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On two families of stochastic predation models with Allee

effect

Pablo Aguirre

Abstract. Two classes of stochastic models of predator-prey interaction with
Allee effect on prey are presented in this paper. Both families are introduced
as generalizations of Leslie type predation models with Holling type functional
response. The stochastic perturbations are considered of polynomial kind in order
to model environmental random noise affecting both species. The only difference
between both families of models is the way the Allee effect is modeled, namely,
by means of a generic term whose conveniently chosen properties give rise to a
behavior that is representative of either additive or multiplicative Allee effect,
respectively.

We show that both classes of models are well-posed in the sense that any
positive solution starting in the open first quadrant remains in that region and,
hence, it never becomes negative. In the particular case when the random noise is
absent, we find that all the solutions are bounded for both sets of models. We also
prove that the stochastic solutions exist, are unique in pathwise sense and have
bounded moments. Moreover, we find that, as a consequence of our modeling
approach, for sufficiently low population densities, the solutions of the random
systems behave like the associated deterministic trajectories and, in doing so, the
overall dynamics is determined by the features of the Allee effect.

1. Introduction

Population models are a key tool to understand the interactions of one or more
species in time [4, 24, 25]. Of special interest is the situation of a low density
population that faces difficulties to grow and avoid extinction. This is commonly
known as the Allee effect [6, 35]. This phenomenon is reportedly generated by the
difficulty of finding mates, social interaction or predation [12, 19, 31], among other
mechanisms. Typically, the Allee effect induces a population growth rate to decrease
under some minimum critical level [11], and sometimes even to become negative,
creating an extinction threshold —commonly known as the Allee threshold— that
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the population has to overcome in order to survive [11, 14, 18, 42]. In this paper,
we are interested in the presence of a species subjected to a predation-driven Allee
effect [15, 16, 26, 32]. Indeed, if the prey population is of a sufficiently small size, it
tends to have difficulties to show an antipredator behavior, that is, to better defend
or disguise themselves from the predator [21, 40, 45, 46]. See also Table 2 in [22]
for a wide range of Allee effects generated by predation.

The Allee effect may also interact with random environmental conditions such as
alien species invasions [33] or other catastrophic events [10]; see also [1, 5] and the
references therein for more details. As a consequence, the amplitude of population
fluctuations may increase and even drive a population to extinction [7, 18, 39].

In this paper, two classes of stochastic predator-prey models are proposed in which
the prey population is subjected to an Allee effect. The only difference between both
families is the way the Allee effect is modeled. We first consider the approach of
modeling the Allee effect by means of adding a suitable (negative) term —called an
Allee function throughout— in the prey growth rate in what is traditionally known
as an additive Allee effect [3, 4, 17, 42]. This type of model is the subject of section
3. The second approach is to multiply an Allee function to the classic logistic growth
rate in the prey equation; we have called this form a multiplicative Allee effect [4] as
opposed to the additive case; see also [23]. The family of models with multiplicative
Allee effect is treated in section 4. In both additive and multiplicative families, the
corresponding Allee function is not stated explicitly but given a few suitably chosen
basic generic properties that agree with, and generalise, a number of concrete realistic
models studied recently [5, 23, 44]. This is the main reason why we speak of families
of models.

Both classes of models show some common ingredients as well. In the same spirit
of modeling the Allee effect, the predator rate consumption is conveniently modeled
by a generic predation function that aims to reproduce (and generalise) the common
properties of the well-known class of (smooth) Holling type functional responses [34,
37, 40, 43]; see also [3, 4] and the references therein for further discussion. On
the other hand, we assume that both families of models are of Leslie type [30, 44],
i.e., one considers that the typical environmental carrying capacity of the predator
is proportional to prey abundance as in the May-Holling-Tanner model [9] and other
models recently analyzed [3, 4, 24, 37]. Finally, a random noise —associated to the
environment of the populations [5, 39]— affects independently the growth rates of
both preys and predators and its intensity is of polynomial type in the population
sizes.

