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The integrals in Gradshteyn and Ryzhik
Part 27: More logarithmic examples

Luis A. Medina @ and V. H. MollP

ABSTRACT. The table of Gradshteyn and Ryzhik contains many entries where
the integrand is a combination of an elementary function and the logarithmic of
another function of the same type. This paper presents proofs of some of these.
A sample of examples where the elementary function is replaced by an algebraic
function is also discussed.

1. Introduction

The compendium [5] contains a large collection of evaluation of integrals of the
form

b
(1.1) / Ry (z)In Ry(z) dx

where R; and R are rational functions. The first paper in this series [9] considered
the family

© " ade
1.2 = — f > 2 and 0.
(1.2) fn(a) /o G-Data) orn and a >
The function f,(a) is given explicitly by

(—1)"(n — 1)!

(13)  fale) = 1+ (D)0
1 [n/2] n 2j j—1 2 ne2j
- n(1+a) ]Z::o <2j> (2% = 2)(=1)’7" Bajn*(loga) _

Here ((s) is the Riemann zeta function and By; is the Bernoulli number. In particular,
(1.3) shows that (1 + a)f,(a) is a polynomial in loga.
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32 LUIS A. MEDINA AND V. H. MOLL

Other papers in this series [3, 8, 10] and also [6] considered examples of integrals
of this type. The results in [3] can be used to provide explicit expressions for an
integral of the type considered here, when the poles of the rational function Ry in
(1.1) have real or purely imaginary parts. The present paper is a continuation of this
work.

2. Some examples involving rational functions

This section considers of integrals of the form

b
(2.1) / Ry (z)In Ry (z) dx
where R; and Ry are rational functions.

Example 2.1. Entry 4.234.4 is

1 —g? 0
2.2 ———— Inaxder=——
(2.2) /0 0+ 22)° nxdr 5
To evaluate this entry, observe that
d 1—a?
(2.3) . R

dr1+a2  (1+a2)2

and integrating by parts gives

[e'e] 1_ 2 [e'e] d
(2.4) / 7x1nzdx:f/ A —
0 (1+Jj2)2 0 1+.’L‘2 2

Example 2.2. Entry 4.234.5 states that
1 2] 2
(2.5) / T 2nxda: S s .
o (1—22)(1+2) 16(2 +v/2)

To prove this use the method of partial fraction to obtain

(2.6) /1 2% Inx dx _1/1 lna:dx+1/1 lnxdx+1/1 (22 —1)Inzdx
’ o I—a)(1+a2*) 4)y 1—2 4)y 1+2 2 ), 1+t

The first integral is —72/6 according to entry 4.231.2 and the second one is —7%/12
from entry 4.231.1. These entries were established in [1]. This gives

27) /1 x2;nxdx : 7r2+1/1 (xz—l)h‘ll;vdm'
o (1—22)(1+a*) 16 2/, 1+z

To evaluate the last integral, observe that

a® -1 EOO n—1,.4n EOO n,.4n+2
(28) 1.}-7.1-4 = nzo(*l) €T + n:O(*l) €T .
Now recall the digamma function ¥(z) = T'(z)/T'(z) and the expansion of its derivative
— 1
2.9 ! = E —_—.

n=0
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Details about this function may be found in [4] and [13]. This gives

ew [ g (1) - () -+ () Q)]

The classical relation

0
2.11 I'(x)'(l—-z)=

(211) ()P —2) = ——
can be shifted to produce

2.12 r(i+a2)T(L—a)=——.
(2.12) (3+2)T(3-2) J—

Logarithmic differentiation shows that the digamma function satisfies

(2.13) ¥ (1 + x) — (1 - x> = 7 tan 7.

2 2

This appears as Entry 8.365.9 in [5]. Differentiation produces
1 1

(2.14) g <2 + :c> + v <2 — x) = % sec’ w.

Now use (2.14) and group 1/8 with 7/8 and 3/8 with 5/8 to produce

(2.15) /1 (m2—1)lnxda?_1( 4r®  4r? )_ 2
' 0 1+t 64 \2—-v2 2+v2) 82

Note 2.3. The reader should evaluate the family of integrals

1 2n
" Inx
2.16 I, = dz, N,
(2.16) [ aomaiet ne

by the method described here. The computation of the first few special values indicates
an interesting arithmetic structure of the answer.

3. An entry involving the Poisson kernel for the disk

The section discusses a single entry in [5], where the integrand involves the Pois-
son kernel for the disk. Further examples of this type will be presented in a future
publication.

