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Abstract. The table of Gradshteyn and Ryzhik contains many integrals that

involve the expression zk = a + bxk. All the entries containing this form are
evaluated in detail.

1. Introduction

The evaluation of integrals is found in the elementary courses where the student is
exposed to a variety of methods of integration. The topics range from integration
by parts (with the statement that if your integrand is the product of two functions,
this may work, also includes some standard substitutions (with the statement

that if your integrand contains the term
√

1− x2, try the substitution x = sin θ and it
will simplify ; the method of partial fractions used to integrate rational functions
(provided the polynomial in the denominator is factored) and sometimes the student
is exposed to the Weierstrass substitution u = tan x

2 which transforms rational
functions in sinx and cosx into a rational function of u.

Historically the evaluation of integrals have been collected in volumes such as
[2, 3] where the results were stated in the form

(1.1)

∫ ∞
0

xµ−1 lnx

β + x
dx =

πβµ−1

sinµπ
(lnβ − π cotµπ)

but without an indication of how the formula was obtained. The modern version of
these entries were collected in the table by I. S. Gradsheyn and I. M. Ryzhik [7].
In the process of his thesis at Tulane University [5], George Boros began to develop
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techniques for a systematic verification of these entries. This task was motivated by
some incorrect evaluations appearing in that edition of the table.

The latest edition of the table of integrals by I. S. Gradshteyn and I. M. Ryzhik
[8] contains a large selection of integrals (as did the previous editions). One of the
difficulties in using them is that, in view of the large possible options for changes
of variables, the integrand of interest might not match the entry in the table. A
description of this phenomena is presented in [6] in the context of the evaluation of

(1.2) N0,4(a;m) =

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
.

This integral may be evaluated in terms of some hypergeometric functions. Naturally,
it is possible that the entries are incorrect, as in the entry 3.248.5 of [7]:

Iwrong =

∫ ∞
0

dx

(1 + x2)
3
2

√
ϕ(x) +

√
ϕ(x)

=
π

2
√

6
with ϕ(x) = 1 +

4x2

3(x2 + 1)2
.

The correct integrand was found in [4] as

Icorrect :=

∫ ∞
0

dx

(1 + x2)
3
2

√
ϕ(x) +

√
ϕ(x)3

=
π

2
√

6
.

The correct value of the original problem has been obtained by J. Arias de Reyna in
terms of elliptic functions,

The present work is part of a project dedicated to proving all these evaluations
and to provide context for them. This project started with [9] and the latest work
in this series is [1]. The present paper is the first in the series by participants in the
Zoom-summer program PolyMath Jr. (June-2021). The students were given the list
of entries and provided proofs that were checked and written by the senior author and
a graduate assistant (V. Sharma).

The entries discussed here appear in Sections 2.11 to 2.15. The integrands con-
sidered here have the form xnzmk , where zk = a+ bxk and n, m are integers. A small
variation, including two linear factors in x, appears at the end of the paper. The
results include explicit closed form evaluations as well as some reduction formulas.

2. Entries in Section 2.11− 2.13. Forms containing the binomial a+ bxk

Section 2.110 contains reduction formulas for zk = a+ bxk and an explicit expres-
sion for the general case.
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2.1. Entry 2.110.1.

(2.1)∫
xnzmk dx =

xn+1 zmk
km+ n+ 1

+
amk

km+ n+ 1

∫
xnzm−1

k dx

=
xn+1

m+ 1

p∑
s=0

(ak)s(m+ 1)m(m− 1) · · · (m− s+ 1)zm−sk

[mk + n+ 1][(m− 1)k + n+ 1] · · · [(m− s)k + n+ 1]

+
(ak)p+1(m+ 1)m(m− 1) · · · (m− p+ 1)(m− p)

[mk + n+ 1][(m− 1)k + n+ 1] · · · [(m− p)k + n+ 1]

∫
xnzm−p−1

k dx

Proof. In the proof of the first part, we illustrate a procedure to choose the
terms u and v in the integration by parts formula

(2.2)

∫
u dv = uv −

∫
v du.

In later proofs this will be referred as the usual procedure. The idea is simple: in
order to prove the first identity (2.1) impose conditions on u and v so that

(2.3) u dv = xnzmk and uv =
xn+1zmk

(km+ n+ 1)
.

This equations are now used to determine v and one hopes that the term v du matches
the last term in the first identity. The second formula follows from iteration of the
first one.

Dividing both equations in (2.3) leads to
dv

v
= (km + n + 1)

dx

x
and this gives

v = xkm+n+1. The formula for uv implies that u =
zmk

(km+ n+ 1)xkm
. From here

it follows that dv = (km + n + 1)xkm+n and after some simplifications one obtains

du = − amk

km+ n+ 1

zm−1
k

xmk+1
. Therefore v du = − amk

km+ n+ 1
zm−1
k xn, proving (2.1).

The second formula is obtained by iterating the first one. It can be proven directly by
an inductive argument. �

2.2. Entry 2.110.2.

(2.4)

∫
xnzmk dx = −

xn+1zm+1
k

ak(m+ 1)
+
km+ k + n+ 1

ak(m+ 1)

∫
xnzm+1

k dx

Proof. This entry is verified by integration by parts. The choice of u and dv is
now motivated by the appearance of the coefficient (n + km + k + 1) on the right-
hand side. Therefore take u = xn+km+k+1 and dv = x−km−k−1zmk dx. Then du =
(n + km + k + 1)xn+km+kdx is direct and some elementary manipulation produce
d
(
x−km−kzm+1

k

)
= −ak(m+1)x−km−k−1zmk . Integration by parts now gives the stated

formula. �
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2.3. Entry 2.110.3.

(2.5)

∫
xnzmk dx =

xn+1zmk
n+ 1

− bkm

n+ 1

∫
xn+kzm−1

k dx

Proof. Integrate by parts with u = zmk and dv = xn. Then du = mbkxk−1zm−1
k

and v = 1
n+1x

n+1. The results follows directly. �

2.4. Entry 2.110.4.

(2.6)

∫
xnzmk dx =

xn+1−kzm+1
k

bk(m+ 1)
− n+ 1− k
bk(m+ 1)

∫
xn−kzm+1

k dx

Proof. Integrate by parts with u = xn+1−k and dv = xk−1zmk . Then

du = (n+ 1− k)xn−k and v = zm+1
k /(bk(m+ 1)). This gives the result. �

2.5. Entry 2.110.5.

(2.7)

∫
xn zmk dx =

xn+1−kzm+1
k

b(km+ n+ 1)
− a(n+ 1− k)

b(km+ n+ 1)

∫
xn−kzmk dx

Proof. Entry 2.110.4 gives

(2.8)

∫
xnzmk dx =

xn+1−kzm+1
k

bk(m+ 1)
− n+ 1− k
bk(m+ 1)

∫
xn−kzm+1

k dx.

The current entry comes from writing zm+1
k = zmk (a+ bxk) = azmk + bxkzmk in the last

integral of (2.8) and distributing the terms. �

2.6. Entry 2.110.6.

(2.9)

∫
xnzmk dx =

xn+1zm+1
k

a(n+ 1)
− b(km+ k + n+ 1)

a(n+ 1)

∫
xn+kzmk dx

Proof. Replace n by n+ k in Entry 2.110.5. �

2.7. Entry 2.110.7.

(2.10)

∫
xn(nxb + c)k dx =

nk

b

k∑
i=0

(−1)i k! Γ
(
n+1
b

) (
xb + c

n

)k−i
(k − i)! Γ

(
n+1
b + i+ 1

) xn+1+ib

Proof. This is a special case of Entry 2.110.8. See the details at the end of the
proof for that entry. Note that this entry has been modified from the way it currently
appears in [8]. �
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2.8. Entry 2.110.8.

(2.11)

∫
xnzmk dx =

bm

k

m∑
i=0

(−1)im! J !
(
xk + a

b

)m−i
xk(J+i+1)

(m− i)! (J + i+ 1)!

where J = n+1
k − 1.

Proof. Write

∫
xnznk dx = bmI(n,m) with

(2.12) I(n,m) =

∫
xn
(
xk +

a

b

)m
dx.

Integrate by parts with u = (xk + a/b)m and dv = xn dx to obtain

I(n,m) =
1

n+ 1
xn+1

(
xk +

a

b

)m
− mk

n+ 1

∫
xn+k

(
xk +

a

b

)m−1

dx(2.13)

=
1

n+ 1
xn+1

(
xk +

a

b

)m
− mk

n+ 1
I(n+ k,m− 1).

Iterating the relation gives

(2.14) I(n, k) =
xn+1

n+ 1

(
xk +

a

b

)m
− mk

(n+ 1)(n+ k + 1)
xn+k+1

(
xk +

a

b

)m−1

+
m(m− 1)k2

(n+ 1)(n+ 1 + k)
I(n+ 2k,m− 2)

Further iteration produces the formula

(2.15) I(n,m) =
∑̀
j=0

(−1)jkjxn+1+jk
(
xk +

a

b

)m−j m!

(m− j)!
1

j∏
r=0

(n+ 1 + rk)

+ (−1)`+1 m!

(m− `− 1)!
k`+1 I(n+ (`+ 1)k,m− `− 1)∏̀

r=0
(n+ 1 + rk)

.

The proof of this identity is an elementary induction argument based upon (2.13).
Since the parameter ` is arbitrary, choose ` = m− 1 and use I(n, 0) = xn+1/(n+ 1).
Then notice that the extra term in (2.15) corresponds to the term j = m in the sum.
The final product is

(2.16) I(n,m) =
1

k

m∑
j=0

m!

(m− j)!
(−1)jxn+1+jk

(
xk + a

b

)m−j
j∏
r=0

(
n+1
k + r

) .

