

)
− q

(
f (v)

)
=

= q
(
f (u+ v )− f (u)− f (v)

)
∈ q [M ] = {0}

and thus g (u+ v ) = g (u) + g (v) is also true. �

Now, as an immediate consequence of Theorems 5.4 and 5.5, we can also state

Corollary 5.2. If f is a function of a groupoid U to a vector space X and M
is a subspace of X , then the following assertions are equivalent :

(1) f is M–subadditive ; (3) f + M has an additive selection .

Remark 5.4. Definition 5.3 can also be well-motivated by [40, Theorem 8.6]
which shows that a relation F of one vector space X to another Y is linear if and
only if there exist a linear function f of X to Y and a subspace M of Y such that
F = f + M .

6. A few basic facts on relators

Definition 6.1. If R is a family of relations on a set X , then we say that the
family R is a relator on X and the ordered pair X (R) = (X, R ) is a relator space.

Remark 6.1. Thus, relator spaces are natural generalizations of ordered sets and
uniform spaces [35] . Moreover, all reasonable generalizations of the usual topological
structures can be easily derived from relators [36] .

However, to include the theory of Galois connections and formal contexts [10, p.
17] and to briefly express continuity properties of relations [39] , relators on one set
to another have also to be considered.

Example 6.1. If A is a family of subsets of X , then the family of RA of all
Pervin relations [23, p. 177]

RA = A2 ∪ Ac ×X ,

where A ∈ A and Ac = X rA , is an important relator on X .

Namely, all minimal structures, generalized topologies and ascending systems on
X can be easily derived from RA according to [41] .

Example 6.2. If D is a family of distance functions on X , then the family RD
of all surroundings

Bd
r =

{
(x, y ) ∈ X 2 : d (x, y ) < r

}
,

where d ∈ D and r > 0 , is an important relator on X .



AN ADDITIVE SELECTION THEOREM 43

Namely, each topology can be derived from a family of quasi-pseudo-metrics
according to [23, Theorem 11.1.2 and an analogue of Theorem 11.3.4] . Moreover,
the relator RD is usually a more convenient tool than the family D .

Remark 6.2. Note that RA is always a preorder relation on X . While, Bd
r is,

in general, only a tolerance relation on X even if d is a metric on X .

Therefore, besides preorder relators, tolerance relators are also important parti-
cular cases of reflexive relators. Note that a relator may, for instance, be naturally
called reflexive if each of its members is reflexive.

Among the several basic algebraic and topological structures derivable from rela-
tors, we shall actually need here only the induced closures and sequential limits.

Definition 6.2. If R is a relator on X , then for any x ∈ X and A ⊂ X we
write

x ∈ clR(A ) ⇐⇒ ∀ R ∈ R : ∃ a ∈ A : a ∈ R (x) .

A simple application of the corresponding definitions immediately yields

Example 6.3. If D is family of distance functions on X , then for any x ∈ X
and A ⊂ X , we have

x ∈ clRD (A ) ⇐⇒ ∀ d ∈ D : d (x , A ) = 0 .

Moreover, by using the corresponding definitions, we can also easily establish the
following

Theorem 6.1. If R is a relator on X , then for any A ⊂ X we have

clR (A ) =
⋂
R∈R

R−1 [A ] .

Hence, it is clear that in particular we also have

Corollary 6.1. If R is a relator on X and δR =
⋂
R , then for any x ∈ X

we have

clR(x) = δR−1 (x) = δ−1
R (x) .

Moreover, from Theorem 6.1, it is quite obvious that the following two theorems
are also true.

Theorem 6.2. If R is a relator on X , then

(1) clR(∅) = ∅ if R 6= ∅ ,

(2) clR (A ) ⊂ clR(B) if A ⊂ B ⊂ X .

Theorem 6.3. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is reflexive ; (2) A ⊂ clR (A ) for all A ⊂ X .
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Definition 6.3. If R is a relator on X , then the members of the family

FR =
{
A ⊂ X : clR(A ) ⊂ A

}
are called the closed subsets of the relator space X (R ) .

Because of Theorem 6.2, we evidently have the following

Theorem 6.4. If R is a relator on X , then

(1) ∅ ∈ FR if R 6= ∅ , (2)
⋂
A ∈ FR if A ⊂ P (X ) .

Remark 6.3. From (2), we can also at once see that X ∈ FR for any relator R
on X .

Thus, in general, FR is only a closure (or convexity) structure, and its dual
TR = {Ac : A ∈ FR} is only a generalized topology on X .