Example 3.1. The next evaluation is Entry 4.233.5:
/ o Inz dx t Ina
0

22 + 2racost +a?  sint a
The integrand is related to the Poisson kernel for the unit disk D = {z € C: |z| < 1}.

Theorem 3.2. Define

(3.1)

1+ ret
then P,.(0) is given by
> . 1—12
) ; 9) = |n| in® _ )
(3.3) P (0) Z e 1—2rcosf +r?

n=—oo
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Moreover, given f defined on the boundary of D, the expression

™

(3.4) u(re’?) = L Pr(0 —t)f(e) dt

2T

—T
for 0 < r < 1, is a harmonic function on D and it has a radial limit which agrees with
f almost everywhere on the boundary of D.

The form of the Poisson kernel can be used to establish the next result.

Lemma 3.3. For a, z € R with |z| < |al,

> (—DEsin((k + 1)t)z* a’sint
3.5 _ .
(3.5) kg(] ak 2 4+ 2ax cost + a?

Note 3.4. The Chebyshev polynomial of the second kind U, (¢) is defined by the
identity

sin((n + 1)0)

(3.6) g = Up(cos?).
The result of Lemma 3.3 can be written as

= 1
3.7 U(t)ab = ———
(3.7) kz:;) K(t)z 2 —2xcost+1

Lemma 3.3 produces

R x5 dx > sin htstl
58) /0 d L (Dfsin((k+ DYRMT

x2 + 2ax cost + a? :azsintkzo ak (k+s+1)

Now write sin((k+1)t) in terms of exponential to obtain an expression for the previous
integral as

R
% dx Rstl o R . R
= Pp 1 1 7th> 1 1
/0 22+ 2axcost +a?  2ia’sint (e ( aett’ S+ ) ( it S+ ))

where

(3.9) (z,8,a) Z ot k
k=0

is the Lerch Phi function.
Now differentiate with respect to s and let s — 0 to produce

R .
Inzdx iInR ) .
3.10 = 1 1 7ztR 1 1 ”R
( )/0 2 4+ 2ax cost + a? 2asint ( og(l+e /a) —log(1 +e /CL))

i

s (Liz(—e " R/a) — Liz(—e " R/a)),

where

(3.11) Lis (2 ; /?
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is the dilogarithm function. Then use the identity

(312) i{ia(-e "Rja) - Lia(-e /) =~ [ (

to obtain

2

a? 4+ 2Racos z + R2)
dz
a

R .
Inxdx iInR . -
3.13 = log(14+e “R/a) —log(1+ e R
( )/0 22 + 2azx cost + a? 2a sint (log(1 +e /a) ~log(1 + " R/a))

1 t [a®+2Racosz + R?
— - In dz.
2asint Jf, a?

The next step is to differentiate (3.13) with respect to ¢ and let R — oco. The
left-hand side produces

i 2azInzsintdx
3.14 Ti(a,t) = .
(3.14) i(a.t) /0 (22 + 2ax cost + a?)?

Direct differentiation of the right-hand side yields

(3.15) Ty(a,t) = lim Vi(R;a,t) + Va(R;a,t)
R—o0
where
RIn R(R+ acost) 1 a®? +2aRcost + R?
3.16) Vi(R;a,t) = —
(3.16) Vi(Rsa.1) asint(a®? 4+ 2aRcost + R?) 2asint n< a?
and
] tl ) .
(B17)  Ve(Riat) = SRR a) — log(1 + et R/a)
2asin”t
cost /tln <a2+2Racosz+R2) .
2asin? ¢ 0 a? '

Proposition 3.5. The function T5(a,t) is given

(3.18) Ty(a,t) = — 24

— tcott —1).
2asint( 0 )

PROOF. Start with the computation of the limiting behavior of Vi(R;a,t). The
claim that

Ina

1 li ra,t) = .
(3.19) R Vi(R;a,1) asin(t)
is verified first.

First note that since
RInR

3.20 li
(3.20) Ao a® + 2aR cos(t) + R?

:07

then

. . R*InR 1 9 9
}%gnwvl(R,a,t) B asint}%gnoo <a2 +2aRcost + R2 iln(a 2aRcost + BY) 4 Ina ).
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The claim is equivalent to

. R?’InR 1 9 9
(3.21) B}gnoo <a2—|—2aRcost+R2 - §ln(a +2aRcost+ R°) ) =0.