The deterministic scenario of the multiplicative case has been recently studied
in [2] in terms of sufficient conditions for the occurrence of different bifurcations. In
turn, in this work, for each family of stochastic predation models, we show that the
model is well-posed in the sense that there can not be populations with negative num-
ber of individuals; we also show that the deterministic solutions are always bounded.
Even though each system does not satisfy a globally Lipschitz condition, we prove
that a weaker one-sided Lipschitz condition holds which allows us to show that the
stochastic solutions have sample pathwise uniqueness and bounded moments. In ad-
dition, we find that for sufficiently low populations, the trajectories of the stochastic
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systems behave like the ones from the associated deterministic models, that is, the
variability of the solution process dies down as the populations decreases.

This paper is structured as follows: The basic notation, definitions and general
setting are presented in section 2. In section 3 we study the case of an additive Allee
effect. Section 4 treats the multiplicative Allee effect. Finally, in section 5 we sumarize
and discuss the main results in this paper, as well as explore possible future challenges
of research.

2. Problem set-up

We work with a system of Ito’s stochastic differential equations of the form

(2.1) dX(t) = F (x(t), y(t)) dt+G(x(t), y(t)) dW(t),

where X(t) = (x(t), y(t))T represents the vector of population densities of prey (x)
and predator (y) species at time t > 0. The vector field F induces a flow that governs
the deterministic dynamics. The matrix

G(x, y) =

(
xσ11(x, y) xσ12(x, y)
y σ21(x, y) y σ22(x, y)

)

models the intensity of the random perturbations, where the coefficients σij(x, y) are
polynomials of degree lij > 0. Finally, W(t) = (W1(t),W2(t))

T is a two-dimensional
Brownian motion.

The polynomial random noise in (2.1) is a generalization of multiplicative-type
stochastic perturbations as used in [5, 37] and in previous works for Lotka-Volterra
type models in [8, 13, 29, 34, 41].

We distinguish two types of models of the form (2.1) which depend on the way
the Allee effect is modeled in the vector field F.

2.1. Additive Allee effect. By adding a suitable term −A(x) in the well-known
logistic equation [18], we obtain a model with the so-called additive Allee effect [3, 4,
5, 42]; we will say that A(x) is an Allee function. We also denote the predator rate
consumption as φ(x). In this setting, our model with additive Allee effect is given by
the system
(2.2)





dx =
[
r
(
1− x

k
−A(x)

)
x− φ(x) y

]
dt+ x [σ11(x, y) + σ12(x, y)] dW1(t);

dy =
[
s
(
1− y

nx

)
y
]
dt+ y [σ21(x, y) + σ22(x, y)] dW2(t);

where (x(t), y(t)) ∈ D := {(x, y) ∈ R
2|x > 0, y > 0}. Model parameters have the

following meanings: r > 0 (resp. s > 0) is the intrinsic growth rate or biotic potential
of the population x (resp. y), and k > 0 is the environment carrying capacity of x
[38]. Moreover, the conventional environmental carrying capacity Ky of the predator
is proportional to prey abundance x [38], that is, Ky = nx, where n > 0.

We assume that the Allee function A(x) is of class C∞ in D and satisfies the
following conditions:

(A.1) A(x) > 0, for all x > 0.
(A.2) limx→0+ A(x) = M < ∞, with M > 0.
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(A.3) limx→∞ A(x) = 0.

Note that the conditions (A.1)–(A.3) are in agreement with the features found in
concrete realistic models with additive Allee effect; see [4, 42] for instance.

In addition, the functional response φ(x) is also smooth enough in D and is as-
sumed to satisfy the following conditions:

(B.1) limx→0+ φ(x) = 0.
(B.2) φ′(x) > 0, for all x > 0.
(B.3) limx→∞ φ(x) = N < ∞.