The expression above is written as it appears in the table by writing

(2.17)

j∏
r=0

(
n+ 1

k
+ r

)
=

(J + 1 + j)!

J !
with J =

n+ 1

k
− 1.
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In order to obtain Entry 2.110.7 make the change of parameters {a, b, k, m} 7→
{c, n, b, k}. �

3. Section 2.111. Forms containing the binomial z1 = a+ bx

3.1. Entry 2.111.1.

(3.1)

∫
zm1 dx =

zm+1
1

b(m+ 1)

and for m = −1

(3.2)

∫
dx

z1
=

1

b
ln z1

Proof. Let u = a+ bx to obtain

(3.3)

∫
zm1 dx =

∫
(a+ bx)m dx =

1

b

∫
um dx =

um

b(m+ 1)
.

This gives the result for m 6= −1. In the case m = −1, the same change of variables

yields

∫
dx

z1
=

∫
dx

a+ bx
=

1

b

∫
du

u
and this gives the stated formula. �

3.2. Entry 2.111.2.

(3.4)

∫
xn dx

zm1
=

xn

zm−1
1 (n+ 1−m)b

− na

(n+ 1−m)b

∫
xn−1 dx

zm1

Proof. In order to integrate by parts, write the problem as∫
xn(a+ bx)−m dx =

1

(1−m)b

∫
xn

d

dx

[
(a+ bx)1−m] dx

=
1

(1−m)b

xn

zm−1
1

− n

b(1−m)

∫
xn−1 dx

(a+ bx)m−1

=
1

(1−m)b

xn

zm−1
1

− n

(1−m)b

∫
xn−1(a+ bx)

(a+ bx)m
dx

=
xn

b(1−m)zm−1
1

− na

b(1−m)

∫
xn−1 dx

(a+ bx)m
dx− n

(1−m)

∫
xn dx

zm1

Now bring the last term to the right-hand side to obtain the result. �

3.3. Entry 2.111.3. For n = m− 1 in Entry 2.111.2 we use

(3.5)

∫
xm−1 dx

zm1
= − xm−1

zm−1
1 (m− 1)b

+
1

b

∫
xm−2 dx

zm−1
1

and for m = 1 we have

(3.6)

∫
xn dx

z1
=
xn

nb
− axn−1

(n− 1)b2
+

a2xn−2

(n− 2)b3
− · · ·+ (−1)n−1 a

n−1x

1 · bn
+

(−1)nan

bn+1
ln z1
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Proof. For the first formula, integrate by parts with u = xm−1 and dv = z−m1 dx.
The result follows directly. For the second formula, written as

(3.7)

∫
xn dx

z1
=

n−1∑
k=0

(−1)kakxn−k

(n− k)bk+1
+

(−1)nan

bn+1
ln z1,

observe that from xn = xn−1×x and writing the x on the right in terms of z1 = a+bx

leads to
xn

z1
=

1

b
xn−1 − a

b

xn−1

z1
. Denoting the integral on the left of (3.6) by In this

produces

(3.8) In =
1

bn
xn − a

b
In−1.

This is now to prove the identity (3.6) by induction. The case n = 1 is direct.
Replacing the inductive form of In−1 on the right-hand side of (3.8) one checks that
the logarithmic terms match and that the proof amounts to the identity

(3.9)

n−1∑
k=0

(−1)kakxn−k

(n− k)bk+1
=

1

bn
xn −

n−2∑
k=0

(−1)kak+1xn−1−k

(n− 1− k)bk+2
.

The term k = 0 on the left-hand side matches the first term on the right. A simple
shift of indices verifies the rest. �

3.4. Entry 2.111.4.

(3.10)

∫
xn dx

z2
1

=

n−1∑
k=1

(−1)k−1 ka
k−1xn−k

(n− k)bk+1
+ (−1)n−1 an

bn+1z1
+ (−1)n+1na

n−1

bn+1
ln z1

Proof. Differentiate Entry 2.111.3 with respect to the parameter a. �

3.5. Entry 2.111.5.

(3.11)

∫
x dx

z1
=
x

b
− a

b2
ln z1

Proof. The change of variables t = a+ bx gives

(3.12)

∫
x dx

z1
=

1

b2

(∫
dt− a

∫
dt

t

)
=

1

b2
(t− a ln t)

and this gives the evaluation, with the extra constant term a/b2. Since these are
indefinite integrals, the extra constant plays no role. �

3.6. Entry 2.111.6.

(3.13)

∫
x2 dx

z1
=
x2

2b
− ax

b2
+
a2

b3
ln z1

Proof. Let t = a+ bx to obtain

∫
x2 dx

z1
=

1

b3

∫
(t− a)2

t
dt. The result follows

by expanding the square and integrating. �
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4. Section 2.113

4.1. Entry 2.113.1.

(4.1)

∫
dx

z2
1

= − 1

bz1

Proof. The change of variables u = a+ bx gives

(4.2)

∫
dx

z2
1

=

∫
dx

(a+ bx)2
=

1

b

∫
u−2 du = − 1

bu
,

and this is the evaluation. �

4.2. Entry 2.113.2.

(4.3)

∫
x dx

z2
1

= − x

bz1
+

1

b2
ln z1 =

a

b2z1
+

1

b2
ln z1

Proof. Integrating by parts with u = x and dv = 1/z2
1 = 1/(a+ bx)2 gives

(4.4)

∫
x dx

z2
1

= − x

b(a+ bx)
+

1

b

∫
dx

a+ bx
.

Now make the change of variables u = a+ bx to evaluate the last integral. �

4.3. Entry 2.113.3.

(4.5)

∫
x2 dx

z2
1

=
x

b2
− a2

b3z1
− 2a

b3
ln z1

Proof. Since the answers are all expressed in terms of z1, this entry should

be written as

∫
x2 dx

z2
1

=
z1

b3
− a2

b3z1
− 2a

b3
ln z1. Integrating by parts with u = x2

and dv = (a + bx)−2 dx gives

∫
x2 dx

(a+ bx)2
= − x2

b(a+ bx)
+

2

b

∫
x dx

a+ bx
. Now write

x = 1
b (a + bx) − a

b to obtain

∫
x dx

a+ bx
=

1

b

∫
dx − a

b

∫
dx

a+ bx
. The result follows

from the evaluation of these two integrals. �

Remark 4.1. Every entry in this section can be evaluated as was done for Entry
2.113.1. For instance, in the last example, the change of variables u = a + bx yields∫
x2 dx

z2
1

=
1

b3

∫
(u− a)2 du

u3
and the integrand can be expanded to produce integrals

with a pure power of u.

5. Section 2.114

5.1. Entry 2.114.1.

(5.1)

∫
dx

z3
1

= − 1

2bz2
1

Proof. The change of variables t = a+ bx gives the result. �
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5.2. Entry 2.114.2.

(5.2)

∫
x dx

z3
1

= −
(x
b

+
a

2b2

) 1

z2
1

Proof. The change of variables u = a+ bx gives

(5.3) I =

∫
u− a
b2u3

du =
1

b2

∫
du

u2
− a

b2

∫
du

u3
.

Now evaluate both integrals to obtain the result. �

5.3. Entry 2.114.3.

(5.4)

∫
x2 dx

z3
1

=

(
2ax

b2
+

3a2

2b3

)
1

z2
1

+
1

b3
ln z1

Proof. The change of variables t = a+ bx gives

(5.5)

∫
x2 dx

z3
1

=
1

b3

(∫
dt

t
− 2a

∫
dt

t2
+ a2

∫
dt

t3

)
.

The result follows by computing the previous elementary integrals. �

5.4. Entry 2.114.4.

(5.6)

∫
x3 dx

z3
1

=

(
x3

b
+

2a

b2
x2 − 2a2x

b3
− 5a3

2b4

)
1

z2
1

− 3a

b4
ln z1

Proof. The change of variables t = a+ bx gives∫
x3 dx

z3
1

=
1

b4

∫
dt− 3a

b4

∫
dt

t
+

3a2

b4

∫
dt

t2
− a3

b4

∫
dt

t3
=

t

b4
− 3a

b4
ln t− 3a2

b4t
+

a3

2b4t2
.

The term involving logarithm matches with the answer, so we need to work on the

non-logarithmic part. This can be written as

(
2t2a+ 2bxt2

)
− 6a2t+ a3

2b4t2
. Now observe

that
(
2t2a+ 2bxt2

)
− 2xt2b = 2at2 and so the term 2at2 + 2bxt2 can be replaced by

2xt2b, since this affects the result by a constant. The modified answer matches the
stated result. �

6. Section 2.115

6.1. Entry 2.115.1.

(6.1)

∫
dx

z4
1

= − 1

3bz3
1

Proof. The change of variables t = a+ bx gives the result. �



40 DEREK CHEN ET AL

6.2. Entry 2.115.2.

(6.2)

∫
x dx

z4
1

= −
( x

2b
+

a

6b2

) 1

z3
1

Proof. Integration by parts and entry 2.115.1 give

∫
x

z4
1

dx = − x

3bz3
1

+
1

3b

∫
dx

z3
1

.

The last integral is −1/2bz2
1 , see Entry 2.114.1. The result follows from here. �

6.3. Entry 2.115.3.

(6.3)

∫
x2 dx

z4
1

= −
(
x2

b
+
ax

b2
+

a2

3b3

)
1

z3
1

Proof. Integrate by parts, with u = x2 and dv = z−4
1 dx to obtain

∫
x2 dx

z4
1

=

− x2

3bz3
1

+
2

3b

∫
x dx

z3
1

. Replace the last integral (evaluated in Entry 2.114.2) to obtain

the result. �

6.4. Entry 2.115.4.

(6.4)

∫
x3 dx

z4
1

=

(
3ax2

b2
+

9a2x

2b3
+

11a3

6b4

)
1

z3
1

+
1

b4
ln z1

Proof. The change of variables t = a+ bx gives∫
x2 dx

z4
1

=
1

b4

∫
(t− a)3

t4
dt =

1

b4

(
ln t+

3a

t
− 3a2

2t2
+
a3

3t3

)
.

