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c© Universidad Técnica Federico Santa Maŕıa 2014

On the analytic evaluation of a certain class of trigonometric
sums

Aristides V. Doumas

Abstract. We present an analytic evaluation of the solution to a problem by

A. de Moivre. Our approach is based on simple combinatorial arguments. Some

identities involving a class of trigonometric sums and multinomial coefficients are
also exhibited.

1. Introduction

Dice problems have a long history in probability. For example, the three dice
problem goes back to the 13th century (see, e.g. [2]). In the present paper we focus
on the solution of a variant of a De Moivre’s problem: Consider a fair die with m
numbered sides (from 1 to m) and let p be a prime number less than m, such that p
does not divide m. Thus, there exist positive integers a and b such that

m = a p+ b

with a ∈ {1, 2, 3, · · · } while b ∈ {1, 2, 3, · · · , p− 1}, the divisor and the remainder re-
spectively. Next, we roll the die n times independently and add the resulting numbers.
Let Xj = 1, 2, 3, · · · , p be the outcome of the die (mod p), at the j-th roll. Set

Sn = X1 +X2 + · · ·+Xn (mod p).

The goal is to calculate the probability that Sn is divisible by p, i.e.

P {Sn ≡ 0 (mod p)} .

One can solve the problem, as De Moivre, using generating functions; (for an alterna-
tive approach, see [3]). It follows easily that

(1.1) P {Sn ≡ 0 (mod p)} =
1

p

1 +
1

mn

p−1∑
k=1

 b∑
j=1

ωkj

n ,
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and in general

(1.2) P {Sn ≡ j (mod p)} =
1

p

{
1 +

1

mn

p−1∑
k=1

ωp−kj

(
b∑
i=1

ωki

)n}
for j = 1, 2, · · · , p − 1, p. Here, and in what follows, ωp = 1, ω 6= 1. As already
mention, we restrict ourselves in the case where p be a prime number; however the
results will be easily generalized for any number.

2. Analytic evaluation of the solution for Sn ≡ 0 (mod p)

Let us now discuss the evaluation of the quantity appearing in (1.1)

(2.1) S0(b) :=

p−1∑
k=1

 b∑
j=1

ωkj

n

=

(
b∑

k=1

ωk

)n
+

(
b∑

k=1

ω2k

)n
+ · · ·+

(
b∑

k=1

ω(p−1)k

)n
,

where, p is a prime number and b is the remainder of the division ofm by p (b 6= 0,m > p) .
First, we evaluate S0(b) for the extreme values of b. For b = 1 (2.1) yields

(2.2) S0(1) = ωn + ω2n + · · ·+ ω(p−1)n =

p−1∑
k=1

ωkn =

 p− 1, n ≡ 0 (mod p);

−1, elsewhere.

For b = p− 1 we have

(2.3) S0(p− 1) =

p−1∑
k=1

p−1∑
j=1

ωkj

n

= (−1)
n

(p− 1) =

 p− 1, n is even;

1− p, n is odd.

For b = 2 and by the Binomial Theorem we have

S0(2) =
(
ω + ω2

)n
+
(
ω2 + ω4

)n
+ · · ·+

(
ωp−1 + ω2(p−1)

)n
=

n∑
k=0

(
n

k

)
ωn+k +

n∑
k=0

(
n

k

)
ω2(n+k) + · · ·+

n∑
k=0

(
n

k

)
ω(p−1)(n+k)

=

n∑
k=0

(
n

k

)(
ωn+k + ω2(n+k) + · · ·+ ω(p−1)(n+k)

)
.(2.4)

To continue we have to talk about n.

Lemma 2.1. Let n ≡ d (mod p), i.e. n = cp+ d. Then, (2.4) yields

(2.5) S0(2) =



c∑
j=0

(
n

jp

)
p− 2n d = 0,

c−1∑
j=0

(
n

(p− d) + jp

)
p− 2n 0 < d 6

⌊
p
2

⌋
,

c∑
j=0

(
n

(p− d) + jp

)
p− 2n d >

⌊
p
2

⌋
.
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Proof. If d = 0, there are c + 1 multiples of p in the interval [n, 2n]. In view of
(2.2), one has

S0(2) =

c∑
j=0

(
n

jp

)
(p− 1)−

[
2n −

(
n

0

)
−
(
n

p

)
−
(
n

2p

)
− · · · −

(
n

(c− 1)p

)
−
(
n

n

)]

=

c∑
j=0

(
n

jp

)
p− 2n;(2.6)

(we have used the fact that
∑n
k=0

(
n
k

)
= 2n).