The identities

(3.22) R’InR _ InR
’ a2 +2aRcost+ R?2  a2/R2 +2acost/R+ 1
and
1 1
(3.23) 3 In(a® + 2aRcost + R*) =In R + 3 In(a®/R? 4 2acost/R + 1)

can be used to see that the left-hand side of (3.21) is equivalent to

1 1
lim (1 —1) — = In(a®/R* + 2acost 1)) =o.
R%(HR<a2/R2+2acost/R+1 > 2 n(a’/ R+ 2acost/R + )) 0

It is clear that the second term vanishes as R — oo. For the first term, observe that

1 2acost 1
.24 —-1=- —
(3:24) a?/R? + 2acos(t)/R+ 1 R JrO(RQ)

and thus the first term also vanishes as R — oco. This concludes the proof.

The next step is to verify that

icottln R

(3.25)  Wa(Rja,t) = ————— (log(1+€"R/a) —log(l+e "R/a))
2a,8in” t
cost t a® + 2aR cos z + R?
P In 2 dZ
2asin”t Jo a
satisfies
t t
(3.26) lim V5(R;a,t) = — c'osz Ina
R—o00 asin”t
The proof begins with the identity
(3.27) log(1 + b/z) = log(b/z) + ;(—1)”*1%

to obtain

(3.28) log(14¢"R/a)—log(14+e " R/a) = log(e™) —log(e )+ O(a/R), as R — cc.
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The bounds 0 < ¢ < 7 imply log(e®) — log(e~%) = 2it. This gives

2 2 1
Rhm Va(Riat) — lim ( cost /1n (a + aRcosz+R ) dz_tcosz nR)
— 00 0

R—oo \ 2asin’t asin®t

t ) 2
_ cost (/ In (a + aRcosz+R ) dz—2tlnR)
R—><>o 2asin?t 0

t 2
_ cost (/ In (a +2aRcosz+R ) —1n(R2)dz>
R—>oo 2asm t 0

cost ¢ 9 9
= lim ——— [In (a® + 2aRcos z + R?) — In(R?)]dz — 2tIna | .
0

R—o00 2asin? ¢

The identity
2

t t 2 .
/[ln(a2+2aRcosz—|—R2) In(R )]dz—/ (;;2 +a(}:§bz+1> dz
0

gives the result. The proof of the Proposition is finished. O

The evaluation of entry 4.233.5 is now obtained from the identity Tj(a,t) =
T5(a,t). Observe that this implies
/OO 2arInzsintdx Ina
o (

= - tcott —1).
22 + 2azx cost + a?)? asint( «© )

(3.29)

Integrating with respect to ¢ gives (3.1). Entry 4.231.8 in [5], established in [3],
/ *® Inzdr wlna
0

3.30 —_— =
( ) 22 4 a? 2a

can be used to show that the implicit constant of integration actually vanishes. The
evaluation is complete.

4. Some rational integrands with a pole at x =1

This section contains proofs of the four entries appearing in Section 4.235. These
are integrals of the form

co b _ ,.c
(4.1) fla,b,c) := / 7Y hods
0 1 —x
where a, b, c € N. These integrals are evaluated using entry 4.254.2
oo . .p—1 l 2
(12) i —
o 1—uad g2 sin %p

To obtain this formula, start from 3.231.6

[e%e] xp—l _ xq—l
(4.3) / ———dx = 7w (cot mp — cot wq) ,
0 1-2z
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established in [7] and make the change of variables t = 2:¢ to produce

0 Lp—1 _q 1 [ ¢l/a—1 _p/a—1
[Elty e,
o 1—ua¢ qJo 1-1¢

7r( T Wp)
= ——|cot— —cot— |.
q q q

Differentiating with respect to p gives (4.2).
LEMMA 4.1. Let a, b, c € R. Then

» /oo gb=1 _ el o de —  m sin (e1 — by)sin (e1 + by)
0

1— g9 a? sin® by sin? ¢y

where by = wb/a and ¢; = 7e/a.

PRrROOF. Simply write

oo .b—1 _ nc—1 o b—1 0 .c—1
/ ulnxdaj:/ x lnxdx—/ m Inz dx
0 l—l'a 0 l—fL'a' 0 1—1“1

and use (4.2).

The four entries in Section 4.235 are established next.