This can be transformed to the stated result. �

7. Section 2.116

7.1. Entry 2.116.1.

(7.1)

∫
dx

z5
1

= − 1

4bz4
1

Proof. The change of variables t = a+ bx gives the result. �

7.2. Entry 2.116.2.

(7.2)

∫
x dx

z5
1

= −
( x

3b
+

a

12b2

) 1

z4
1

Proof. Let t = a+ bx to obtain∫
x dx

z5
1

=
1

b2

∫ (
1

t4
− a

t5

)
dt =

1

b2

(
a

4t4
− 1

3t3

)
and this reduces to the stated form. �
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7.3. Entry 2.116.3.

(7.3)

∫
x2 dx

z5
1

= −
(
x2

2b
+
ax

3b2
+

a2

12b3

)
1

z4
1

Proof. Let t = a+ bx to obtain

(7.4)

∫
x2 dx

z5
1

=
1

b3

∫ (
1

t3
− 2a

t4
+
a2

t5

)
dt.

Evaluating the three integrals and using x = (t− a)/b gives the result. �

7.4. Entry 2.116.4.

(7.5)

∫
x3 dx

z5
1

= −
(
x3

b
+

3ax2

2b2
+
a2x

b3
+

a3

4b4

)
1

z4
1

Proof. Let t = a + bx to obtain a sum of four integrals which are pure powers
in t. Evaluating these integrals gives the result. �

8. Section 2.117

8.1. Entry 2.117.1.

(8.1)

∫
dx

xnzm1
= − 1

(n− 1)axn−1zm−1
1

+
b(2− n−m)

a(n− 1)

∫
dx

xn−1zm1

Proof. Integrate by parts and then, the usual procedure, yields
dv

v
= − (n− 1)a

xz1
dx.

Then (8.1) gives v =
(z1

x

)n−1

and then (8.1) follows from u = − 1

a(n− 1)zm+n−2
1

and du =

b(m+ n− 2)

a(n− 1)
z−m−n+1

1 . �

8.2. Entry 2.117.2.

(8.2)

∫
dx

zm1
= − 1

(m− 1)bzm−1
1

Proof. Let u = a+ bx to obtain

∫
dx

zm1
=

1

b

∫
u−mdu. This gives the result. �

8.3. Entry 2.117.3.

(8.3)

∫
dx

xzm1
=

1

zm−1
1 a(m− 1)

+
1

a

∫
dx

xzm−1
1

Proof. Divide the identity
1

xz1
− 1

ax
= − b

a

1

z1
by zm−1

1 and use
d

dx

1

zm−1
1

=

b(1−m)

zm1
to obtain

(
1

xz1
− 1

ax

)
1

zm−1
1

=
1

a(m− 1)

d

dx
z1−m

1 . Integrate this relation

to conclude. �
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8.4. Entry 2.117.4.

(8.4)

∫
dx

xnz1
=

n−1∑
k=1

(−1)kbk−1

(n− k)akxn−k
+

(−1)nbn−1

an
ln
z1

x

Proof. The method of partial fractions begins with the expansion

(8.5)
1

xn(a+ bx)
=

n∑
j=1

Aj
xj

+
B

a+ bx
.

Multiply by xn(a+ bx) and collect terms to obtain

(8.6) 1 = aAn +

n−1∑
j=1

[aAj + bAj+1]xn−j + (bA1 +B)xn.

This produces the system of equations

(8.7) aAn = 1, Aj = − b
a
Aj+1 for 1 6 n− 1, B = −bA1.

An inductive proof shows that Aj =
(−1)n−jbn−j

an−j+1
for 1 6 j 6 n. Therefore the

partial fraction decomposition is

(8.8)
1

xn(a+ bx)
=

n∑
j=2

(−1)n−jbn−j

an−j+1

1

xj
+

(−1)n−1bn−1

an

(
1

x
− b

a+ bx

)
.

Now integrate to produce the result. �

9. Section 2.118

9.1. Entry 2.118.1.

(9.1)

∫
dx

xz1
= −1

a
ln
z1

x

Proof. Integrate the identity
1

x(a+ bx)
=

1

ax
− b

a(a+ bx)
to obtain the result.

�

9.2. Entry 2.118.2.

(9.2)

∫
dx

x2z1
= − 1

ax
+

b

a2
ln
z1

x

Proof. The method of partial fractions gives

(9.3)
1

x2(a+ bx)
=

1

a

1

x2
− b

a2

1

x
+
b2

a2

1

a+ bx

and the result follows by integration. �
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9.3. Entry 2.118.3.

(9.4)

∫
dx

x3z1
= − 1

2ax2
+

b

a2x
− b2

a3
ln
z1

x

Proof. The identity

(9.5)
1

x3(a+ bx)
=

1

a

1

x3
− b

a2

1

x2
+
b2

a3

1

x
− b3

a3

1

a+ bx

gives the result follows by integration. �

10. Section 2.119

10.1. Entry 2.119.1.

(10.1)

∫
dx

xz2
1

=
1

az1
− 1

a2
ln
z1

x

Proof. The change of variables u = a + bx gives

∫
dx

xz2
1

=

∫
du

(u− a)u2
. The

evaluation now comes by integrating the partial fraction decomposition

(10.2)
1

(u− a)u2
= − 1

au2
− 1

a2u
+

1

a2(u− a)
.

�

10.2. Entry 2.119.2.

(10.3)

∫
dx

x2z2
1

= −
(

1

ax
+

2b

a2

)
1

z1
+

2b

a3
ln
z1

x

Proof. The evaluation follows from the partial fraction expansion

(10.4)
1

x2(a+ bx)2
=

1

a2x2
− 2b

a3x
+

b2

a2(a+ bx)2
+

2b2

a3(a+ bx)
.

�

10.3. Entry 2.119.3.

(10.5)

∫
dx

x3z2
1

=

(
− 1

2ax2
+

3b

2a2x
+

3b2

a3

)
1

z1
− 3b2

a4
ln
z1

x

Proof. The evaluation follows from the partial fraction expansion

(10.6)
1

x3(a+ bx)2
=

1

a2x3
− 2b

a3x2
+

3b2

a4x
− b3

a3(a+ bx)2
− 3b3

a4(a+ bx)
.

�
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11. Section 2.121

11.1. Entry 2.121.1.

(11.1)

∫
dx

xz3
1

=

(
3

2a
+
bx

a2

)
1

z2
1

− 1

a3
ln
z1

x

Proof. The change of variables t = a+bx gives

∫
dx

xz3
1

=

∫
dt

t3(t− a)
. The result

now follows from integrating the partial fraction expansion

(11.2)
1

t3(t− a)
= − 1

at3
− 1

a2t2
− 1

a3t
+

1

a3(t− a)
.

�

11.2. Entry 2.121.2.

(11.3)

∫
dx

x2z3
1

= −
(

1

ax
+

9b

2a2
+

3b2x

a3

)
1

z2
1

+
3b

a4
ln
z1

x

Proof. This evaluation follows directly by integrating the partial fraction de-
composition

1

x2(a+ bx)3
=

1

a3x2
− 3b

a4x
+

b2

a2(a+ bx)3
+

2b2

a3(a+ bx)2
+

3b2

a4(a+ bx)
.

�

11.3. Entry 2.121.3.

(11.4)

∫
dx

x3z3
1

=

(
− 1

2ax2
+

2b

a2x
+

9b2

a3
+

6b3x

a4

)
1

z2
1

− 6b2

a5
ln
z1

x

Proof. This evaluation follows directly by integrating the partial fraction de-
composition

1

x3(a+ bx)3
=

1

a3x3
− 3b

a4x2
+

6b2

a5x
− b3

a3(a+ bx)3
− 3b3

a4(a+ bx)2
− 6b3

a5(a+ bx)
.

�

12. Section 2.122

12.1. Entry 2.122.1.

(12.1)

∫
dx

xz4
1

=

(
11

6a
+

5bx

2a2
+
b2x2

a3

)
1

z3
1

− 1

a4
ln
z1

x

Proof. Integrate by parts with u = 1/x and dv = dx/z4
1 to obtain

(12.2)

∫
dx

xz4
1

= − 1

3bxz3
1

− 1

3b

∫
dx

x2z3
1

.

Now use entry 2.121.2 to write this as

(12.3)

∫
dx

xz4
1

= − 1

a4
ln
(z1

x

)
− 1

3bxz3
1

+
1

3b

(
1

ax
+

9b

2a2
+

3b2x

a3

)
1

z2
1

.
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Now take the terms without the logarithm, leave the z3
1 in the denominator and replace

z1 by a+ bx to obtain the stared formula. �

12.2. Entry 2.122.2.

(12.4)

∫
dx

x2z4
1

= −
(

1

ax
+

22b

3a2
+

10b2x

a3
+

4b3x2

a4

)
1

z3
1

+
4b

a5
ln
z1

x

Proof. Let u = 1/x and dv = dx/(xz4) using Entry 2.122.1 to evaluate the
primitive of 1/(xz4

1) to produce

(12.5)

∫
dx

x2z4
=

1

x

(
11

6a
+

5bx

2a2
+
b2x2

a3

)
1

z3
1

− 1

a4x
ln
(z1

x

)
+

∫ (
11

6a
+

5bx

2a2
+
b2x2

a4

)
dx

x2z3
1

− 1

a4

∫
1

x2
ln
(z1

x

)
dx.

