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Some integrals related to the Basel problem

Khristo N. Boyadzhiev

Abstract. We evaluate several arctangent and logarithmic integrals depending

on a parameter. This provides a closed form summation of certain series and also

integral and series representation of some classical constants.

1. Introduction

The famous Basel problem posed by Pietro Mengoli in 1644 and solved by Euler in
1735 asked for a closed form evaluation of the series

1 +
1

22
+

1

32
+ ...

(see [7], [9], [10]). Euler proved that

(1) 1 +
1

22
+

1

32
+ ... =

π2

6
.

In the meantime, trying to evaluate this series, Leibniz discovered the representation

−
∫ 1

0

log (1− t)
t

dt = 1 +
1

22
+

1

32
+ ...,

but was unable to find the numerical value of the integral (see comments in [7]). How
to relate this integral to π2/6 is discussed in [7] and [10]; it is shown that by using
the complex logarithm one can solve the Basel problem. There exist, however, other
integrals which can be used to quickly prove (1) without complex numbers. Possibly,
the best example is the integral

(2)

∫ 1

0

arcsinαx√
1− x2

dx =
1

2
[Li2(α)− Li2(−α)]

for |α| ≤ 1 . Here

Li2(α) =

∞∑
n=1

αn

n2
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is the dilogarithm [12]. Setting α = 1 in (2), the left hand side becomes

1

2
(arcsinx)

2
∣∣∣ 1

0
=
π2

8

while the RHS is

1

2
[Li2(1)− Li2(−1)] =

3

4
Li2(1) =

3

4
(1 +

1

22
+

1

32
+ ...)

and (1) follows immediately. This proof was recently published by Habib Bin Muzaffar
in [13]. It is possibly one of the best solutions to the Basel problem. Euler also used
the arcsin function in one of his proofs. Euler’s approach is explained on pp. 85-86 in
[15].
In this short paper we follow the idea from [13] and consider some other integrals
that can be associated with the Basel problem, either solving it, or leading to similar
results. In the process we evaluate a number of integrals from the tables [8] and [14].
We start with three arctangent integrals in Section 2, and then we also discuss two log-
arithmic integrals. Among other things, in Section 2 we find the curious representation
(equation (8) below)

π 3 = 192

∞∑
n=1

1

n

(
1 +

1

3
+ ...+

1

2n− 1

)(
1− 1

3
+ ...+

(−1)n−1

2n− 1
− π

4

)
.

In Section 3 we focus on several integral and series representation of some classical
constants (see equations (15) and (17) below). In particular, we list two integral rep-
resentations of ζ(3) and evaluate one special arctangent integral (see (16) and (19)
below).

2. Special integrals with arctangents and logarithms
At the end of [13] it was mentioned that instead of arcsin (αx) in (2) one could use
arctan (αx). However, as we shall see here, integrals with arctangents are not so
simple.
Two natural candidates for the described method are clear

(3)

∫ ∞
0

arctanαx

1 + x2
dx, and

∫ 1

0

arctanαx

1 + x2
dx.

When α = 1, these integrals evaluate to a multiple of π2 and in order to prove (1) we
need to evaluate them also as a multiple of the series Li2(1). Here is how the fist one
works.

Proposition 1. For any 0 < α < 1 ,

(4) 2

∫ ∞
0

arctanαx

1 + x2
dx = logα log

1− α
1 + α

+ Li2(α)− Li2(−α).

It easy to see (by using limits) that the RHS extends to α = 0 and α = 1. The function
logα log 1−α

1+α becomes zero for α = 0 and α = 1. With α = 1 we compute immediately

(arctanx)2
∣∣∞

0
=
π2

4
=

3

2
Li2(1)



SOME INTEGRALS RELATED TO THE BASEL PROBLEM 3

and hence π2

6 = Li2(1).

Proof. Let J(α) be the LHS in (4). By differentiation (for 0 < α < 1)

J ′(α) = 2

∫ ∞
0

x

(1 + α2x2)(1 + x2)
dx =

1

1− α2

∫ ∞
0

(
2x

1 + x2
− 2α2x

1 + α2x2

)
dx

=
1

1− α2

[
log

1 + x2

1 + α2x2

]∞
0

=
−2logα

1− α2
.