7. Some further results on relators

Definition 7.1. If R is a relator on X , then for any x ∈ X and sequence a in
X we write

(1) x ∈ limR(a) ⇐⇒ ∀ R ∈ R : ∃ n ∈ N : ∀ k > n : ak ∈ R (x) ;

(2) x ∈ adhR(a) ⇐⇒ ∀ R ∈ R : ∀ n ∈ N : ∃ k > n : ak ∈ R (x) .

A simple application of the corresponding definitions immediately yields

Example 7.1. If D is family of distance functions on X , then for any x ∈ X
and sequence a in X we have

(1) x ∈ limRD (a) ⇐⇒ ∀ d ∈ D : lim
n→∞

d (x , an) = 0 ;

(2) x ∈ adhRD (a) ⇐⇒ ∀ d ∈ D : lim
n→∞

d (x , an) = 0 .

Moreover, by using the corresponding definitions, we can also easily establish the
following two theorems.

Theorem 7.1. If R is a relator on X , then for any sequence a in X we have

limR(a) =
⋂
R∈R

lim
n→∞

R−1( an) and adhR(a) =
⋂
R∈R

lim
n→∞

R−1( an) .

Theorem 7.2. If R is a relator on X , then for any sequence a in X we have

adhR(a) =

∞⋂
n=1

clR

(
{ ak}∞k=n

)
.

Definition 7.2. A sequence a in a relator space X (R) is called convergent
(adherent) if limR(a) 6= ∅ ( adhR(a) 6= ∅ ) .

Moreover, the sequence a is called convergence (adherence) Cauchy if it is
convergent (adherent) in each of the simple relator spaces X (R) , where R ∈ R .
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Remark 7.1. By the corresponding definitions, it is clear that

limR(a) =
⋂
R∈R

limR(a) and adhR(a) =
⋂
R∈R

adhR(a) .

Therefore, a convergent (adherent) sequence is, in particular, convergence (adherence)
Cauchy, but the converse need not be true.

Definition 7.3. A relator R on X , or the relator spaces X (R) , is called
sequentially complete if each convergence Cauchy sequence in it is adherent.

Remark 7.2. It is a remarkable fact that, by [37, Theorem 2.1] , the relator

R∧ =
{
S ⊂ X 2 : ∀ x ∈ X : ∃ R ∈ R : R (x) ⊂ S (x)

}
is always complete. It is actually the largest relator on X such that clR∧ = clR .
Moreover, we also have limR∧= limR .

Definition 7.4. A subset A of a relator space X (R) is called infinitesimal if
for each R ∈ R there exists x ∈ X such that A ⊂ R (x) .

Moreover, a sequence (An)∞n=1 of subsets of X (R) is called infinitesimal if for
each R ∈ R there exist x ∈ X and n ∈ N such that An ⊂ R (x) .

Remark 7.3. Thus, in particular A =
⋂∞
n=1 An is an infinitesimal subset of

X (R) .

Moreover, as a straightforward extension of Cantor’s intersection theorem [18,
p. 186] , we can prove the following

Theorem 7.3. If (An)∞n=1 is a decreasing infinitesimal sequence of nonvoid
closed subsets of a sequentially complete relator space X (R) and A =

⋂∞
n=1 An ,

then A is a nonvoid closed infinitesimal subset of X (R) .

Proof. By the countable axiom of choice, there exists a sequence a in X such
that an ∈ An for all n ∈ N . Moreover, by Definition 7.4, for each R ∈ R there exist
x ∈ X and n ∈ N such that An ⊂ R (x) . Hence, it is clear that for any k > n , we
have

ak ∈ Ak ⊂ An ⊂ R (x) .

Therefore, x ∈ limR(a) . This shows that a is a convergence Cauchy sequence in
X (R) . Hence, by the assumed completeness of R , it follows that adhR(a) 6= ∅ .

On the other hand, by using Theorem 7.2 and the corresponding properties of the
sets An , we can also easily see that

adhR(a) =

∞⋂
n=1

clR

(
{ ak}∞k=n

)
⊂
∞⋂
n=1

clR(An) ⊂
∞⋂
n=1

An = A .

Therefore, A 6= ∅ is also true. Now, since the remaining assertions are quite obvious
by Theorem 6.4 and Remark 7.3, the proof is complete. �

Remark 7.4. By the results of [37] , it is clear that for some particular relator
spaces a certain converse of the above theorem is also true.
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Definition 7.5. A relator R on X is called strictly T2–separating, or the relator
space X (R) is called strictly T2–separated, if for any x, y ∈ X , with x 6= y , there
exists R ∈ R such that R (x) ∩ R (y) = ∅ .