The first integral is evaluated using entries 2.117.2. 2.121.1, 2.121.2 and the last one
is evaluate by the substitution t = a/x+ b. �

12.3. Entry 2.122.3.

(12.6)

∫
dx

x3z4
1

=

(
− 1

2ax2
+

5b

2a2x
+

55b2

3a3
+

25b3x

a4
+

10b4x2

a5

)
1

z3
1

− 10b2

a6
ln
z1

x

Proof. The reduction formula in Entry 2.117.1 gives

(12.7)

∫
dx

x3z4
1

= − 1

2ax2z3
1

− 5b

2a

∫
dx

x2z4
1

.

Replace the value for this last integral appearing in Entry 2.122.2 to obtain the result.
�

13. Section 2.123

13.1. Entry 2.123.1.

(13.1)

∫
dx

xz5
1

=

(
25

12a
+

13bx

3a2
+

7b2x2

2a3
+
b3x3

a4

)
1

z4
1

− 1

a5
ln
z1

x

Proof. Write
1

z5
1

=
d

dx

(
− 1

4bz4
1

)
, integrate by parts and use Entry 2.122.2 to

obtain the result. �

13.2. Entry 2.123.2.

(13.2)

∫
dx

x2z5
1

= −
(

1

ax
+

125b

12a2
+

65b2x

3a3
+

35b3x2

2a4
+

5b4x3

a5

)
1

z4
1

+
5b

a6
ln
z1

x

Proof. Entry 2.117.1 gives

∫
dx

x2z5
1

= − 1

axz4
1

− 5b

a

∫
dx

xz5
1

. The result now follows

from Entry 2.123.1. �
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13.3. Entry 2.123.3.∫
dx

x3z5
1

=

(
− 1

2ax2
+

3b

a2x
+

125b2

4a3
+

65b3x

a4
+

105b4x2

2a5
+

15b5x3

a6

)
1

z4
1

(13.3)

−15b2

a7
ln
z1

x

Proof. Entry 2.117.1 gives

∫
dx

x3z5
1

= − 1

2ax2z4
1

− 3b

a

∫
dx

x2z5
1

. The result now

follows from Entry 2.123.2. �

14. Section 2.124. Forms containing the form z2 = a+ bx2

14.1. Entry 2.124.1.

(14.1)

∫
dx

z2
=


1√
ab

arctan

(
x
√

b
a

)
if ab > 0

1
2i
√
ab

ln a+xi
√
ab

a−xi
√
ab

if ab < 0

Proof. Assume first ab > 0. Then

∫
dx

a+ bx2
= a

∫
dx

a2 + abx2
. The change of

variables t =
√
abx/a gives

∫
dx

a+ bx2
=

1√
ab

∫
dt

1 + t2
. This is the result.

Now assume ab < 0 and write ab = −c2 with c > 0. Then the change of vari-

ables t = cx/a gives

∫
dx

a+ bx2
=

1

c

∫
dt

1− t2
and the partial fraction decomposition

1

1− t2
=

1

2(1 + t)
− 1

2(1− t)
gives

∫
dx

a+ bx2
=

1

2
√
−ab

ln

(
a+
√
−ab x

a−
√
−ab x

)
. This is a

better way to write the answer. �

14.2. Entry 2.124.2.

(14.2)

∫
x dx

zm2
= − 1

2b(m− 1)zm−1
2

Proof. This follows directly from the substitution t = a+ bx2. �

15. Section 2.125. Forms containing the form z3 = a+ bx3

Notation: α = 3
√

a
b

15.1. Entry 2.125.1.

(15.1)

∫
xn dx

zm3
=

xn−2

zm−1
3 (n+ 1− 3m)b

− (n− 2)a

b(n+ 1− 3m)

∫
xn−3 dx

zm3

Proof. In order to choose the terms to integrate by parts, set

(15.2) u dv =
xn

zm3
dx and uv =

xn−2

αzm−1
3



THE INTEGRALS IN GRADSHTEYN AND RYZHIK. PART 31 47

with α = (n + 1 − 3m)b. Divide these two equations, integrate and use the expres-

sion for uv to obtain v = z
α/3b
3 and u =

xn−2

αz
(n−2)/3
3

. The result now follows from

differentiation and the expression for v above:

(15.3) v du =
a(n− 2)

α

xn−3

zm
dx =

(n− 2)a

(n+ 1− 3m)b

xn−3

zm
dx.

�

15.2. Entry 2.125.2.

(15.4)

∫
xn dx

zm3
=

xn+1

3a(m− 1)zm−1
3

− n+ 4− 3m

3a(m− 1)

∫
xn dx

zm−1
3

Proof. The same procedure as the one use in the proof of Entry 2.125.1 show that

the choices u dv =
xn

zm3
and uv =

xn+1

3a(m− 1)zm−1
and dividing these two relations

gives v =
bm−1x3(m−1)

zm−1
3

, from which one obtains the value u =
b1−m

3a(m− 1)
x4+n−3m

and finally v du =
(4 + n− 3m)

3a(m− 1)

xn dx

zm−1
3

as claimed on the right-hand side of (15.4).

The proof is complete. �

16. Section 2.126

16.1. Entry 2.126.1.∫
dx

z3
=

α

3a

{
1

2
ln

(x+ α)2

x2 − αx+ α2
+
√

3 arctan
x
√

3

2α− x

}
(16.1)

=
α

3a

{
1

2
ln

(x+ α)2

x2 − αx+ α2
+
√

3 arctan
2x− α
α
√

3

}
Proof. Let x = αt to obtain

(16.2)

∫
dx

z3
=

∫
dx

a+ bx3
=
α

a

∫
dt

t3 + 1
.

The factorization t3 + 1 = (t+ 1)(t2 − t+ 1) gives the partial fraction decomposition

(16.3)
1

t3 + 1
=

1

3(1 + t)
− 1

6

2t− 1

t2 − t+ 1
+

1

2(t2 − t+ 1)
.

Completing the square in the second integral gives the first evaluation. To verify the
second identity simply differentiate both arctangent terms to see that they differ by a
constant. This completes the proof. �
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16.2. Entry 2.126.2.

(16.4)

∫
x dx

z3
= − 1

3bα

{
1

2
ln

(x+ α)2

x2 − αx+ α2
−
√

3 arctan
2x− α
α
√

3

}
Proof. The same change of variables in the proof of Entry 2.126.1 and the partial

fraction decomposition
1

t(1 + t3)
=

1

t
− 1

3(1 + t)
− 2t− 1

3(t2 − t+ 1)
give the result. �

16.3. Entry 2.126.3.

(16.5)

∫
x2 dx

z3
=

1

3b
ln(1 + x3α−3) =

1

3b
ln z3

Proof. Let t = a + bx3 to obtain

∫
x2 dx

z3
=

1

3b

∫
dt

t
=

1

3b
ln t. This gives the

second form of the answer. To obtain the first one, write

(16.6) a+ bx3 = a

(
1 +

b

a
x3

)
= a

(
1 + α−3x3

)
.

�

16.4. Entry 2.126.4.

(16.7)

∫
x3 dx

z3
=
x

b
− a

b

∫
dx

z3

Proof. This is Entry 2.125.1 (see formula (15.1)) with n = 3 and m = 1. �

16.5. Entry 2.126.5.

(16.8)

∫
x4 dx

z3
=
x2

2b
− a

b

∫
x dx

z3

Proof. This is Entry 2.125.1 (see formula (15.1)) with n = 4 and m = 1. �

17. Section 2.127

17.1. Entry 2.127.1.

(17.1)

∫
dx

z2
3

=
x

3az3
+

2

3a

∫
dx

z3

Proof. This is the case n = 0, m = 2 in Entry 2.125.2; see (15.4). �

17.2. Entry 2.127.2.

(17.2)

∫
x dx

z2
3

=
x2

3az3
+

1

3a

∫
x dx

z3

Proof. This is the case n = 1, m = 2 in Entry 2.125.2; see (15.4). �
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17.3. Entry 2.127.3.

(17.3)

∫
x2 dx

z2
3

= − 1

3bz3

Proof. The change of variables t = a+ bx3 gives

∫
x2 dx

z2
3

=
1

3b

∫
dt

t2
. Evaluate

the last integral to obtain the result. �

17.4. Entry 2.127.4.

(17.4)

∫
x3 dx

z2
3

= − x

3bz3
+

1

3b

∫
dx

z3

Proof. Put n = 3 and m = 2 in Entry 2.125.1 to obtain

∫
x3 dx

z2
3

= − x

2bz3
+

a

2b

∫
dx

z2
3

. Now use Entry 2.127.1 in the form

∫
dx

z2
3

=
x

3az3
+

2

3a

∫
dx

z3
to obtain the

result. �

18. Section 2.128

18.1. Entry 2.128.1.

(18.1)

∫
dx

xnzm3
= − 1

(n− 1)axn−1zm−1
3

− b(3m+ n− 4)

a(n− 1)

∫
dx

xn−3zm3

Proof. The usual procedure with u dv =
1

xnzn3
and uv = − 1

(n− 1)axn−1zm−1
3

and using Entry 2.110.7 produce v =
z

(n−1)/3
3

xn−1
and u = − 1

(n− 1)a
z
−m+1−(n−1)/3
3 .