A predation rate function φ(x) that satisfies conditions (B.1)–(B.3) is a generalisation
of a Holling-type functional response II–IV [40, 43, 45, 46]. In particular, conditions
(B.1) and (B.2) imply that φ(x) > 0, for all x > 0.

Model (2.2) is the subject of section 3.

2.2. Multiplicative Allee effect. The second class of models that we consider
in this paper is given by the so-called multiplicative Allee effect in the following system:

(2.3)





dx =
[
r x

(
1− x

k

)
A(x)− φ(x) y

]
dt+ x [σ11(x, y) + σ12(x, y)] dW1(t);

dy =
[
s y

(
1− y

nx

)]
dt+ y [σ21(x, y) + σ22(x, y)] dW2(t);

where (x(t), y(t)) ∈ D. Note that the domain D and the parameters in (2.3) have the
same definitions as those of (2.2). The term A(x) —also called an Allee function—
is now multiplying the classic logistic expression; hence the name of this modeling
approach. Moreover, it is assumed that the function φ satisfies conditions (B.1)–
(B.3) as well, so that the only modification in (2.3) is due to the inclusion of the
multiplicative Allee effect.

More concretely, we assume that A(x) is a C∞ function in D and satisfies the
following conditions:

(C.1) There exists a value m ∈ R with |m| < k, such that A(m) = 0.
(C.2) A′(x) > 0, for all x > 0.
(C.3) limx→0+ A(x) = M < ∞.

With these properties, equation (2.3) emerges as a generalization of a number of
proposed models with multiplicative Allee effect; see [4, 23, 25] for instance. Model
(2.3) is the subject of section 4.

3. Model with additive Allee effect

We refer to model (2.2) using the vector notation in (2.1) whenever useful.
Our first result deals with the issue of the well-posedness of model (2.2) in the

sense that for any given initial condition in D, the corresponding solution remains in
D.

Lemma 3.1. The domain D is invariant under system (2.2).

Proof Lemma 3.1. Our aim is to show that no trajectory of (2.2) crosses the
positive axes of R2.

Let F = (F1, F2)
T denote the components of the deterministic vector field F.

Along the axis {y = 0}, the stochastic system (2.2) has the form dX = (dx, 0)T ;
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hence, the x-axis is invariant under the system (2.2). On the other hand, the y-axis
is not part of the domain D since F2 is not defined along the axis {x = 0}. To deal
with this, we extend the vector field F to the y-axis by means of the transformation

(3.1) (x, y, t) 7→

(
x, ny,

xt

ns

)

and the change of parameters

(3.2) (r, k, s, n) 7→

(
r, k,

1

β
,
rβ

αk

)
.

In this way, the new vector field, denoted as F̃ is given as

(3.3) F̃ :

{
ẋ = α (k − x−A(x)) x2 − β φ(x)x y;
ẏ = y (x− y).

From conditions (A.2) and (B.1), the vector field F̃ is well defined in the axis {x =
0} and is a qualitatively equivalent extension of F to the closure of D, i.e., the change
of coordinates (3.1) and reparameterization (3.2) define a biunique diffeomorphism

between orbits of F in D and orbits of F̃ in the same domain; we refer to [20, 27]

for details on topological equivalency of vector fields. Since F̃(0, y) = (0,−y2)T , F̃ is

invariant along the axis {x = 0}. Hence, no orbit of F̃ crosses the y-axis. It follows
that every orbit of F in the interior of the first quadrant remains inside that region.

Finally,

G(0, y) =

(
0 0

y σ21(x, y) y σ22(x, y)

)
.

Hence, every solution in D of the stochastic system (2.2) remains in D. 2

3.1. Boundedness. Next we want to verify that all the solutions of the associ-
ated deterministic system remain bounded.

From the proof of Lemma 3.1, we consider the topologically equivalent dynamics
induced by the extended vector field (3.3).