Example 4.1. Entry 4.235.1 states that

(1 — )z 2 w2 Iy
Lemma 4.1 is used with a = 2n, b =n — 1 and ¢ = n. This gives
T T T
4. b =— - and ¢; = —
(4.6) 1=5 "5 and ¢; = 3
and
o (1 _ n—2 26in (T — X \sin (X + & 2
/ ( x)ﬂén lnxdmz—% (2 : 22n2T (Trz 2n> :_%tanzl
0 1—2x 4n sin (5 — %) 4n
Example 4.2. Entry 4.235.2 is
0 (1 — g2)pm—1 2 gin (2t 1) sin (2
(4.7 / % lnxd:r:—w—2 (%77) (%) .
0 1-z An® gip2 (5m) sin? (%w)

Lemma 4.1 is now used with a = 2n, b = m and ¢ = m + 2. This gives
(4.8) clfbl:z and cl+b1:1(m+1)

n n
to produce the result.

Example 4.3. Entry 4.235.3 states that

(1 — 2%)z" 3 2 o T
(49) /0 w hlx d:C = —m tan ﬁ
The values a = 2n, b =n — 2 and ¢ = n give

™ ™ ™
(410) b1 = 5 - E and Cc1 = 5
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This verifies the claim.

Example 4.4. Entry 4.235.4 appears as

1 . m-1 n—m—1 2
(4.11) / i o m
0

Inzdr = —

1—zn n2sin? T

n
The change of variables ¢ = 1/z shows that the integral over [1,00) is equal to that
over [0, 1], therefore this entry should be written as

/00 xm—l +$n—m—1 27’(’2
0

(4.12) Inzdr =—

1—2zm n2sin? T’

to be consistent with the other entries in this section. The proof comes from Lemma
4.1 witha=n,b=m and c=n —m.

5. Some singular integrals

The table [5] contains a variety of singular integrals of the form being discussed
here. The examples considered in this section are evaluated employing the formula

o0 th=l dt
5.1 = t .
(5.1) /0 [ = meotmpu
To verify this evaluation, transform the integral over [1,00) to [0, 1] by the change of
variables 2 — 1/x. This gives

o =1 qg Ligp=1 _ g
(5.2) / - / oy

This is entry 3.231.1. It was established in [7].
Differentiating with respect to u, the formula (5.1) gives

>t Int 2
(5.3) / Mt = -,
0 1-t¢ sin”
and the change of variables t = x* gives
< b=l Inx 2
5.4 w(a,b) := ———dr=———F5—~.
(5.4) (a,b) /0 1—g0 a2 sin® (%b)

Example 5.1. Entry 4.251.2 states that

[e’e) /,1,71
(5.5) / o Iz makt ! <lna cot(mp) — T ) .
0

a—x sin?

The change of variables x = at yields
] ! Int ol dt
(5.6) / rne :a“_l/ 7ndt+a“_llna/ .
0 a—x 0 1-—t¢ 0 11—t
The result now follows from (5.1) and (5.3). It is probably clearer to write this entry
as

00 pu—1
(5.7) / Iz o lna B
0 a—x tanmp  sin®wp

to avoid possible confusions.
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Example 5.2. Entry 4.252.3 is

o p—1] 2
(5.8) /0 % dx = f%cose(?%p.

This is w(2,p) and the result follows from (5.4).
Example 5.3. Entry 4.255.3 states that

1 —aP 2 /TP
(5.9) /0 .2 Inxde = T tan (7) .

This is w(1,2) —w(p+ 1,2) and the result comes from (5.4).

Example 5.4. Entry 4.252.1 is written as
00 —1 -1 -1
/ a2t~ Inxdx _ 7r. a’kllna—b“’llnbfwau — b
o (z+a)(x+b) (b—a)sinmu tan
This value follows from the partial fraction decomposition

1 1111
(r+a)(x+b) b—axz+a b—azx+b

(5.10)

and entry 4.251.1

(5.11)

x = (Inc —mwcotmu),

gl Ing d mer~!
0 T+c sinmp

established in [11]. Differentiating (5.11) with respect to ¢ yields

2 1] — 1)er—? 1
(5.12) / wdmz—w Inc—meotmp + —— |
o (x+4¢)? sin w—1
This is entry 4.252.4.
Example 5.5. Entry 4.257.1
(5.13) /°° z# In(xz/a) dz  w[b*In(b/a) + w(a* — b*) cot Ty
' o (z+a)(z+b) (b—a)sinmTpu
follows from (5.11) and the beta integral
oo .u—1 d pn—1
(5.14) / L
0 T+ a S

This appears as entry 3.194.3 and it was established in [11].