Theorem 7.4. If A is an infinitesimal subset of a relator space X (R) such that
the the relator R−1 is strictly T2–separating, then A is at most a singleton.

Proof. Assume, on the contrary, that there exist a, b ∈ A such that a 6= b .
Then, since R−1 is strictly T2–separating, there exists R ∈ R such that
R−1(a) ∩ R−1(b) = ∅ . Moreover, since A is infinitesimal, there exists x ∈ X
such that A ⊂ R (x) . Hence, in particular it follows that a, b ∈ R (x) , and thus
x ∈ R−1(a) ∩ R−1(b) = ∅ . This contradiction proves the theorem. �

8. A few basic facts on vector relators

Definition 8.1. A nonvoid relator R on vector space X over K is called a vector
relator on X if

(1) R (x) = x + R (0) for all x ∈ X and R ∈ R ;

(2) R (0) is an absorbing balanced subset of X for all R ∈ R ;

(3) for each R ∈ R there exists S ∈ R such that S (0) + S (0) ⊂ R (0) .

The appropriateness of this definition is apparent from the following

Example 8.1. If P is a nonvoid family of preseminorms on X, then it can be
easily seen that the family RP of all surroundings

Bp
r =

{
(x , y ) ∈ X 2 : p (x− y ) < r

}
,

where p ∈ P and r > 0 , is a vector relator on X. Note that if in particular p is a
seminorm on X, then Bp

r (0) is, in addition, convex for all r > 0 .

Remark 8.1. It is well-known that each vector topology T on X can be derived
from a nonvoid directed family P of preseminorms on X. ( See [20] for a rather
thorough treatment.)

Therefore, vector relators are somewhat more general objects than vector topolo-
gies. Namely, if R is a vector relator on X, then TR is a vector topology on X if
and only if for any R , S ∈ R there exists T ∈ R such that T (0) ⊂ R (0) ∩ S (0) .

Concerning vector relators, we shall only quote here the following three basic
theorems of [43] .

Theorem 8.1. If R is a vector relator on X, then

(1) for each R ∈ R there exists S ∈ R such that S (x) + S (y) ⊂ R (x + y )
for all x , y ∈ X ;

(2) for any R ∈ R and n ∈ N there exists S ∈ R such that λ S (x) ⊂ R (λ x )
for all x ∈ X and λ ∈ K with |λ | 6 n .
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Remark 8.2. Thus, we may actually write any subsets A and B of X in place
of the points x and y in the above assertions.

Theorem 8.2. If R is a vector relator on X, then R is a tolerance relator on
X such that for each R ∈ R there exists S ∈ R such that S ◦ S ⊂ R .

Remark 8.3. The reflexivity and the above strict uniform transitivity of R imply,
in particular, that R is a topological relator on X in the sense that for each x ∈ X
and R ∈ R there exists V ∈ TR such that x ∈ V ⊂ R (x) .

Therefore, as a useful consequence of the above theorem, we can also state

Corollary 8.1. If R is a vector relator on X, then for any A ⊂ X we have

clR(A) =
⋂{

W ∈ FR : A ⊂ W
}
.

Remark 8.4. Moreover, it can also be easily shown that R is well-chained in
the sense that X 2 = R∞ =

⋃∞
n=0 R

n for all R ∈ R , where R 0 = ∆
X

and
Rn = Rn−1 ◦ R for all n ∈ N . Thus, R [A ] ⊂ A implies A ∈ { ∅ , X } for all
A ⊂ X and R ∈ R . ( See [22, Theorem 12.8] .)

Theorem 8.3. If R is a vector relator on X, then

(1) clR(λ A ) = λ clR(A ) for all 0 6= λ ∈ K and A ⊂ X ;

(2) clR(x + A ) = x + clR(A ) for all x ∈ X and A ⊂ X ;

(3) clR(A ) + clR(B ) ⊂ clR(A + B ) for all A , B ⊂ X .

Remark 8.5. Hence, we can also see that clR(A+B ) = clR
(

clR(A )+ clR(B )
)

for all A , B ⊂ X .

Therefore, we can also state that clR(A + B ) = clR(A ) + clR(B ) if and only
if clR(A ) + clR(B ) ∈ FR .