For 0 < d 6
⌊
p
2

⌋
, there exist c multiples of p in the interval [n, 2n]. We have

S0(2) =

c−1∑
j=0

(
n

(p− d) + jp

)
(p− 1)

−
[
2n −

(
n

p− d

)
−
(

n

(p− d) + p

)
− · · · −

(
n

(p− d) + (c− 1)p

)]
=

c−1∑
j=0

(
n

(p− d) + jp

)
p− 2n.(2.7)

Finally, if d >
⌊
p
2

⌋
, we see that there are c+ 1 multiples of p in the interval [n, 2n]. In

a similar way we have

S0(2) =

c∑
j=0

(
n

(p− d) + jp

)
(p− 1)

−
[
2n −

(
n

p− d

)
−
(

n

(p− d) + p

)
− · · · −

(
n

(p− d) + cp

)]
=

c∑
j=0

(
n

(p− d) + jp

)
p− 2n. �(2.8)

Consider now the case of a general b and have

S0(b) =
∑

k1+k2+···+kb=n

(
n

k1, k2, · · · , kb

)
ωk1ω2k2 · · ·ωbkb

+
∑

k1+k2+···+kb=n

(
n

k1, k2, · · · , kb

)
ω2k1ω4k2 · · ·ω2bkb

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+
∑

k1+k2+···+kb=n

(
n

k1, k2, · · · , kb

)
ω(p−1)k1ω2(p−1)k2 · · ·ωb(p−1)kb ,

where, (
n

k1, k2, · · · , kb

)
=

n!

k1!k2! · · · kb!
,



4 ARISTIDES V. DOUMAS

is the multinomial coefficient, and k1, k2, · · · , kb are nonnegative integers, such that∑b
i=1 ki = n. It follows that

S0(b) =
∑

k1+k2+···+kb=n

(
n

k1, k2, · · · , kb

)[
ωk1+2k2+···+bkb + ω2(k1+2k2+···+bkb)

+ω(p−1)(k1+2k2+···+bkb)
]

=
∑

k1+k2+···+kb=n

(
n

k1, k2, · · · , kb

)[
ωn+(k2+···+(b−1)kb) + ω2[n+(k2+···+(b−1)kb)]

+ω(p−1)[n+(k2+···+(b−1)kb)]
]
.(2.9)

Next, notice that the quantity

(2.10) A := k2 + 2k3 + 3k4 + · · ·+ (b− 1)kb

attains its minimum value (namely A = 0), for

(k1, k2, k3, · · · kb) = (n, 0, 0, · · · , 0)

and its maximum value (namely A = (b− 1)n), for

(k1, k2, · · · , kb−1kb) = (0, 0, 0, · · · , 0, n) .

Hence, the quantity

n+A = n+ k2 + 2k3 + 3k4 + · · ·+ (b− 1)kb

takes values in the interval, [n, bn]. As in Lemma 2.1 we assume that n ≡ d (mod p).
If d = 0, there are cb− (c− 1) = c(b− 1) + 1 multiples of p in the interval [n, bn]. In
view of (2.2), we have

S0(b) = (p− 1)

[(
n

~a1

)
+

(
n

~a2

)
+ · · ·+

(
n

~acb−c+1

)]
−
[
bn −

(
n

~a1

)
+

(
n

~a2

)
+ · · ·+

(
n

~acb−c+1

)]
= p

[(
n

~a1

)
+

(
n

~a2

)
+ · · ·+

(
n

~acb−c+1

)]
− bn,(2.11)

where we have used the fact that∑
k1+k2+···+kb=n

(
n

k1, k2, · · · , kb

)
= bn.

We only have to explain how the vectors ~aj , (which in general are not unique) can be
found. Notice that, for each j = 1, 2, · · · , (cb − c + 1) we have a different system of
linear Diophantine equations (mostly with multiple solutions). ~a1 is the solution(s) of

(2.12)

{
A = 0,

b∑
i=1

ki = n, ki ∈ Z+ = {0, 1, 2, · · · } , i = 1, 2, · · · , b

}
.
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~a2 is the solution(s) of

(2.13)

{
A = p,

b∑
i=1

ki = n, ki ∈ Z+ = {0, 1, 2, · · · } , i = 1, 2, · · · , b

}
.

and so on. Finally ~acb−c+1 is the solution(s) of
(2.14){

A = (cb− c) p,
b∑
i=1

ki = n, ki ∈ Z+ = {0, 1, 2, · · · } , i = 1, 2, · · · , b

}
.