Example 5.6. The change of variables ¢ = x4 gives

< gp=lq 1 [ /a1y
(5.15) / oA ,/ VU4 T ot (”p)
o l—z7 ¢ 1—t q q

from (5.3). This is entry 3.241.3. The special case ¢ = 1 gives

e’e) p—l d
(5.16) / z T — 7ot p.
0

1—2x
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Differentiating with respect to p produces

© p—=1] 2
(5.17) / e —
0 11—z sin“ mp

The partial fraction decomposition
(5.18) 1 11 11
' (x+a)(z—1) a+lz—1 a+lazta

then produces entry 4.252.2

< gt ling -
519 d — _ p,—l 1 . _ )
(19 /0 (z+a)(z—1) ’ (a+1)sin®mp 7~ "™ (nasinmp — 7 cosmp)]

Example 5.7. The change of variables ¢t = x¢ produces
°© ] 1 o t(1-p)/q—1 t
(5.20) / nxdzx :_7/ ntd .
o aP(xz?—1) /o 1—t
Then, (5.3) gives

« ] 2 1
(5.21) / nrdr i .
o @P(@1-1) ¢ gp2 (%7‘(’)

This is entry 4.254.3.
Example 5.8. Entry 4.255.2 is

1 2 -2 2
1 7
(5.22) / % Inzdr=— | 2 ) sec? —.
0 1 — a2 2p 2p
The evaluation of this entry starts with entry 3.231.5
1, . u—1 v—1
x -
(5.23) | o= vt + ()
0 — X
that was establsihed in [7]. The special case yp =1
1 1— J)V_l
(5.24) e = (1) + ()
0 - x
is differentiated with respect to v to produce
1, v—1
T Inz
5.25 ——dx = -9 (v).
(5.25) | e =)
The change of variables = = t® gives
1 4e—1
t Int 1 c
5.26 —dt=—— ’(7).
(5:26) /0 1—¢b b2 v b
Therefore
1 2 —2 1 -2 1
1— P p P
/ %lnzdaj = / Llnxdz%—/ Y ade
0 1—a%r o 1—ua?r o 1—ua?r

1 [,/1 1 (11
= Gom) v (G s)]
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The result now follows from the reflection formula for the polygamma function v’
given in (2.14).

6. Combinations of logarithms and algebraic functions

This section presents the evaluation of some entries in [5] of the form

b
(6.1) / Ei(z)In Ey(z) dx

where F; or Fs is an algebraic function. Some of these have appeared in previous
papers in this series. For example, entry 4.241.11

' Inazde \/27TF2(1>

0o (1l —1z2?) T

(6.2) :

and entry 4.241.5

(6.3) /0 Inx \/(1—x2)2"—1da::—Wﬂ[w(n—kl)—&—’y—klnéﬂ

were evaluated in [7]. Here ¢(x) is the digamma function and + is Euler’s constant.
Note 6.1. Define the family of integrals

Lo In™ z dx

6.4 n(a) = _—.
(64) faa) o V1—a2
Special cases include entry 4.241.7
1
Inzd
(6.5) near T 1n2

o Vi—22 2

that was evaluated in [7] and entry 4.261.9

1.2 2
In“zdx 2 ™

6.6 —=—(In"24+—).

(6.6) [ == 2(n -%m)

A trigonometric form of the family is obtained by the change of variables x = sint:
/2
(6.7) fula) = / sin® ¢ In" sint dt.
0

Theorem 6.2. The integral f,(a) is given by

(68) fota) = i (4) 00,

s—a S
where
/2 1 11 rs+1
(6.9) h(s):/ st rdt— Lp (2L ) vl (o)
0 2 2 72 2 T(5+1)

This appears as entry 3.621.5. Therefore, the evaluation of f,(a) requires the values
of T®)(z) for 0 < k<matz=(a+1)/2and z=a/2+ 1.
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Example 6.3. For example,

' Inzd d L(s+3
f) = [ Amzde o 4\ VAD(G D)
0o V1—x2 s=0ds | 2 T(£41)
_ V/AV(A/2)ra) - r'mra/2)
4 I2(1) '
The values
(6.10) I'(3)=—vVr(vy+2m2), I"(1) = —, T'(3) =vmand I'(1) =1
give
(6.11) £1(0) = ,g In 2.
Proposition 6.4. The derivatives of the gamma function satisfy the recurrence
(6.12) re (@) =Y (Z) T® (2)yp =0 (z).
k=0
Example 6.5. A direct application of formula (6.8) evaluates entry 4.261.9
19,2
In® z dx
6.13 0) = — .
( ) f2( ) 0 m

Indeed, using I'(1) = 1, gives

(6.14)  f2(0) =

The values

()T M+ 3T (3) () + 5377 (3) — 3T (3) T'(1)] -

2
1
(6.15) (1) =2 + % and I () = 57°/° + V(y + 21n2)”

give the identity (6.6).