However, it is now more important to note that, as an immediate consequence of
the above theorem, we also have

Corollary 8.2. If R is a vector relator on X, then

(1) λ A ∈ FR for all 0 6= λ ∈ K and A ∈ FR ;

(2) x + A ∈ FR for all x ∈ X and A ∈ FR .

Moreover, by using Theorems 8.3 and 6.4 and Corollary 8.1, we can also easily
establish the following

Theorem 8.4. If R is a vector relator on X and A is a linear subspace of X,
then clR(A) is a closed linear subspace of the vector relator space X (R) .

Hence, it is clear that in particular we also have

Corollary 8.3. If R is a vector relator on X, then clR(0) is a closed linear
subspace of the vector relator space X (R) .



48 Á. SZÁZ

Definition 8.2. A vector relator R on X is called separating, or the vector
relator space X (R) is called separated, if for each x ∈ X , with x 6= 0 , there exists
R ∈ R such that x /∈ R (0) .

The importance of this definition lies mainly in the following simple consequence
of the corresponding definitions and Theorems 6.1 and 8.3.

Theorem 8.5. If R is a vector relator on X, then the following assertions are
equivalent :

(1) R is separating ;

(2) {x} ∈ FR for all x ∈ X ;

(3) R is strictly T2–separating .

Remark 8.6. Actually, if either {0} ∈ FR or R is T0–separating, then R is
already separating.

A relator R on X is called T0–separating if for any x, y ∈ X , with x 6= y , there
exists R ∈ R such that either y /∈ R (x) or x /∈ R (y) . This is equivalent to the
requirement that the relator R be weakly antisymmetric in the sense that the relation
δR =

⋂
R is antisymmetric.

In this respect, it is also worth mentioning that a relator is T1–separating if
and only if it is both weakly symmetric and weakly antisymmetric. Moreover, weak
symmetry corresponds to the famous weak regularity introduced by N. A. Shanin in
1943 which was called R0-regularity by A. S. Davis in 1961.

9. Infinitesimal sequences in vector relator spaces

Definition 9.1. If X (R) is a vector relator space over K , then for any A ⊂ X
and R ∈ R we define

ρR(A) = inf { t ∈ K+ : ∃ x ∈ X : A ⊂ x + t R (0) } ,

where K+ = K ∩ [ 0 , +∞ [ . ( Recall that K = Q , R , or C .)

Remark 9.1. By Gajda and Ger [8] , we may also naturally define

dR(A) = inf
{
t ∈ K+ : A−A ⊂ t R (0)

}
.

However, the radius function ρR seems now to be more appropriate than the diameter
function dR .

Namely, we evidently have ρR(A) 6 dR(A) . Since, if A−A ⊂ t R (0) for some
t ∈ K+ , then we also have A ⊂ a + t R (0) for any a ∈ A . Therefore, ρR(A) 6 t ,
and thus the stated inequality is true.

Theorem 9.1. 9.1 If X (R) is a vector relator space over K , and moreover
A ⊂ X and R ∈ R such that ρR(A) < +∞ , then for any λ ∈ K we have

ρR(λA ) = |λ | ρR(A) .
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Proof. By Definition 9.1, for each ε > 0 , there exists t ∈ K+ , with t <
ρR(A) + ε , such that A ⊂ x + tR (0) for some x ∈ X . Hence, since R (0) is
balanced, it follows that

λA ⊂ λx + λ tR (0) = λx + |λ | t R (0) .

Therefore, by Definition 9.1, we have ρR(λA ) 6 |λ | t 6 |λ |
(
ρR(A) + ε

)
. Hence,

by letting ε→ 0 , we can infer that

ρR(λA ) 6 |λ | ρR(A) .

Hence, it is clear that ρR( 0 A ) = 0 = 0 ρR(A) . Moreover, if λ 6= 0 , then by putting
λ−1 in place of λ and λA in place A , we can easily see that

ρR(A) = ρR
(
λ−1 λA

)
6 |λ |−1 ρR(λA ) ,

and thus |λ | ρR(A) 6 ρR(λA ) is also true. �

Remark 9.2. If in particular R(0) is convex, then we can also easily prove that
ρR(A + B ) 6 ρR(A) + ρR(B) for all A , B ⊂ X .

However, it is now more important to note that we also have the following

Theorem 9.2. If (λn)∞n=1 is a null sequence in K and (An)∞n=1 is a sequence

of subsets of vector relator space X (R) over K such that the sequence
(
ρR(An)

)∞
n=1

is bounded for all R ∈ R , then the sequence (λnAn)∞n=1 is infinitesimal.