Let ω > k be arbitrary but fixed. The task is to prove that the set

(3.4) Dω := {(x, y) ∈ R
2 : 0 6 x < ω, 0 6 y < ω}

is invariant by examining the dynamics in its boundary ∂Dω, which is the square of
vertices (0, 0), (ω, 0), (ω, ω) and (0, ω); see Fig. 1.

Let us define the function fω : D −→ R, given by fω(x, y) = x − ω and consider
the vertical line segment

Vω = f−1
ω (0) ∩ {0 6 y 6 ω}

in the (x, y)-plane. Geometrically, the set f−1
ω (−∞, 0) is a vertical stripe that extends

in the y-direction. Now we prove that every trajectory of the vector field F̃ that crosses
the line f−1

ω (0) —and in particular the segment Vω— enters the region f−1
ω (−∞, 0)

transversally; see Fig. 1. Since F̃ is tangent to every solution, this is equivalent to
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Figure 1. The invariant set Dω and the lines f−1
ω (0) and g−1

ω (0)
defined for an arbitrary but fixed ω > k.

prove that the vector field satisfies F̃ · ∇fω < 0 in every point on the line f−1
ω (0) for

a suitable choice of ω. We have that for every (x, y) = (ω, y) ∈ f−1
ω (0):

ϕω(y) := F̃ · ∇fω = −β φ(ω)ωy + αω2 (k − ω −A(ω)) ,

From conditions (B.1) and (B.2), geometrically, the graph of ϕω(y) is a straight
line with negative slope −β φ(ω)ω < 0 and intercept αω2 (k − ω −A(ω)). Since
A(ω) > 0 for every ω > 0 —from condition (A.1)—, then for every ω > k the
following inequalities hold:

(3.5) k − ω < 0 < A(ω).

Hence, for every ω > k, ϕω(y) < 0 as desired.
Similarly, let gω : D −→ R be given by gω(x, y) = y − ω. Then,

F̃ · ∇gω = ω(x− ω) < 0,

for every point (x, y) = (x, ω) with x < ω. Therefore, for every point (x, y) in the
horizontal line segment Hω = g−1

ω (0) ∩ {0 6 x 6 ω} its associated trajectory crosses
this line transversally towards the region g−1

ω (−∞, 0); see Fig. 1.
Furthermore, from the proof of Lemma 3.1, the axes x = 0 and y = 0 are invari-

ant. In particular, along the line x = 0, F̃(0, y) = (0,−y2)T and, hence, trajectories
converge to the origin (x, y) = (0, 0). On the other hand, along the line y = 0,

F̃(x, 0) =
(
αx2(k − x−A(x)), 0

)T
. From (3.5), αx2(k − x − A(x)) < 0 for every

x > ω > k, and the solutions decay. As a consequence, no trajectory along the
coordinate axes converge to infinity.

To sum up, for any arbitrary ω > k the set Dω is invariant, i.e., every solution
inside Dω does not leave this region again in forward time and, in particular, these
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solutions remain bounded. Since the value of ω > k is arbitrary, we have the following
theorem:

Theorem 3.1. Let D = D ∪ {x = 0} be the extension of D in R
2 to the axis

x = 0 and let Dω be as in (3.4). Then for any given initial condition (x(0), y(0)) ∈ D,
there is a value ω∗ > k such that the trajectory (x(t), y(t)) of (3.3) through the point
(x(0), y(0)) is entirely contained, for t > 0, in the bounded set Dω for every ω > ω∗.

3.2. Main results on the stochastic model. The effect of the random noise
in system (2.2) becomes stronger in a sufficiently small neighbourhood of the curves
F−1
1 (0) ∪ F−1

2 (0), i.e., near the nullclines of F. Moreover, in the particular case when
the matrix G only contains terms of degree 1, by Ito’s rule, near the set F−1

1 (0) ∪

F−1
2 (0), system (2.2) behaves like z(t) ≈ z0 exp

(
σW (t)− σ2t

2

)
, where z stands for x

or y, and W (t) is the corresponding Brownian motion with (constant) intensity σ.
Furthermore, since the stochastic perturbations in (2.2) are proportional to the

population sizes, the closer an orbit gets to the origin (0, 0) in R
2, the smaller the

random fluctuations are. Hence, in doing so, a trajectory tends to ‘look like’ the
deterministic solutions near the origin. As a consequence, for low populations, the
routes to mutual extinction of prey and predator become increasingly less dependent
on the environmental noise.