From here, the value v du gives the right-hand side of the formula. �

18.2. Entry 2.128.2.

(18.2)

∫
dx

xnzm3
=

1

3a(m− 1)xn−1zm−1
3

+
n+ 3m− 4

3a(m− 1)

∫
dx

xnzm−1
3

Proof. This expression is obtained from Entry 2.125.2 by replacing n by −n.
�

19. Section 2.129

19.1. Entry 2.129.1.

(19.1)

∫
dx

xz3
=

1

3a
ln
x3

z3

Proof. The change of variables t = a+bx2 and a partial fractions decomposition
give∫

dx

xz3
=

1

3

∫
dt

t(t− a)
=

1

3a

(∫
dt

t− a
−
∫
dt

t

)
=

1

3a
(ln(t− a)− ln t) =

1

3
ln

(
t− a
t

)
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and this is the result. (Recall that an arbitrary constant can be added to the integral).
�

19.2. Entry 2.129.2.

(19.2)

∫
dx

x2z3
= − 1

ax
− b

a

∫
x dx

z3

Proof. The usual procedure gives u dv =
1

x2z3
and uv = − 1

ax
. This gives

v = z
1/3
3 /x and then u = − 1

az
−1/3
3 . It follows that v du =

bx

az3
and integration by

parts gives the formula. �

19.3. Entry 2.129.3.

(19.3)

∫
dx

x3z3
= − 1

2ax2
− b

a

∫
dx

z3

Proof. Use the identity 1 =
a+ bx3 − bx3

a
to write

∫
dx

x3z3
=

1

a

∫
dx

x3
− b
a

∫
dx

z3
.

Evaluate the first integral on the right to obtain the result. �

20. Section 2.131

20.1. Entry 2.131.1.

(20.1)

∫
dx

xz2
3

=
1

3az3
+

1

3a2
ln
x3

z3

Proof. The reduction formula in Entry 2.128.2 gives

(20.2)

∫
dx

xz2
3

=
1

3az3
+

1

a

∫
dx

xz3
.

The integral on the right in the formula above is evaluated in Entry 2.129.1. �

20.2. Entry 2.131.2.

(20.3)

∫
dx

x2z2
3

= −
(

1

ax
+

4bx2

3a2

)
1

z3
− 4b

3a2

∫
x dx

z3

Proof. The reduction formula in Entry 2.128.2 gives

(20.4)

∫
dx

x2z2
3

=
1

3axz3
+

4

3a

∫
dx

x2z3
.

Using Entry 2.129.2 this can be written as

∫
dx

x2z2
3

=
1

3axz3
− 4

3a2x
− 4b

3a2

∫
x dx

z3
,

which gives the result. �
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20.3. Entry 2.131.3.

(20.5)

∫
dx

x3z2
3

= −
(

1

2ax2
+

5bx

6a2

)
1

z3
− 5b

3a2

∫
dx

z3

Proof. Use the reduction formula in Entry 2.128.1 to obtain

(20.6)

∫
dx

x3z2
3

= − 1

2ax2z3
− 5b

2a

∫
dx

z2
3

.

The last integral is given in Entry 2.127.1 as

∫
dx

z2
3

=
x

3az3
+

2

3a

∫
dx

z3
. Now replace

in (20.6) to obtain the result. �

21. Section 2.132. Forms containing the form z4 = a+ bx4

Notation. α = 4
√

a
b , α

′ = 4
√
−ab

21.1. Entry 2.132.1.

(21.1)∫
dx

z4
=

α

4a
√

2

{
ln
x2 + αx

√
2 + α2

x2 − αx
√

2 + α2
+ 2 arctan

(
αx
√

2

α2 − x2

)}
for ab > 0

=
α′

4a

{
ln
x+ α′

x− α′
+ 2 arctan

( x
α′

)}
for ab < 0.

Proof. For ab > 0, the change of variables x = αt gives

(21.2)

∫
dx

z4
=

1

bα2

∫
dt

t4 + 1
.

The factorization t4 + 1 = (t2 +
√

2t + 1)(t2 −
√

2t + 1) gives the result using the

method of partial fractions. For ab < 0, let x = α′t to obtain

∫
dx

z4
= −α

′

a

∫
dt

t4 − 1
.

The result now follows as from the factorization t4 − 1 = (t− 1)(t+ 1)(t2 + 1). �

21.2. Entry 2.132.2.∫
x dx

z4
= 1

2
√
ab

arctan

(
x2
√

b
a

)
for ab > 0(21.3)

= 1
4
√
−ab ln

(
a+x2

√
−ab

a−x2
√
−ab

)
for ab < 0.

Proof. The change of variables t = x2 reduces this integral to Entry 2.124.1. �

21.3. Entry 2.132.3.

(21.4)∫
x2 dx

z4
=

1

4bα
√

2

{
ln
x2 − αx

√
2 + α2

x2 + αx
√

2 + α2
+ 2 arctan

(
αx
√

2

α2 − x2

)}
for ab > 0

= − 1

4bα′

{
ln
x+ α′

x− α′
− 2 arctan

( x
α′

)}
for ab < 0.
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Proof. Scale as in the previous two entries and use the partial fraction decom-
positions

t2

t4 + 1
=

t

2
√

2(t2 −
√

2t+ 1)
− t

2
√

2(t2 +
√

2t+ 1)
(21.5)

t2

t4 − 1
=

1

4(t− 1)
− 1

4(t+ 1)
+

1

2(t2 + 1)

to verify the evaluation. �

21.4. Entry 2.132.4.

(21.6)

∫
x3 dx

z4
=

1

4b
ln z4

Proof. This follows directly from the substitution z4 = a+ bx4. �

22. Section 2.133

22.1. Entry 2.133.1.

(22.1)

∫
xn dx

zm4
=

xn+1

4a(m− 1)zm−1
4

+
4m− n− 5

4a(m− 1)

∫
xn dx

zm−1
4

Proof. The usual procedure to integrate by parts with u dv =
xn

zm4
and uv =

xn+1

4a(m− 1)zm−1
4

gives v =

(
x4

z4

)m−1

. From here it follows that u =
1

4a(m− 1)xn−4m+5
and

du =
n− 4m+ 5

4a(m− 1)
xn−4m+4 dx. This gives the result. �

22.2. Entry 2.133.2.

(22.2)

∫
xn dx

zm4
=

xn−3

zm−1
4 (n+ 1− 4m)b

− (n− 3)a

b(n+ 1− 4m)

∫
xn−4 dx

zm4

Proof. Integrate by parts choosing u dv =
xn

zm4
and u v =

xn−3

zm−1
4 (n+ 1− 4m)b

(by the usual procedute). This produces v = z
(n+1−4m)/4
4 and then u =

xn−3

z
(n−3)/4
4 (n+ 1− 4m)b

.

From here compute v du to obtain the result. �

23. Section 2.134

23.1. Entry 2.134.1.

(23.1)

∫
dx

z2
4

=
x

4az4
+

3

4a

∫
dx

z4

Proof. Put n = 0 and m = 2 in Entry 2.133.1. �
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23.2. Entry 2.134.2.

(23.2)

∫
x dx

z2
4

=
x2

4az4
+

1

2a

∫
x dx

z4

Proof. This is the case n = 1 and m = 2 of Entry 2.133.1. �

23.3. Entry 2.134.3.

(23.3)

∫
x2 dx

z2
4

=
x3

4az4
+

1

4a

∫
x2 dx

z4

Proof. This is the case n = m = 2 in Entry 2.133.1. �

23.4. Entry 2.134.4.

(23.4)

∫
x3 dx

z2
4

=
x4

4az4
= − 1

4bz4

Proof. The first expression follows from the change of variables t = a+bx4. The

second one from
x4

4at
=

1

4ab
− 1

4bt
. �

24. Section 2.135

24.1. Entry 2.135.

(24.1)

∫
dx

xnzm4
= − 1

(n− 1)axn−1zm−1
4

− b(4m+ n− 5)

(n− 1)a

∫
dx

xn−4zm4

and for n = 1

(24.2)

∫
dx

xzm4
=

1

a

∫
dx

xzm−1
4

− b

a

∫
x3 dx

zm4

Proof. The usual procedure with u dv =
1

xnzm4
and uv = − 1

(n− 1)axn−1zm−1
4

yields v =
z

(n−1)/4
4

xn−1
and u = − 1

a(n− 1)
z
−m+1−(n−1)/4
4 . From here one computes

v du to complete the evaluation. The case n = 1 follows directly from the identity
1

zm−1
4

=
a+ bx4

zm4
=

a

zm4
+
bx4

zm4
. Now divide by x and integrate. �

25. Section 2.136

25.1. Entry 2.136.1.

(25.1)

∫
dx

xz4
=

lnx

a
− ln z4

4a
=

1

4a
ln
x4

z4
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Proof. Start with I =

∫
dx

x(a+ bx4)
=

1

4b

∫
4bx3 dx

x4(a+ bx4)
and make the change

of variables t = a+ bx4 and use partial fraction decompositions to obtain

I =
1

4

∫
dt

t(t− a)
=

1

4a

(∫
dt

t− a
−
∫
dt

t

)
=

ln(t− a)− ln t

4a
=

ln(bx4)− ln z4

4a
.

The b factor in the first term can be eliminated since it only contributes a constant. �

25.2. Entry 2.136.2.

(25.2)

∫
dx

x2z4
= − 1

ax
− b

a

∫
x2 dx

z4

Proof. This is the special case n = 2, m = 1 in Entry 2.135. �

26. Section 2.14. Forms containing the binomial 1± xn

Notation. α = 4
√

a
b , α

′ = 4
√
−ab

26.1. Entry 2.141.1.

(26.1)

∫
dx

1 + x
= ln(1 + x)

Proof. This follows directly from the logarithm as the primitive of 1/x. �

26.2. Entry 2.141.2.

(26.2)

∫
dx

1 + x2
= arctan x = −arctan

(
1

x

)
Proof. This is an elementary integral. The change of variables x = tan t proves

it. The second form comes from the fact that arctan(x) + arctan
(

1
x

)
is constant. �

26.3. Entry 2.141.3.

(26.3)

∫
dx

1 + x3
=

1

3
ln

1 + x√
1− x+ x2

+
1√
3

arctan
x
√

3

2− x

Proof. The partial fraction decomposition is written as

1

1 + x3
=

1

3

1

x+ 1
+

1

3

2− x
x2 − x+ 1

=
1

3

1

x+ 1
− 1

6

2x− 1

x2 − x+ 1
+

1

2

1

x2 − x+ 1
.