Thus, since J(α) is defined for α = 0

J(α) =

∫ α

0

−2logt

1− t2
dt.

Integrating by parts we find

J(α) = logαlog
1− α
1 + α

+

∫ α

0

(
log(1 + t)

t
− log(1− t)

t

)
dt

= logαlog
1− α
1 + α

+ Li2(α)− Li2(−α).

This integral was recently evaluated in [2]. It is missing from the popular table [8],
but appears in [14] as entry 2.7.4 (12). However, it appears there in a different form

2

∫ ∞
0

arctanαx

1 + x2
dx =

π2

3
− 1

2
log2(1 + α)− Li2

(
1

1 + α

)
− Li2(1− α)

which is less helpful for proving (1) .
Now we look at the second integral in (3). Although it does not lead directly to the
proof of (1), it provides the closed form evaluation of one interesting series.

Proposition 2. For every |α| ≤ 1 we have

(5) 2

∫ 1

0

arctanαx

1 + x2
dx =

∞∑
n=0

(
log2−H −n

) α2n+1

2n+ 1
,

where

H −n = 1− 1

2
+

1

3
+ ...+

(−1)n−1

n
, n = 1, 2, ...; H −0 = 0,

are the skew-harmonic numbers (see [4]).
In particular, for α = 1 we find from (5)

(6)
π2

16
=

∞∑
n=0

(
log2−H −n

) 1

2n+ 1
.

Note that H −n are the partial sums in the expansion of log2 and the series in (6) is
alternating.

Proof. Using the Taylor series for arctan (αx) we write∫ 1

0

arctanαx

1 + x2
dx =

∫ 1

0

{ ∞∑
n=0

(−1)nα2n+1x2n+1

2n+ 1

}
dx

1 + x2
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=

∞∑
n=0

(−1)nα2n+1

2n+ 1

{∫ 1

0

x2n+1

1 + x2
dx

}
.

Entry 3.241(1) in [8] says that∫ 1

0

x2n+1

1 + x2
dx =

1

2
β(n+ 1),

where β(x) is the incomplete beta function (see 8.370, pp. 947-948 in [8] and also [5]).
According to equation 8.375 (2) in [8] we have

β(n+ 1) = (−1)n
(
log2−H −n

)
.

Putting all these pieces together we arrive at (5). The proof is completed.
It would be interesting to see what happens when in Proposition 2 we replace arctanαx
by (arctanαx)2, which leads to π3 on the LHS.
With the notation

hn = 1 +
1

3
+

1

5
+ ...+

1

2n− 1
(n = 1, 2...), h 0 = 0

we have

Proposition 3. For every |α| ≤ 1,

(7)

∫ 1

0

(arctanαx)2

1 + x2
dx =

∞∑
n=1

hn
n

(
1− 1

3
+ ...+

(−1)n−1

2n− 1
− π

4

)
α 2n.

In particular, when α = 1, we have the curious representation

(8) π 3 = 192

∞∑
n=1

hn
n

(
1− 1

3
+ ...+

(−1)n−1

2n− 1
− π

4

)
.

Proof. Using the Taylor series for |x| ≤ 1,

arctan x = x− x3

3
+
x5

5
+ ...+

(−1)n−1x2n−1

2n− 1
+ ...,

it easy to compute the expansion

(arctanαx)2 =

∞∑
n=1

(−1)n−1

n
hn α

2nx2n.

Therefore, according to entry 3.241(1) in [8]∫ 1

0

(arctanαx)2

1 + x2
dx =

∞∑
n=1

(−1)n−1

n
hnα

2n

{∫ 1

0

x2n

1 + x2
dx

}
.