Clearly, ~a1 = (n, 0, 0, · · · , 0) and ~acb−c+1 = (0, 0, · · · , 0, n).
In case d >

⌊
p
2

⌋
, there exist (b− 1)c+ b bdp c multiples of p in the interval [n, bn]. Thus,

(2.15) S0(b) = p

[(
n

~a1

)
+

(
n

~a2

)
+ · · ·+

(
n

~acb−c+b bdp c

)]
− bn,

where ~a1 is the solution(s) of the system of linear Diophantine equations
(2.16){
n+ k2 + 2k3 + · · ·+ (b− 1)kb = (c+ 1) p⇔ d+A = p,

b∑
i=1

ki = n, ki ∈ Z+, i = 1, 2, · · · , b

}
.

~a2 is the solution(s) of the system
(2.17){
n+ k2 + 2k3 + · · ·+ (b− 1)kb = (c+ 2) p⇔ d+A = 2p,

b∑
i=1

ki = n, ki ∈ Z+, i = 1, 2, · · · , b

}
,

and so on. Finally, ~acb−c+b bdp c
is the solution(s) of the system

(2.18)

{
d+A =

(
(b− 1) c+ bbd

p
c
)
p,

b∑
i=1

ki = n, ki ∈ Z+, i = 1, 2, · · · , b

}
.

If 0 < d 6
⌊
p
2

⌋
, we see that there are (b−1)c+b bdp c multiples of p in the interval [n, bn].

Actually, the number of multiples in this case is one minus the numer of multiples in
case d > bp2c. Hence, equation (2.15) and systems (2.16), (2.17),· · · , (2.18) also hold
in this case. We have just one system less.
Notice that the case b = 2 is in accordance with the general case.

Remark 1. Systems like (2.16) have multiple solutions, but are easy to solve. All
one needs is patience and paper. It is easy to see that k1 attains its minimum value
namely, (c− 1)p+ 2d = n− (p− d), when (k2, k3, k4, · · · , kb−1) = (n− k1, 0, 0, · · · , 0)
and its maximum value, n − 1, when kj = 1, for j = p − d + 1, and ki = 0, for

i ∈ {2, · · · , b}r {j}. The maximum range for kb is
{

0, 1, · · · ,
⌊
p−d
b−1

⌋}
, and in general,

the maximum range for kj is
{

0, 1, · · · ,
⌊
p−d
j−1

⌋}
, for j = 2, 3, · · · , b.
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Remark 2. It is notable that the above results indicate that S0(b) is always an integer
for all b ∈ {1, 2, 3, · · · , p− 1}.

3. Further results

In this section we present some identities arising from the results of Section 2.
From (2.1) we have

S0(b) =

p−1∑
k=1

 b∑
j=1

ωkj

n

= Sn1 + Sn2 + · · ·+ Snp−1,

where, Sj =
∑b
k=1 ω

kj , j = 1, 2, · · · , p − 1. Since Sp−j = Sj are complex conjugate
numbers and p is any odd prime, one has

(3.1) S0(b) = 2

p−1
2∑

k=1

< (Snk ) .

Now,

Snk =
(
ωk + ω2k + · · ·+ ωbk

)n
=
(
e

2kπi
p + e

4kπi
p + · · ·+ e

2bkπi
p

)n
=

 b∑
j=1

cos

(
2kπj

p

)
+ i

b∑
j=1

sin

(
2kπj

p

)n

.

Using the identities (see, e.g., [1])

n∑
j=1

cos (jϑ) =
sin
(
nϑ
2

)
cos
(

(n+1)ϑ
2

)
sin
(
ϑ
2

)
and

n∑
j=1

sin (jϑ) =
sin
(
nϑ
2

)
sin
(

(n+1)ϑ
2

)
sin
(
ϑ
2

) ,

we arrive at

(3.2) Snk =

(
sin πkb

p

sin πk
p

)n [
cos

(
(b+ 1)nkπ

p

)
+ i sin

(
(b+ 1)nkπ

p

)]
.