In the following results, we will show that the solutions of (2.2) have sample
pathwise uniqueness and bounded moments. One of the main technical details is that,
by construction, the deterministic vector field F only satisfies a local Lipschitz-type
condition in every point and, due to the term y

nx
, F is not globally Lipschitz. To obtain

our result, we first need to prove that the system (2.2) satisfies a so-called one-sided
Lipschitz condition. In what follows, 〈·, ·〉 denotes the euclidean inner product and | · |
denotes both the euclidean norm or the Frobenius matrix norm.

Lemma 3.2. Consider the vector notation (2.1) for the system (2.2). Then for
the vector field F and the matrix G there exist constants λ, µ > 0 such that

(3.6) 〈u− v,F(u)− F(v)〉 6 λ |u− v|2, ∀u,v ∈ D,

(3.7) |G(u) −G(v)|2 6 µ |u− v|2, ∀u,v ∈ D.

Proof Lemma 3.2. Let F = (F1, F2)
T denote the components of the determin-

istic vector field F and let u = (u1, u2), v = (v1, v2) ∈ D.
Let us suppose initially the case u1 > v1.
Due to properties (A.1) and (B.2) in section 3, we have F1(x, y) 6 rx, for all

(x, y) ∈ D. Then the following inequalitites hold:

(u1 − v1)F1(u) 6 (u1 − v1)ru1,

(u1 − v1)F1(v) 6 (u1 − v1)rv1.

Subtracting both inequalities leads to:

(3.8) (u1 − v1)[F1(u)− F1(v)] 6 r(u1 − v1)
2.
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By direct computation it is clear that inequality (3.8) also holds when u1 6 v1. Indeed,
one only has to substract the following inequalities:

(v1 − u1)F1(v) 6 (v1 − u1)rv1,
(v1 − u1)F1(u) 6 (v1 − u1)ru1.

In particular, if u1 = v1, (3.8) is satisfied in a trivial way.
Analogously, since F2(x, y) 6 sy, for all (x, y) ∈ D, we have:

(3.9) (u2 − v2)[F2(u)− F2(v)] 6 s(u2 − v2)
2.

From (3.8) and (3.9) we obtain

(u1 − v1)[F1(u)− F1(v)] + (u2 − v2)[F2(u)− F2(v)] 6 λ
(
(u1 − v1)

2 + (u2 − v2)
2
)

with λ = max{r, s}, as desired. Finally, inequality (3.7) follows directly from the fact
that the entries of G are polynomials, and so, globally Lipschitz functions. 2

We say that two solutions X(t) and X̃(t) of (2.1) are the same if they have, almost
surely, the same sample trajectories for t ∈ [0, T ], i.e.,

P

[
sup

06t6T

|X(t)− X̃(t)| > 0

]
= 0.

With this definition in mind, we prove the uniqueness of solutions in system (2.2).

Theorem 3.2. For any initial condition X0 ∈ D, system (2.2) has a unique
solution X(t) such that X(0) = X0.

Proof of Theorem 3.2. Consider the translation given by

(3.10) T : R2 −→ R
2, such that (x, y) 7→ (x− x0, y − y0),

with (x0, y0) ∈ D. The change of coordinates T is a C∞−conjugacy, that is, trajectories
of F are biuniquely mapped by T to trajectories of the equivalent vector field, denoted

as F̃, preserving time scale; see [20, 27] for further details. Moreover, F̃(x, y) =

F(x+ x0, y + y0), for all (x, y) ∈ D̃ := T −1(D). In particular, 0 := (0, 0) ∈ D̃.