=

∞∑
n=1

(−1)n−1

n
hnα

2n

{
1

2
β

(
n+

1

2

)}
,

where, as above, β(x) is the incomplete beta function. According to the representation

β(z) =
∑∞
k=0

(−1)k

z+k
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(see 8.372 (1) in [8]) we compute

1

2
β

(
n+

1

2

)
=

1

2n+ 1
− 1

2n+ 3
+

1

2n+ 5
+... = (−1)n

(
π

4
− 1 +

1

3
− 1

5
+ ...+

(−1)n

2n− 1

)
,

and this finishes the proof.
Next we present two logarithmic integrals which can naturally be associated to the
arctangent integrals in (3). Using the same technique, differentiation on a parameter,
they can be evaluated to somewhat similar outcomes.

Proposition 4. For every −1 < α ≤ 1 ,

(9)

∫ ∞
0

log(1 + αx)

x (1 + x)
dx = logα log(1− α) + Li2(α).

When α = 1 this is the integral∫ ∞
0

log(1 + x)

x (1 + x)
dx =

π2

6
,

which is equivalent to entry 4.295.18 in [8] and is also a particular case of entry
2.6.10.52 in [14].

Proof. Setting h(α) to be the LHS we have

h′(α) =

∫ ∞
0

1

(1 + αx) (1 + x)
dx =

[
1

1− α
log

1 + x

1 + αx

] ∞
0

=
1

1− α
log

1

α
=
−logα

1− α
.

From here, integrating by parts,

h(α) =

∫ α

0

−logt

1− t
dt = logαlog(1− α)−

∫ α

0

log(1− t)
t

dt

= logαlog(1− α) + Li2(α).

Done!

Proposition 5. For every −1 < α ≤ 1 ,

(10)

∫ 1

0

log(1 + αx)

x (1 + x)
dx = Li2

(
1

2

)
− Li2

(
1− α

2

)
.

When α = 1, this is entry 4.291.12 in [8] and entry 2.6.10.8 in [14].∫ 1

0

log(1 + x)

x (1 + x)
dx = Li2

(
1

2

)
=
π2

12
− 1

2
log22.

Proof. Setting g(α) to be the LHS we have

g′(α) =

∫ 1

0

1

(1 + αx) (1 + x)
dx =

1

1− α

[
log

1 + x

1 + αx

] 1

0

=
1

1− α
log

2

1 + α
.
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At the same time we notice that

d

dα
Li2

(
1− α

2

)
=
−1

1− α

∞∑
n=1

1

n

(
1− α

2

)n
=

1

1− α
log

(
1 + α

2

)
so the conclusion is

g′(α) = − d

dα
Li2

(
1− α

2

)
.

Therefore, for some constant C we have

g(α) = C − Li2
(

1− α
2

)
.

With α = 0 we compute C = Li2
(

1
2

)
and the proof is finished.

We can evaluate the integral in (10) also in terms of a power series in α. Using the
Taylor series for log(1 + αx) we compute∫ 1

0

log(1 + αx)

x (1 + x)
dx =

∫ 1

0

{ ∞∑
n=0

(−1)nαn+1xn

n+ 1

}
dx

1 + x

=

∞∑
n=0

(−1)nαn+1

n+ 1

{∫ 1

0

xn

1 + x
dx

}
=

∞∑
n=0

(−1)nαn+1

n+ 1
β(n+ 1)

=

∞∑
n=0

(log2−H−n )

n+ 1
αn+1.

Comparing this to (10) we come to the following result.

Corollary 6. For every −1 < α ≤ 1,

Li2

(
1

2

)
− Li2

(
1− α

2

)
=

∞∑
n=0

(log2−H−n )

n+ 1
αn+1.

In Particular, with α = 1,
∞∑
n=0

(log2−H−n )

n+ 1
= Li2

(
1

2

)
=
π2

12
− 1

2
log22.

(See also [4].)

3. Two integral representations for ζ(3) and a special arctangent integral

For |β| ≤ 1, let Lip(β ) =
∑∞
n=1

βn

np be the polylogarithm [12]

Lemma 7. For every |β| ≤ 1 and p ≥ 0,

(11)

∫ 1

0

1

x
(logx)p log

1− βx
1 + βx

dx = (−1)p+1Γ(p+ 1) {Lip+2(β )− Lip+2(−β ) }

(12)

∫ 1

0

1

x
(logx)p log (1− βx) dx = (−1)p+1Γ(p+ 1)Lip+2(β).
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Equation (12) is entry 2.6.19.6 in [14].