Proof. If R ∈ R , then by the assumption there exists a number c such that
ρR(An) 6 c for all n ∈ N . Hence, by Theorem 9.1, it follows that

ρR(λnAn) = |λn | ρR(An) 6 |λn | c
for all n ∈ N . Therefore, ρR(λnAn) < 1 for some n ∈ N . Hence, by using
Definition 9.1, we can see that there exist t ∈ K+ , with t < 1 , and x ∈ X such that

λnAn ⊂ x + t R (0) ⊂ x + R (0) = R (x) .

Therefore, by Definition 7.4, the required assertion is true. �

Theorem 9.3. If (An)∞n=1 and (Bn)∞n=1 are decreasing infinitesimal sequences
of subsets of a vector relator space X (R) over K , then

(1) (An + Bn)∞n=1 is also a decreasing infinitesimal sequence ;

(2) (λAn)∞n=1 is also a decreasing infinitesimal sequence for all λ ∈ K .

Proof. If R ∈ R , then by Theorem 8.1 there exists S ∈ R such that

S (x) + S (y) ⊂ R (x+ y )

for all x , y ∈ X . Moreover, by Definition 7.4, there exist x, y ∈ X and k, l ∈ N
such that

Ak ⊂ S (x) and Bk ⊂ S (y) .

Hence, by taking n = max{ k , l } , we can already see that

An + Bn ⊂ Ak + Bl ⊂ S (x) + S (y) ⊂ R (x+ y ) .
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Therefore, the sequence (An + Bn)∞n=1 is also infinitesimal.

On the other hand, if λ ∈ K and R ∈ R , then by Theorem 8.1 there exists
S ∈ R such that λ S (x) ⊂ R (λ x ) for all x ∈ X . Moreover, by Definition 7.4,
there exist x ∈ X and n ∈ N such that An ⊂ S (x) . Hence, we can already see that
λ An ⊂ λ S (x) ⊂ R (λ x ) . Therefore, the sequence (λAn)∞n=1 is infinitesimal even
if (An)∞n=1 is not supposed to be decreasing. �

In the sequel, we shall also need the following

Theorem 9.4. If A is an infinitesimal subset of a vector relator space X (R) ,
then

A−A ⊂ clR(0) .

Proof. If R ∈ R , then by Theorem 8.1 there exists S ∈ R such that

S (x) + S (y) ⊂ R (x+ y )

for all x , y ∈ X . Moreover, by Definition 7.4, there exists x ∈ X such that
A ⊂ S (x) . Now, by using Definition 8.1, Corollary 3.1 and the corresponding
properties of S and R, we can already see that

−S(x) = −
(
x+ S(0)

)
= −x− S(0) = −x+ S(0) = S(−x ) ,

and thus

A−A ⊂ S (x)− S (x) = S (x) + S (−x) ⊂ R (0) = R−1(0) .

Hence, by Theorem 6.1, it is clear that

A−A ⊂
⋂
R∈R

R−1(0) = clR(0) .

�

Corollary 9.1. If A is an infinitesimal subset of a separated vector relator space
X (R) , then A is at most a singleton.

Proof. By Theorems 9.4 and 8.5, we now have A − A ⊂ clR (0) = {0} .
Therefore, either A = ∅ or A = {x} for some x ∈ X . �

Remark 9.3. Note that this corollary is also an immediate consequence of
Theorems 7.4, 8.2 and 8.5.

10. An additive selection theorem for 2–sublinear relations

Definition 10.1. A relation F on one groupoid U to another a groupoid X will
be called n-sublinear, for some n ∈ N , if it is subadditive and n–subhomogeneous.

Theorem 10.1. If F is a 2–sublinear relation on a commutative semigroup U to a
vector relator space X (R) over K such that the sequence

(
Fn(u)

)∞
n=1

is infinitesimal
for all u ∈ U , then for any u , v ∈ U we have

F ?(u+ v )− F ?(u)− F ?(v) ⊂ clR(0) .
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Proof. If u , v ∈ U , then by Definition 4.3 and Theorem 5.1 we have

F ?(u) + F ?(v) ⊂ Fn(u) + Fn(v)

and

F ?(u+ v ) ⊂ Fn(u+ v) ⊂ Fn(u) + Fn(v)

for all n ∈ N . Hence, it is clear that, under the notation

A =

∞⋂
n=1

(
Fn(u) + Fn(v)

)
,

we have

F ?(u+ v )− F ?(u)− F ?(v) = F ?(u+ v )−
(
F ?(u) + F ?(v)

)
⊂ A − A .