From Lemma 3.2, for all u ∈ D̃ we have:

〈F̃(u),u〉 = 〈F̃(u)− F̃(0),u〉+ 〈F̃(0),u〉

6 λ|u|2 + |F̃(0)||u|

6
1
2 |F̃(0)|

2 +
(
λ+ 1

2

)
|u|2,

and

|G̃(u)|2 6 2|G̃(0)|2 + 2|G̃(u)− G̃(0)|2 6 2|G̃(0)|2 + 2µ|u|2,

where G̃(x, y) := G(x + x0, y + y0), with (x, y) ∈ D̃. Hence:

(3.11) max
{
〈F̃(u),u〉, |G̃(u)|2

}
6 α+ β|u|2, ∀u ∈ D̃,

where α = max
{

1
2 |F̃(0)|

2, 2|G̃(0)|2
}

and β = max
{(

λ+ 1
2

)
, 2µ

}
. In this way, the

existence and uniqueness of solutions of system (2.2) follows directly from Theorem
2.3.5 in [36], the C∞−conjugacy (3.10) and inequality (3.11). 2
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The following corollary on the boundedness of moments is a direct consequence
of the one-sided Lipschitz condition in Lemma 3.2 and from Lemma 3.2 in [28].

Corollary 3.1. For every p > 2 and for any initial point X0 ∈ D there exists
C = C(p, T ) > 0 such that the solution X(t) of (2.2) satisfies:

E

[
sup

06t6T

|X(t)|p
]
6 C (1 + E[|X0|

p ]) .

4. Model with multiplicative Allee effect

In this section we explore the class of models (2.3). Once again, for the sake
of simplicity, we use the vector notation in (2.1) to refer to model (2.3) whenever
useful. In particular, we keep the notation F = (F1, F2)

T for the components of the
deterministic vector field F.

The results and analysis for (2.3) are similar to those for model (2.2), namely, the
effect of the stochastic perturbations in the system (2.3) is stronger in a sufficiently
small neighbourhood of the curves F−1

1 (0) ∪ F−1
2 (0). Moreover, in the particular

case when G only contains terms of degree 1, by Ito’s rule, near the set F−1
1 (0) ∪

F−1
2 (0), system (2.3) behaves like z(t) ≈ z0 exp

(
σW (t)− σ2t

2

)
, where z stands for

x or y, and W (t) is the corresponding Brownian motion with (constant) intensity
σ. Furthermore, the closer a trajectory gets to the origin (0, 0) in R

2, the smaller
the random fluctuations are, and as a consequence, the solution ‘behaves’ like the
deterministic solutions near the origin.

Lemma 4.1. The domain D is invariant under system (2.3).

Proof of Lemma 4.2.
We consider an extended vector field F̃ given as

(4.1) F̃ :

{
ẋ = αx2(k − x)A(x) − β φ(x)x y;
ẏ = y (x− y);

which is obtained by means of the transformation (3.1) and the change of parameters
(3.2) on F in (2.3). Indeed, conditions (B.1) and (C.3) ensure that (4.1) is well
defined on the axis x = 0. The proof follows the same arguments as those of Lemma
3.2. 2

Theorem 4.1. Every solution of the deterministic system associated to (2.3) is
bounded. More precisely, let D = D ∪ {x = 0} be the extension of D in R

2 to the axis
x = 0 and let Dω be as in (3.4). Then for any given initial condition (x(0), y(0)) ∈ D,
there is a value ω∗ > k such that the trajectory (x(t), y(t)) of (4.1) through the point
(x(0), y(0)) is entirely contained, for t > 0, in the bounded set Dω for every ω > ω∗.

Proof Theorem 4.1. From the proof of Lemma 4.2, we consider the topologically
equivalent dynamics induced by the extended vector field (4.1).