It remains to explain the values given in (6.10) and (6.15). The recurrence (6.12)
reduces the computation of the derivatives of I'(x) to those of 1(z). The special values
given above come from the next result.

Lemma 6.6. The digamma function satisfies

M) = (=D)"nll(n+1)
P (4) = (D"l @ = 1)¢(n +1).
PROOF. This comes directly from (2.9). O

Example 6.7. The values given in Lemma 6.6 yield

U nd zdx

T 2 3
= —_— = —— In2+4+41In°2
f3(0) Vi 8(7r n2+4In° 2+ 6¢(3))
Unt 2 da s

f4(0) = =

= 150 (197" + 1207 In®2 4 2401n* 2 + 144010 2{(3))
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and
N Lz Inxde (=4 (3
hG =) e = mr(4)
N bz In® zdx B 3
fa (L) = A= - 2\/%F2< >(32—16G+7r(7r—8))

where G is Catalan’s constant

n

v (1)
(6.16) G = ;m

Example 6.8. Entry 4.261.15 states that

Ly lnx

(6.17) m

2n 1\k

Z( D) +1n2
k

k=1

En—1 |72 & (=1)*
W”{u+z ot

This is obtained by differentiating h(s) twice with respect to s to produce

L5 n? o da

0 \/1—%2 B
v T (&) s s+1\\> ,(s+1 , (8
?F(gim (w(2+1>_¢( 2 )) +¢( 2 >_w (5“)
Therefore

13?2” n2x T Ll (n % 11\ 2 ’ 1 I
e et [y v (o )+ (ot ) = W r ).

The special values

(2n — 1!

5 /7 and I'(n+ 1) = n!

(6.15) P+ ) -
give
1 2n HQ.I‘ ~ T (2n — 1) ,

Now use the special values

(6.19) w(n—i—l):—v—FZ%and¢(n+%)=—7—2ln2+22ﬁ
k=1 k=1
as well as
(6.20) P (n+1) *W— Zn:iandi/z (n+1)= 22—42%#
6 k2 2 e (2k-1)



THE INTEGRALS IN GRADSHTEYN AND RYZHIK PART 27 45

to obtain
2n (71)]@
(6.21) Yn+1)—d(n+3)=2) = +2mn2
k=1
and
2 2n 1\k
(6.22) Y+ -y (n+1)= %+4Z ( klz)

This gives the result.
Example 6.9. A similar analysis gives entry 4.261.16

Lgntlp2 4

Z T dr =
0 \/1—$2

LI E S E Vi li 5 ol

C2n+ 1)) 12

Example 6.10. Entry 4.241.6 states that

1/V2
(6.23) Inwde Ty, G
0 v1—22 4 2

The change of variables x = sint gives

UVZ g de /4
6.24 —_— = Insintdt.
( ) / V1— 22 /

This integral is entry 4.224.2 and it has been evaluated in [3].

7. An example producing a trigonometric answer

The next example contains, in the logarithmic part, a quotient of linear functions.
The evaluation of this entry requires a different approach.

Example 7.1. Entry 4.297.8 states that

1

1+ ax dzx .1
7.1 In =msin” " a.
(7.1) /0 1—az zv1— 22

This evaluation starts with the expansion

s 2n+1
2a 9

1 1+ax
7.2 | =
(7.2) T nl—am ;2n+1x

to obtain

(73) /11 1—|—ax 2a2n+1/ 2nd$
’ 0 1*a$x\/17:£2 2n+1 1— 22
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The change of variables x = sin # gives

1 _2n w/2
" dx . an T (2n
(74 [ smom= = ()

The last evaluation is the famous Wallis’ formula. It appears as entry 3.621.3 and it
was established in [2] and [12]. Therefore

1 o 2n+1
1 d 2
(7.5) /ln +azx x :ZLL n\
o 1—az 1 — 22 2nIn+1\n

n=0

The series is now identified from the classical expansion

sinfl Jr— i (%)n l_2n+1

|
— (2n+1)n!

_ i 1 20\ ant1
- 220 2n+ )\ n )"

n=0

obtained by expanding the integrand in

Toodt
7.6 in~! :/ _dt
(7.6) sin T x . VI

as a binomial series and integrating term by term.

Further examples in [5], of the class considered here, will be presented in a future
publication.
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