The first two integrals are direct

(26.4)

∫
dx

x+ 1
= ln(x+ 1) and

∫
2x− 1

x2 − x+ 1
= ln(x2 − x+ 1),

while the last one follows by writing x2 − x + 1 = (x − 1
2 )2 + 3

4 and making the

substitution x = 1
2 +

√
3

2 tan θ to obtain
1

2

∫
dx

x2 − x+ 1
=

1√
3

arctan

(
2x− 1√

3

)
. The
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form gives here follows from the identity arctan

(
x
√

3

2− x

)
= arctan

(
2x− 1√

3

)
+
π

6
,

that can be verified using the addition theorem for the tangent function. �

26.4. Entry 2.141.4.

(26.5)

∫
dx

1 + x4
=

1

4
√

2
ln

1 + x
√

2 + x2

1− x
√

2 + x2
+

1

2
√

2
arctan

x
√

2

1− x2

Proof. Start with the partial fraction decomposition

(26.6)
1

1 + x4
=

1

2
√

2

x+
√

2

x2 +
√

2x+ 1
− 1

2
√

2

x−
√

2

x2 −
√

2x+ 1
.

Details are given for the first integral, the second one is similar. Start with

(26.7)
x+
√

2

x2 +
√

2x+ 1
=

1

2

2x+
√

2

x2 +
√

2x+ 1
+

1

2

√
2

x2 +
√

2x+ 1

and integrating produces∫
x+
√

2

x2 +
√

2x+ 1
dx =

1

2

∫
2x+

√
2

x2 +
√

2x+ 1
dx+

1

2

∫ √
2

x2 +
√

2x+ 1
dx

=
1

2
ln(x2 +

√
2x+ 1) +

√
2

2

∫
dx

x2 +
√

2x+ 1
.

To evaluate the second integral write x2 +
√

2x+ 1 =
(
x+

√
2

2

)2

+
(√

2
2

)2

and make

x = −
√

2
2 +

√
2

2 tan θ to obtain

∫
dx

x2 +
√

2x+ 1
=
√

2 arctan(
√

2x+ 1). It follows that

(26.8)

∫
x+
√

2

x2 +
√

2x+ 1
dx =

1

2
ln(x2 +

√
2x+ 1) + arctan(

√
2x+ 1).

Similarly

(26.9)

∫
x−
√

2

x2 −
√

2x+ 1
dx =

1

2
ln(x2 −

√
2x+ 1) + arctan(

√
2x− 1).

The simplification of the arctangent terms follows from their addition theorem. �

26.5. Entry 2.142.

∫
dx

1 + xn
= − 2

n

n
2−1∑
k=0

Pk cos

(
2k + 1

n
π

)
+

2

n

n
2−1∑
k=0

Qk sin

(
2k + 1

n
π

)
for n even

=
ln(1 + x)

n
− 2

n

n−3
2∑
k=0

Pk cos

(
2k + 1

n
π

)
+

2

n

n−3
2∑
k=0

Qk sin

(
2k + 1

n
π

)
for n odd
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where

Pk =
1

2
ln

(
x2 − 2x cos

(
2k + 1

2
π

)
+ 1

)
Qk = arctan

(
x sin

(
2k+1
n π

)
1− x cos

(
2k+1
n π

)) = arctan

(
x− cos

(
2k+1
n π

)
sin
(

2k+1
n π

) )
Proof. The roots of xn + 1 = 0 are given by

(26.10)

xn,k = exp

(
(2k + 1)πi

n

)
= cos

(
2k + 1

n
π

)
+ i sin

(
2k + 1

n
π

)
, for 0 6 k 6 n− 1.

The method of partial fractions yields

(26.11)
1

xn + 1
=

n−1∑
k=0

An,k
x− xn,k

with An,k = lim
x→xn,k

x− xn,k
xn + 1

= −xn,k
n

. This is obtained by using xnn,k = −1. Then

(26.12)
1

xn + 1
= − 1

n

n−1∑
k=0

xn,k
x− xn,k

Assume now that n is even. Then, for n/2 6 k 6 n−1, one has 0 6 n−1−k 6 n/2−1
and

xn,n−1−k = exp [(2(n− 1− k) + 1)πi/n] = exp [−(2k + 1)πi/n] = exp [(2k + 1)πi/n] = xn,k

and therefore

1

xn + 1
= − 1

n

n
2−1∑
k=0

[
xn,k

x− xn,k
+

xn,k
x− xn,k

]
(26.13)

=
1

n

n
2−1∑
k=0

−2Rn,kx+ 2

x2 − 2Rn,kx+ 1
,

=
1

n

n
2−1∑
k=0

(−Rn,k)
2x− 2Rn,k

x2 − 2Rn,kx+ 1
+

n
2−1∑
k=0

2I2
n,k

x2 − 2Rn,kx+ 1

using |xn,k| = 1 and with the notation Rn,k = Rexn,k, In,k = Imxn,k. The form in
which the rational function 1/(xn + 1) has been written is to facilitate the integrals:∫

2x− 2Rn,k
x2 − 2Rn,kx+ 1

= ln(x2−2xRn,k+1) and

∫
In,k dx

x2 − 2Rn,kx+ 1
= Arctan

(
x−Rn,k
In,k

)
.

This completes the evaluation when n is even. In the case n odd, the index k =
(n− 1)/2 yields xn,k = −1, producing the term ln(1 + x). The rest of the proof is the
same as for n even (the symmetry of the roots is now at k = 1

2 (n− 3)). �
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27. Section 2.143

27.1. Entry 2.143.1.

(27.1)

∫
dx

1− x
= − ln(1− x)

Proof. This follows from the change of variables t = 1− x and the definition of
logarithm as the primitive of 1/x. �

27.2. Entry 2.143.2.

(27.2)

∫
dx

1− x2
=

1

2
ln

1 + x

1− x
= arctanh x − 1 < x < 1

Proof. This comes by integrating the partial fraction decomposition

(27.3)
1

1− x2
=

1

2(x+ 1)
− 1

2(x− 1)
.

�

27.3. Entry 2.143.3.

(27.4)

∫
dx

x2 − 1
=

1

2
ln
x− 1

x+ 1
= −arccoth x x > −1, x < −1

Proof. This comes by integrating the partial fraction decomposition
1

x2 − 1
=

1

2(x− 1)
− 1

2(x+ 1)
. �

27.4. Entry 2.143.4.

(27.5)

∫
dx

1− x3
=

1

3
ln

√
1 + x+ x2

1− x
+

1√
3

arctan
x
√

3

2 + x

Proof. Write the partial fraction decomposition

(27.6)
1

1− x3
=

1

3(1− x)
+

x+ 2

3(x2 + x+ 1)

in the form
1

1− x3
= −1

3

(
−1

1− x

)
+

1

6

(
2x+ 1

x2 + x+ 1

)
+

1

2

1

x2 + x+ 1
. The first two

integrals are logarithmic and the last one is evaluated by completing the square in the
denominator. The argument of the arctangent may be replaced by (2x+ 1)/

√
3. �

27.5. Entry 2.143.5.

(27.7)

∫
dx

1− x4
=

1

4
ln

1 + x

1− x
+

1

2
arctan x =

1

2
(arctanh x+ arctan x)

Proof. The evaluation follows directly from the partial fraction decomposition

(27.8)
1

1− x4
=

1

4(1− x)
+

1

4(1 + x)
+

1

2(1 + x2)
.

�
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28. Section 2.144

28.1. Entry 2.144.1.

(28.1)

∫
dx

1− xn
=

1

n
ln

1 + x

1− x
− 2

n

n
2−1∑
k=1

Pk cos
2kπ

n
+

2

n

n
2−1∑
k=1

Qk sin
2kπ

n
for n even

where

(28.2) Pk =
1

2
ln

(
x2 − 2x cos

2kπ

n
+ 1

)
, Qk = arctan

(
x− cos 2kπ

n

sin 2kπ
n

)

Proof. The method of partial fractions require the roots of xn = 1. These are
given by

(28.3) xn,k = exp

(
2πik

n

)
= cos

(
2πk

n

)
+ i sin

(
2πk

n

)
, 0 6 k 6 n− 1.

Observe that xn,0 = 1 and xn,n/2 = −1. Now the partial fraction decomposition is
written as

1

1− xn
=

An,0
x− 1

+

n
2−1∑
k=1

An,k
x− xn,k

+
An,n/2

x+ 1
+

n−1∑
k=

n
2 +1

An,k
x− xn,k

(28.4)

=
An,0
x− 1

+

n
2−1∑
k=1

An,k
x− xn,k

+
An,n/2

x+ 1
+

n
2−1∑
k=1

A
n,
n
2 +k

x− x
n,
n
2 +k

.

A direct calculation of the coefficients An,k, the formulas for the poles xn,k and the
fact that |xn,k| = 1 give

(28.5)
1

1− xn
=

1

n(1− x)
+

1

n(1 + x)
− 1

n

n
2−1∑
k=1

(xn,k + xn,k)x− 2

(x− xn,k)(x− xn,k)
.

For the purpose of integration, it is convenient to write this as

1

1− xn
=

1

n(1− x)
+

1

n(1 + x)
(28.6)

− 1

n

n
2−1∑
k=1

Re (xnk)
2x− 2 Re (xn,k)

x2 − 2xRe (xn,k) + 1

+
2

n

n
2−1∑
k=1

Im2 (xn,k)

x2 − 2xRe (xn,k) + 1
.

Integrating gives the result. �
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28.2. Entry 2.144.2.