Following similar arguments as those of the proof of Theorem 3.1 in Section 3.1,
it is easy to prove that for any w > k arbitrary but fixed, the set Dω is invariant, i.e.,
every solution inside Dω does not leave this region again in forward time and, as a
consequence, these solutions remain bounded. 2
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For model (2.3) the deterministic vector field F satisfies a local Lipschitz-type
condition in every point of D, but it is not globally Lipschitz. Hence, in order to
obtain uniqueness of solutions, in the next lemma we prove that F satisfies the one-
sided Lipschitz condition.

Lemma 4.2. Consider the vector notation (2.1) for the system (2.3). If the Allee
function A(x) in (2.3) is bounded in D, then there exist constants λ, µ > 0 such that

〈u− v,F(u)− F(v)〉 6 λ |u− v|2, ∀u,v ∈ D,

|G(u) −G(v)|2 6 µ |u− v|2, ∀u,v ∈ D.

Proof Lemma 4.2. The entries of the matrix G are polynomial, hence the
inequality in the statement for G follows.

Regarding the result on F, our goal is to obtain suitable bounds for F1(x, y) such
that we can follow the same steps in the proof of Lemma 3.2. For a start, due to
property (B.2) in section 2.1, we have F1(x, y) 6 rx

(
1− x

k

)
A(x), for all x > 0.

Let us first assume the case 0 < x < m where m is as in condition (C.1) in section
2.2. Then, condition (C.2) ensures that A(x) < 0. Hence,

F1(x, y) 6
rA∗

k
x2

6
rA∗m

k
x

where A∗ > 0 is the maximum value of |A(x)|. Therefore, since m < k, one obtains
F1(x, y) 6 rA∗x.

In the case x = m, one has F1(x, y) 6 0 < x.

Finally, if x > m, from conditions (C.1) and (C.2), one obtains A(x) > 0. Then,
F1(x, y) 6 rA∗x.

From the arguments in the proof of Lemma 3.2, it follows that the statement of
Lemma 4.2 holds for λ = max{1, rA∗, s}. 2

Finally, Theorem 4.2 and Corollary 4.1 below follow from the one-sided Lipschitz
condition in Lemma 4.2 and the same arguments given in section 3.

Theorem 4.2. For any initial condition X0 ∈ D, system (2.3) has a unique
solution X(t) such that X(0) = X0.

Corollary 4.1. For every p > 2 and for any initial point X0 ∈ D there exists
C = C(p, T ) > 0 such that the solution X(t) of (2.3) satisfies:

E

[
sup

06t6T

|X(t)|p
]
6 C (1 + E[|X0|

p ]) .

5. Conclusions

The purpose of this paper has been to introduce two classes of models of predator-
prey interaction and Allee effect on prey. Each family of models proposes a gener-
alisation of the main mathematical characteristics of the additive Allee effect and of
the multiplicative Allee effect, respectively. In both cases, the prey consumption by
the predator is modeled by a generic smooth function which presents the geometric
features of a Holling functional response of types II–IV. Our families of models also
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assume that environmental random noise affects both species and it is modeled by
means of polynomial stochastic perturbations.

For each family of stochastic models, we proved that any solution starting in the
open first quadrant remains in that region. In particular, this property prevents any
population to become negative. In the same spirit of model validation, we showed
that, in the special case when the random noise is zero, all the realistic solutions are
bounded. We also proved that, for both classes of models, the stochastic solutions
exist, are unique in pathwise sense and have bounded moments. Moreover, if both
populations have a low density, the trajectories of the stochastic system tend to ‘look
like’ the solutions from the associated deterministic model and, hence, the time evolu-
tion of the species is increasingly governed by the Allee effect. On the other hand, as
a consequence of our modeling approach, the effect of the environmental randomness
is stronger for higher population sizes.
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[24] E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Dynamical complexities
in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Applied
Mathematical Modelling 35 (2011) 366–381.
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