Moreover, from Theorem 4.3, we know that the sequences
(
Fn(u)

)∞
n=1

and(
Fn(v)

)∞
n=1

are decreasing. Hence, by using Theorem 9.3 we can infer that the

sequence
(
Fn(u) + Fn(v)

)∞
n=1

is also infinitesimal. Therefore, by Remark 7.3 and
Theorems 9.4, we necessarily have

A − A ⊂ clR(0) ,

and thus the required inclusion is also true. �

Definition 10.2. A relation F on a set U to a relator space X (R) is called
closed-valued if F (u) is a closed subset of X (R) for all u ∈ U .

Now, we are ready to prove the following generalization of the existence part of
[8, Theorem 3] of Z. Gajda and R. Ger.

Theorem 10.2. If F is a closed-valued, 2–sublinear relation of a commutative
semigroup U to a sequentially complete vector relator space X (R) over K such that

the sequence
(
Fn(u)

)∞
n=1

is infinitesimal for all u ∈ U , then F has an additive
selection.

Proof. If u ∈ U , then by Theorem 4.3 the sequence
(
Fn(u)

)∞
n=1

is decreasing.

Moreover, by Definition 4.2 and Corollary 8.2, it is clear that Fn(u) is a nonvoid closed
subset of X (R) for all n ∈ N . Hence, by using Theorem 7.3, we can already infer
that

F ?(u) =

∞⋂
n=1

Fn(u) 6= ∅ ,

and thus U is the domain of F ?. Moreover, by the axiom of choice, the relation F ?

has a selection g .

Now, by Theorem 10.1, it is clear that for any u , v ∈ U we have

g (u+ v )− g (u)− g (v) ∈ F ?(u+ v )− F ?(u)− F ?(v) ⊂ clR(0) .

Hence, by taking M = clR(0) , we can see that g is an M –subadditive function
of U to X. Moreover, from Corollary 8.3 we can see that M is a subspace of X.
Therefore, by Theorem 5.5, the relation g + M has an additive selection f . Hence,
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by Theorem 8.3 and the inclusions g ⊂ F ? ⊂ F , it is clear that for any u ∈ U we
have

f (u) ∈ ( g + M )(u) = g (u) + M = g (u) + clR(0) =

= clR
(
g (u)

)
⊂ clR

(
F ?(u)

)
⊂ clR

(
F (u)

)
= F (u) .

�

To prove an extension of the unicity part of [8, Theorem 3] , we can easily establish
the following

Theorem 10.3. If F is a relation of a commutative semigroup U to a separated
vector relator space X (R) over K such that the sequence

(
Fn(u)

)∞
n=1

is infinite-
simal for all u ∈ U , then F can have at most one 2–homogeneous selection.

Proof. If f is a 2–homogeneous selection of F , then by Theorem 4.5, for any
u ∈ U , we also have f (u) ∈ F ?(u) .

Moreover, from Definition 4.3, by Remark 7.3, and Corollary 9.1, we can see that
F ?(u) is at most a singleton. Therefore, we actually have { f (u)} = F ?(u) . �

Now, an immediate consequence of Theorems 10.2, 10.3 and 9.2, we can also state

Corollary 10.1. If F is a closed-valued, 2–sublinear relation of a commutative
semigroup U to a separated, sequentially complete vector relator space X (R) over K
such that the sequence

(
ρR
(
F ( 2n u )

)∞
n=1

is bounded for all u ∈ U and R ∈ R ,
then F has a unique additive selection.

Note. This paper is a somewhat shortened and updated version of a Technical
Report of the author, sent to several mathematicians in 2006.
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[1] R. Badora, R. Ger and Zs. Páles, Additive selections and the stability of the Cauchy functional
equation, ANZIAM J. 44 (2003), 323–337.

[2] K. Baron, Functions with differences in subspaces, Proceedings of the 18th International Sym-

posium on Functional Equations, Faculty of Mathematics, University of Waterloo, 1980, 8–9.
[3] Z. Boros, Stability of the Cauchy equation in ordered fields, Math. Pannon. 11 (2000), 191–197.

[4] M. Cotlar and R. Cignoli, An Introduction to Functional Analysis, North-Holland, Amsterdam,

1974.
[5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, London,

2002.

[6] G. L. Forti, Hyers–Ulam stability of functional equations in several variables, Aequationes Math.
50 (1995), 143–190.

[7] Z. Gajda, Invariant means and representations of semigroups in the theory of functional equa-
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