Proof. With x = e−t the first integral becomes

(−1)p+1

∫ ∞
0

tp
{
−log(1− βe−t) + log(1 + βe−t)

}
dt

= (−1)p+1
∞∑
n=1

βn

n

{∫ ∞
0

tp e−ntdt

}
+ (−1)p+1

∞∑
n=1

(−1)n−1βn

n

{∫ ∞
0

tp e−ntdt

}

= (−1)p+1Γ(p+ 1)

( ∞∑
n=1

β n

n

{
1

np+1

}
+

∞∑
n=1

(−1)n−1β n

n

{
1

np+1

})
= (−1)p+1Γ(p+ 1) (Lip+2(β )− Lip+2(−β ))

The same substitution in the second integral provides

(−1)p+1

∫ ∞
0

tp
{
−log(1− βe−t)

}
dt = (−1)p+1

∞∑
n=1

β n

n

{∫ ∞
0

tpe−ntdt

}

= (−1)p+1Γ(p+ 1)

∞∑
n=1

β n

n

{
1

np+1

}
= (−1)p+1Γ(p+ 1)Lip+2(β)

and the lemma is proved.

Corollary 8. We have the representations

(13) ζ(3) =
8

7

∫ 1

0

arctan t arctan
1

t

dt

t
,

(14) ζ(3) =

∫ 1

0

log(1 + t)log

(
1 +

1

t

)
dt

t
,

where the first integral is equivalent to

(15)

∫ 1

0

(arctan t)2

t
dt =

π

2
G− 7

8
ζ(3).

The most remarkable integral in (15) brings together three important constants, π,
the Catalan constant G, and ζ(3) . This result is known; see entry 8 in the list [1] and
also p. 18 in [6].

Proof. The starting point is equation (4), where in the integral we make the substitu-
tion t = αx to bring it to the form

2α

∫ ∞
0

arctan t

α2 + t2
dt = logα log

1− α
1 + α

+ Li2(α)− Li2(−α).

Here we divide both sides by α and integrate for α from 0 to 1,

2

∫ ∞
0

arctan t

{∫ 1

0

dα

α2 + t2

}
dt =

∫ 1

0

1

α
logα log

1− α
1 + α

dα +

∫ 1

0

1

α
{Li2(α)− Li2(−α)} dα.
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Evaluating these integrals (using the above lemma for the second one) we come to the
equation ∫ ∞

0

arctan t arctan
1

t

dt

t
= Li3(1)− Li3(−1) =

7

4
ζ(3).

We shall transform now this integral. First we split it this way:
∫∞

0
=
∫ 1

0
+
∫∞

1
, and

then in the last one we make the substitution x = 1
t to get∫ ∞

0

arctan t arctan
1

t

dt

t
= 2

∫ 1

0

arctan t arctan
1

t

dt

t
.

This proves the first representation above, equation (13) ,∫ 1

0

arctan t arctan
1

t

dt

t
=

7

8
ζ(3).

Next we use the identity (t > 0)

arctan
1

t
=
π

2
− arctan t,

and the well-known fact that ∫ 1

0

arctan t

t
dt = G,

to prove (15).
For the second representation (14) we use (9) in the form (with t = αx)

α

∫ ∞
0

log(1 + t)

t (α+ t)
dt = logαlog(1− α) + Li2(α).

Dividing by α and integrating for α from 0 to 1 we write∫ ∞
0

log(1 + t)

t

{∫ 1

0

dα

α+ t

}
dt =

∫ 1

0

1

α
logαlog(1− α) dα+

∫ 1

0

Li2(α)

α
dα,

that is, ∫ ∞
0

log(1 + t)

t
log

(
1 +

1

t

)
dt = Li3(1) + Li3(1) = 2ζ(3).

In the same way as above we transform this integral to∫ ∞
0

log(1 + t)

t
log

(
1 +

1

t

)
dt = 2

∫ 1

0

log(1 + t)

t
log

(
1 +

1

t

)
dt,

which yields (14). The proof of the corollary is finished.
We end with an extension of equation (15) to power series.