In view of (3.2), (3.1) yields

(3.3) S0(b) = 2

p−1
2∑

k=1

 sin
(
πkb
p

)
sin
(
πk
p

)
n

cos

(
(b+ 1)nkπ

p

)
which is an integer for all prime numbers p and for all b ∈ {1, 2, 3, · · · , p− 1}, as
noticed in Remark 2. For all prime numbers p and for all n ∈ N we are able to
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evaluate sums of type (3.3) by using Lemma 2.1. For example, if b = p−1, (3.3) yields

(3.4) S0(p− 1) = 2

p−1
2∑

k=1

 sin
(
kπ(p−1)

p

)
sin
(
πk
p

)
n

cos (nkπ)
(2.3)
=

 p− 1, n is even;

1− p, n is odd.

For b = 2 (3.3) yields
(3.5)

S0(2) = 2

p−1
2∑

k=1

 sin
(

2kπ
p

)
sin
(
πk
p

)
n

cos

(
3nkπ

p

)
= 2n+1

p−1
2∑

k=1

cos

(
kπ

p

)n
cos

(
3nkπ

p

)
.

Now, if n = cp, where c is a positive integer and p any odd prime number, (3.5) can
be evaluated from (2.6) and have

(3.6) 2n+1

p−1
2∑

k=1

cos

(
kπ

p

)n
cos

(
3nkπ

p

)
=

c∑
j=0

(
cp

jp

)
p− 2cp.

For n = cp+ 1 we get

(3.7) 2n+1

p−1
2∑

k=1

cos

(
kπ

p

)n
cos

(
3nkπ

p

)
=

c−1∑
j=0

(
cp+ 1

(p− 1) + jp

)
p− 2cp+1,

and if, for example, n = cp+ (p− 1) one has

(3.8) 2n+1

p−1
2∑

k=1

cos

(
kπ

p

)n
cos

(
3nkπ

p

)
=

c∑
j=0

(
cp+ p− 1

jp+ 1

)
p− 2cp+p−1.

Thus, in order to evaluate trigonometric sums of Section 2, one has only to calculate
a few binomial coefficients (al least one of them is elementary).

4. Analytic evaluation of the solution for Sn ≡ j (mod p)

The quantity

(4.1) Sj(b) =

p−1∑
k=1

ωp−kjλnk , j = 1, 2, · · · , p,

appearing in (1.2) has similar properties to S0(b) which has been studied in Sections
2–3. In fact Sp(b) = S0(b), of (2.1). Also, for j = 1, 2, · · · , p − 1, Sj(b) is always an
integer. As in Section 3 we get

(4.2) Sj(b) = 2

p−1
2∑

k=1

 sin
(
πkb
p

)
sin
(
πk
p

)
n

cos

(
(b+ 1)nkπ − 2jkπ

p

)
for any prime number p, n ∈ N, and b = 1, 2, · · · , p − 1. In particular, for b = 1 we
have

Sj(1) = ω−jωn + ω−2jω2n + · · ·+ ω−(p−1)jω(p−1)n,
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hence

(4.3) Sj(1) =

 p− 1, n− j ≡ 0 (mod p);

−1, elsewhere.

For b = p− 1 we have

(4.4) Sj(p− 1) = (−1)
n
p−1∑
k=1

ω−kj = (−1)
n

(p− 1) =

 p− 1, n is even;

−1, n is odd.

For b = 2, if n− j ≡ d (mod p), i.e. n− j = cp+ d, we have

Sj(2) =

n∑
k=0

(
n

k

)(
ωn−j+k + ω2(n−j+k) + · · ·+ ω(p−1)(n−j+k)

)
.

In a similar way as in Lemma 2.1. we get

(4.5) Sj(2) =



c∑
i=0

(
n− j
ip

)
p− 2n d = 0,

c−1∑
i=0

(
n− j

(p− d) + ip

)
p− 2n 0 < d 6

⌊
p
2

⌋
,

c∑
i=0

(
n− j

(p− d) + ip

)
p− 2n d >

⌊
p
2

⌋
.

Likewise, for general b we arrive in similar formulas as in the case j = 0, by replacing
n with n− j.
Remark 3. As in Section 3, sums of type (4.2) may be evaluated via formulas like,
(4.5).
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