(28.7)

∫
dx

1− xn
= − 1

n
ln(1−x)− 2

n

n−1
2∑
k=1

Pk cos
2kπ

n
+

2

n

n−1
2∑
k=1

Qk sin
2kπ

n
for n odd

where

(28.8) Pk =
1

2
ln

(
x2 − 2x cos

2kπ

n
+ 1

)
, Qk = arctan

(
x− cos 2kπ

n

sin 2kπ
n

)
Proof. The result follows from the partial fraction expansion

(28.9)
1

1− xn
=

n−1∑
k=0

An,k
x− xn,k

,

where {xn,k : 0 6 k 6 n− 1} is the set of roots of xn = 1. The standard computation
gives An,k = − 1

nxn,k and the stated formula follow by pairing the pair of roots xn,k
and xn,n−k for 1 6 k 6 n − 1. (See the solution to Entry 2.142 for full details of a
similar example). The single term comes when k = 0 corresponding to the root x = 1.
This produces the term ln(1− x) in the formula. �

29. Section 2.145

29.1. Entry 2.145.1.

(29.1)

∫
x dx

1 + x
= x− ln(1 + x)

Proof. Let u = 1 + x, the integrand becomes 1− 1/u and now integrate. �

29.2. Entry 2.145.2.

(29.2)

∫
x dx

1 + x2
=

1

2
ln(1 + x2)

Proof. This follows directly from the change of variables u = 1 + x2. �

29.3. Entry 2.145.3.

(29.3)

∫
x dx

1 + x3
= −1

6
ln

(1 + x)2

1− x+ x2
+

1√
3

arctan
2x− 1√

3

Proof. The partial fraction decomposition

(29.4)
x

1 + x3
= −1

3

1

x+ 1
+

1

3

x+ 1

x2 − x+ 1

is written in a more convenient form as

(29.5)
x

1 + x3
= −

1
3

x+ 1
+

1

6

2x− 1

x2 − x+ 1
+

1
2

x2 − x+ 1
.

Therefore∫
x dx

x3 + 1
= −1

3
ln(x+ 1) +

1

6
ln(x2 − x+ 1) +

1

2

∫
dx

x2 − x+ 1
.
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To compute the last integral write x2 − x+ 1 = (x− 1
2 )2 + 3

4 = (x− 1
2 )2 +

(√
3

2

)2

and

the change of variables x = 1
2 +

√
3

2 tan θ gives

∫
dx

x2 − x+ 1
=

2√
3

arctan

(
2x− 1√

3

)
.

Now put all the pieces together to get the result. �

29.4. Entry 2.145.4.

(29.6)

∫
x dx

1 + x4
=

1

2
arctan x2

Proof. This evaluation follows directly from the change of variables u = x2. �

29.5. Entry 2.145.5.

(29.7)

∫
x dx

1− x
= − ln(1− x)− x

Proof. This evaluation follows directly from the change of variables u = 1 − x.
�

29.6. Entry 2.145.6.

(29.8)

∫
x dx

1− x2
= −1

2
ln(1− x2)

Proof. Make the change of variables u = 1− x2. �

29.7. Entry 2.145.7.

(29.9)

∫
x dx

1− x3
= −1

6
ln

(1− x)2

1 + x+ x2
− 1√

3
arctan

2x+ 1√
3

Proof. A similar argument to the one used in the proof of formula (29.3) pro-
duces this evaluation. �

29.8. Entry 2.145.8.

(29.10)

∫
x dx

1− x4
=

1

4
ln

1 + x2

1− x2

Proof. The change of variables u = x2 gives

∫
x dx

1− x4
=

1

2

∫
du

1− u2
. Now

integrate the decomposition
1

1− u2
=

1
2

1 + u
+

1
2

1− u
to complete the evaluation. �

30. Section 2.146

30.1. Entry 2.146.1.∫
xm−1 dx

1 + x2n
= − 1

2n

n∑
k=1

cos
mπ(2k − 1)

2n
ln

(
1− 2x cos

2k − 1

2n
π + x2

)
(30.1)

+
1

n

n∑
k=1

sin
mπ(2k − 1)

2n
arctan

(
x− cos 2k−1

2n π

sin 2k−1
2n π

)
m < 2n.
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Proof. The proof is based on the ideas given in detail for Entry 2.144.1. Let
x = x2n,k = exp ((2k − 1)πi/n) , 1 6 k 6 2n be the roots of x2n = −1. Consider the
partial fraction decomposition

(30.2)
xm−1

1 + x2n
=

2n∑
k=1

A2n,k

x− x2n,k
.

The procedure described in the proof of Entry 2.144.1 yields

(30.3) A2n,k = −
xm2n,k
2n

.

Now use the symmetry of the roots x2n,k and the corresponding symmetry of the
coefficients A2n,k to obtain

This yields

(30.4)

∫
xm−1 dx

1− x2n
= − 1

n

n−1∑
k=1

∫ cos mπ(2k−1)
2n

(
x− cos π(2k−1)

2n

)
dx

x2 − 2x cos π(2k−1)
2n + 1


+

1

n

n−1∑
k=1

[∫
sin mπ(2k−1)

2n sin π(2k−1)
2n dx

x2 − 2x cos π(2k−1)
2n + 1

]

Each of the integrals may be computed by the methods described before. This gives
the evaluation.

�

30.2. Entry 2.146.2.

(30.5)∫
xm−1 dx

1 + x2n+1
= (−1)m+1 ln(1 + x)

2n+ 1
− 1

2n+ 1

n∑
k=1

cos
mπ(2k − 1)

2n+ 1
ln

(
1− cos

2k − 1

2n+ 1
π + x2

)

+
2

2n+ 1

n∑
k=1

sin
mπ(2k − 1)

2n+ 1
arctan

(
x− cos 2k−1

2n+1π

sin 2k−1
2n+1π

)
m 6 2n.

Proof. The proof of this evaluation is similar to the one in Entry 2.146.1. The
roots of x2m+1 = −1 are

(30.6) xm,k = exp

(
πi(2k − 1)

2m+ 1

)
, 1 6 k 6 2m+ 1.

The special case k = m + 1 gives x = 1 and it produces the term ln(1 − x). The
remaining 2m roots are pairs as before to express the result in real terms. �
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30.3. Entry 2.146.3.∫
xm−1 dx

1− x2n
=

1

2n

{
(−1)m+1 ln(1 + x)− ln(1− x)

}
(30.7)

− 1

2n

n−1∑
k=1

cos
kmπ

n
ln(1− 2x cos

kπ

n
+ x2)

+
1

n

n−1∑
k=1

sin
kmπ

n
arctan

(
x− cos kπn

sin kπ
n

)
, m < 2n.

Proof. The proof is obtained by the same method described above. It follows
directly from the partial fraction decomposition (with xn,k the roots of x2n = 1):

(30.8)
xm−1

1− x2n
=
An,m,0
x− 1

+

n−1∑
k=1

An,m,k
x− xn,k

+
An,m,m
x+ 1

+

n−1∑
k=1

Bn,m,k
x− xn,k

.

The computation of the coefficients An,m,k and Bn,m,k is exactly as before. The details
are left to the reader. �

30.4. Entry 2.146.4.

(30.9)∫
xm−1 dx

1− x2n+1
= − 1

2n+ 1
ln(1− x)

+(−1)m+1 1

2n+ 1

n∑
k=1

cos
mπ(2k − 1)

2n+ 1
ln

(
1 + 2x cos

2k − 1

2n+ 1
π + x2

)

(−1)m+1 2

2n+ 1

n∑
k=1

sin
mπ(2k − 1)

2n+ 1
arctan

(
x+ cos 2k−1

2n+1π

sin 2k−1
2n+1π

)
m 6 2n

Proof. This is solved exactly as in the previous cases, using the roots xm,k

(30.10) xm,k = exp

(
2πi(2k + 1)

2m+ 1

)
, for 1 6 k 6 2m+ 1.

The index k = m gives the root x = 1 and produces the logarithmic term ln(1 − x).
The usual pairing of conjugate roots gives the stated form of the integral. �

31. Section 2.147

31.1. Entry 2.147.1.

(31.1)

∫
xm dx

1− x2n
=

1

2

∫
xm dx

1− xn
+

1

2

∫
xm dx

1 + xn

Proof. The partial fraction decomposition
1

1− s2
=

1

2(1− s)
+

1

2(1 + s)
with

s = xn, multiplied by xm, gives the evaluation. �



THE INTEGRALS IN GRADSHTEYN AND RYZHIK. PART 31 63

31.2. Entry 2.147.2.

(31.2)

∫
xm dx

(1 + x2)n
= − 1

2n−m− 1
· xm−1

(1 + x2)n−1
+

m− 1

2n−m− 1

∫
xm−2 dx

(1 + x2)n

Proof. Integrate by parts by writing
xm dx

(1 + x2)n
=

∫
xm−1 d

dx

(
−1

2(n− 1)(1 + x2)n−1

)
.

This gives

∫
xm dx

(1 + x2)n
= − 1

2(n− 1)

xm−1

1 + x2)n−1
+

m− 1

2(n− 1)

xm−2 dx

(1 + x2)n−1
. In the sec-

ond integral, multiply top and bottom by 1 + x2 and move the term coming from the
factor x2 to the left. This gives the result. �

31.3. Entry 2.147.3.

(31.3)

∫
xm

1 + x2
dx =

xm−1

m− 1
−
∫

xm−2

1 + x2
dx

Proof. Write
xm

1 + x2
=
xm−2 · (x2 = (1 + x2)− 1)

1 + x2
= xm−2− xm−2

1 + x2
. The result

follows by integration. �

31.4. Entry 2.147.4.∫
xm dx

(1− x2)n
=

1

2n−m− 1
· xm−1

(1− x2)n−1
− m− 1

2n−m− 1

∫
xm−2 dx

(1− x2)n
(31.4)

=
1

2n− 2
· xm−1

(1− x2)n−1
− m− 1

2n− 2

∫
xm−2 dx

(1− x2)n−1

Proof. The second form comes directly by integration by parts writing

(31.5)
xm

(1− x2)n
= xm−1 d

dx

(
1

2(n− 1)

1

(1− x2)n−1

)
.