Proposition 9. For any |α| ≤ 1,

(16)

∫ 1

0

(arctanαx)2

x
dx =

1

2

∞∑
n=1

(−1)n−1hn
n2
α2n.
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In particular, for α = 1,

(17)

∞∑
n=1

(−1)n−1hn
n2

= π G− 7

4
ζ(3).

(The numbers hn were defined right before Proposition 3.)
The series (17) is entry (59) in [6].

Proof. By expanding (arctanαx)2 in power series as in the proof of Proposition 3,∫ 1

0

(arctanαx)2

x
dx =

∞∑
n=1

(−1)n−1

n
hnα

2n

{∫ 1

0

x2n−1 dx

}
=

1

2

∞∑
n=1

(−1)n−1

n2
hnα

2n.

With α = 1 the assertion (17) follows from equation (15).

Remark 10. The series and the integral in (16) can be evaluated explicitly in a closed
form by using a result of Ramanujan. Namely, Ramanujan proved that for 0 ≤ α ≤ 1,

(18)

∞∑
n=1

hn
n2
α2n =

1

2
logα log2 1− α

1 + α
+

[
Li2

(
1− α
1 + α

)
− Li2

(
α− 1

1 + α

)]
log

1− α
1 + α

−Li3
(

1− α
1 + α

)
+ Li3

(
α− 1

1 + α

)
+

7

4
ζ(3)

(see [3],p.255). We shall use the principle branch of the logarithm. The above equation
can be extended by analytic continuation in the disc |α| < 1 where the RHS is defined.
In particular, we can replace α by iα in order to obtain an alternating series. To
simplify the RHS we use the dilogarithm identity

Li2

(
1− α
1 + α

)
− Li2

(
α− 1

1 + α

)
= −logαlog

1− α
1 + α

− Li2(α) + Li2(−α) +
π2

4

and also we use the formulas log(iα) = logα + π
2 i and log 1−iα

1+iα = −2i arctanα. The
result is.

(19)

∞∑
n=1

(−1)n−1hn
n2
α2n = 2

∫ 1

0

(arctanαx)2

x
dx = Li3

(
1− iα
1 + iα

)
−Li3

(
iα− 1

1 + iα

)

−2i arctan(α)

(
Li2(iα)− Li2(−iα)− π2

4

)
− 2

(π
2
i+ log(α)

)
(arctan(α))

2− 7

4
ζ(3).

Remark 11. Propositions 3 and 9 admit natural extensions when replacing (arctanαx)2

by (arctanαx)p, for any integer p ≥ 2 . In this case we use the expansion

(20) (arctanx)p =

∞∑
n=1

A(n, p) xn,

where A(n, p) = 0 for n < p and for n ≥ p

A (n, p) =
(

(−1)
3n+p

2 + (−1)
n−p

2

) p!

2p+1

n∑
k=p

2k
(
n− 1
k − 1

)
s (k, p)

k!
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or,

A (n, p) =
(

(−1)
3n+p

2 + (−1)
n−p

2

) p!

n!2p+1

n∑
k=p

2kL(n, k) s (k, p),

(see [11], Table 3). Here s (k, p) are the Stirling numbers of the first kind and

L (n, k) =

(
n− 1
k − 1

)
n!
k! are he Lah numbers.

Thus we have

(21)

∫ 1

0

(arctanαx)p

x
dx =

∞∑
n=1

A(n, p) αn
{∫ 1

0

xn−1 dx

}
=

∞∑
n=1

A(n, p)
αn

n
;

∫ 1

0

(arctanαx)p

1 + x2
dx =

∞∑
n=1

A(n, p) αn
{∫ 1

0

xn

1 + x2
dx

}
,

that is,

(22)

∫ 1

0

(arctanαx)p

1 + x2
dx =

1

2

∞∑
n=1

A(n, p)β

(
n+ 1

2

)
αn

(see [8], entry 3.241 (1). When α = 1 we find from here

(23) πp+1 = (p+ 1)22p+1
∞∑
n=1

A(n, p)β

(
n+ 1

2

)
.
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