The first form appears by multiplying the integrand by 1− x2 top and bottom in the
integrand of the second form. �

31.5. Entry 2.147.5.

(31.6)

∫
xm dx

1− x2
= − x

m−1

m− 1
+

∫
xm−2 dx

1− x2

Proof. Write the integrand as
xm

1− x2
= −xm−2 +

xm−2

1− x2
and integrate. �

32. Section 2.148

32.1. Entry 2.148.1.

(32.1)

∫
dx

xm(1 + x2)n
= − 1

m− 1

1

xm−1(1 + x2)n−1
− 2n+m− 3

m− 1

∫
dx

xm−2(1 + x2)n

For m = 1

(32.2)

∫
dx

x(1 + x2)n
=

1

2n− 2

1

(1 + x2)n−1
+

∫
dx

x(1 + x2)n−1
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For m = 1 and n = 1

(32.3)

∫
dx

x(1 + x2)
= ln

x√
1 + x2

Proof. Assume m > 1. Integrate by parts by choosing

(32.4) u = − 1

m− 1
x1−m and dv =

−2(n− 1)x dx

(1 + x2)n
.

Then du = x−m dx and v = (1 + x2)−n−1 and one obtains
(32.5)∫

dx

xm(1 + x2)n−1
= − 1

(m− 1)xm−1(1 + x2)n−1
− 2(n− 1)

m− 1

∫
1

xm−2 (1 + x2)n
.

This is very close to the stated formula, In order to obtain the exact statement,

subtract the integral

∫
x2−m(1 + x2)−n dx to both sides of (32.5). Then one obtains

the desired statement.
The integral relation with m = 1 follows from the identity

(32.6)
1

(1 + x2)n−1
=

1 + x2

(1 + x2)n
=

1

(1 + x2)n
+

x2

(1 + x2)n
.

Divide by x and integrate to obtain the result. The integral with m = n = 1 is

computed using the partial fraction decomposition
1

x(1 + x2)
=

1

x
− x

1 + x2
. �

32.2. Entry 2.148.2.

(32.7)

∫
dx

xm(1 + x2)
= − 1

(m− 1)xm−1
−
∫

dx

xm−2(1 + x2)

Proof. Integrate the identity

1

xm(1 + x2)
=

(1 + x2)− x2

xm(1 + x2)
=

1

xm
− 1

xm−2(1 + x2)
.

�

32.3. Entry 2.148.3.

(32.8)

∫
dx

(1 + x2)n
=

1

2n− 2
· x

(1 + x2)n−1
+

2n− 3

2n− 2

∫
dx

(1 + x2)n−1

Proof. Integrate by parts (by the usual procedure) with u dv = 1/(1 + x2)n and

uv =
x

2(n− 1)(1 + x2)n−1
gives v =

x2(n−1)

(1 + x2)n−1
and u =

1

2(n− 1)x2n−3
. �
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32.4. Entry 2.148.4.∫
dx

(1 + x2)n
=

x

2n− 1

n−1∑
k=1

(2n− 1)(2n− 3) · · · (2n− 2k + 1)

2k(n− 1)(n− 2) · · · (n− k)(1 + x2)n−k
(32.9)

+
(2n− 3)!!

2n−1(n− 1)!
arctan x

Proof. Write the statement as∫
dx

(1 + x2)n
=

x

2n− 1

n−1∑
k=1

(2n)!(n− k)!(n− k − 1)!

(2n− 2k)!22kn!(n− 1)!(1 + x2)n−k
+

(2n− 3)!!

2n−1(n− 1)!
arctanx.

An elementary inductive proof of this formula follows from the recurrence in Entry
2.148.3. The extra term in the sum on the right-hand side is exactly the term in the
recurrence that is not under the integral sign. �

33. Section 2.149

33.1. Entry 2.149.1.
(33.1) ∫

dx

xm(1− x2)n
= − 1

(m− 1)xm−1(1− x2)n−1
+

2n+m− 3

m− 1

∫
dx

xm−2(1− x2)n

for m = 1

(33.2)

∫
dx

x(1− x2)n
=

1

2(n− 1)(1− x2)n−1
+

∫
dx

x(1− x2)n−1

for m = 1 and n = 1

(33.3)

∫
dx

x(1− x2)
= ln

x√
1− x2

Proof. For m > 1, use the standard procedure to integrate by parts with

(33.4) u dv =
1

xm(1− x2)n
and uv = − 1

(m− 1)xm−1(1− x2)n−1
.

This gives v =
(1− x2)

1
2 (m−1)

xm−1
and from here v du = − 2n+m− 3

(m− 1)xm−2(1− x2)n
.With

these choices, integration by parts gives the result. The other two cases also follow by
integration by parts using the standard procedure. �

33.2. Entry 2.149.2.

(33.5)

∫
dx

(1− x2)n
=

1

2n− 2
· x

(1− x2)n−1
+

2n− 3

2n− 2

∫
dx

(1− x2)n−1

Proof. Integrate by parts using the standard procedure with u dv =
1

(1− x2)n
and

uv =
x

2(n− 1)(1− x2)n−1
. The result comes directly. �
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33.3. Entry 2.149.3.∫
dx

(1− x2)n
=

x

2n− 1

n−1∑
k=1

(2n− 1)(2n− 3) · · · (2n− 2k + 1)

2k(n− 1)(n− 2) · · · (n− k)(1− x2)n−k
(33.6)

+
(2n− 3)!!

2n · (n− 1)!
ln

1 + x

1− x

Proof. An elementary inductive proof of this formula follows from the recurrence in
Entry 2.149.2. The extra term in the sum on the right-hand side is exactly the term
in the recurrence that is not under the integral sign. �

34. Section 2.15. Forms containing pairs of binomials a+ bx and α+ βx

Notation. z = a+ bx, t = α+ βx, ∆ = aβ − αb

34.1. Entry 2.151.

(34.1)

∫
zntm dx =

zn+1tm

(m+ n+ 1)b
− m∆

(m+ n+ 1)b

∫
zntm−1 dx

Proof. The usual procedure with u dv = zntm and u v =
zn+1tm

(m+ n+ 1)b
produces

v = zm+n+1 and du =
m∆tm−1

(m+ n+ 1)zm+1
. Now integrate by parts. �

34.2. Entry 2.152.1.

(34.2)

∫
z

t
dx =

bx

β
+

∆

β2
ln t

Proof. Write z =
∆

β
+
bt

β
and dx =

dz

b
. Integrating yields the result. �

34.3. Entry 2.152.2.

(34.3)

∫
t

z
dx =

βx

b
− ∆

b2
ln z

Proof. Let z = a + bx. Then

∫
t

z
dx =

∫
α+ β

(
z−a
b

)
z

dx

b
=

1

b2

∫
βz −∆

z
dz

yields the evaluation. �

34.4. Entry 2.153.∫
tm dx

zn
=

1

(m− n− 1)b

tm

zn−1
− m∆

(m− n+ 1)b

∫
tm−1 dx

zn
(34.4)

=
1

(n− 1)∆

tm+1

zn−1
− (m− n+ 2)β

(n− 1)∆

∫
tm dx

zn−1

= − 1

(n− 1)b

tm

zn−1
+

mβ

(n− 1)b

∫
tm−1

zn−1
dx
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Proof. The first identity comes from the usual procedure by taking

u dv = tmz−n dx and uv =
tm

(m− n− 1)bzn−1
. This gives v = zm−n−1 and produces

u =
tm

(m− n− 1)bzm−2
. Then v du =

m∆

(m− n− 1)b
tm−1z−m +

2

(m− n− 1)
tmz−m.

Integrate to produce the first relation. To obtain the second identity, observe that

(34.5)
d

dx

(
tm+1z−n+1

)
= tmz−n ((m+ 1)βz − (n− 1)bt)

and expressing t in terms of z as t = (βz −∆)/b gives

(34.6)
d

dx

(
tm+1z−n+1

)
= (m− n+ 2)βtmz−n+1 + (n− 1)∆tmz−n.

Integrate to get the second identity. For the third identity, integrate by parts with
u = tm and dv = z−ndx. This gives the result. �

34.5. Entry 2.154.

(34.7)

∫
dx

zt
=

1

∆
ln
t

z

Proof. The result follows directly by integrating the partial fraction decomposi-

tion
1

(a+ bx)(α+ βx)
=
β

∆

1

α+ βx
− b

∆

1

a+ bx
. �

34.6. Entry 2.155.∫
dx

zntm
= − 1

(m− 1)∆

1

tm−1zn−1
− (m+ n− 2)b

(m− 1)∆

∫
dx

tm−1zn
(34.8)

=
1

(n− 1)∆

1

tm−1zn−1
+

(m+ n− 2)β

(n− 1)∆

∫
dx

tmzn−1

Proof. For the first part use the standard procedure to integrate by parts and

choose u dx = t−mz−n dx and uv = − 1

(m− 1)∆tm−1zn−1
. This gives v = (z/t)m−1

and then u = − 1

(m− 1)∆zn+m−2
. Integration by parts gives the first formula. The

second formula follows from the same procedure by choosing udv =
dx

zntm
and uv =

1

(n− 1)∆tm−1zn−1
. �

34.7. Entry 2.156.

(34.9)

∫
x dx

zt
=

1

∆

(
a

b
ln z − α

β
ln t

)
Proof. The result follows directly by integrating the partial fraction decomposi-

tion
x

(a+ bx)(α+ βx)
=

a

∆

1

a+ bx
− α

∆

1

α+ βx
. �
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