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DIG-Semigroups

Ravi Kumar Bandaru a and Arsham Borumand Saeid b

Abstract. In this paper, we introduce a new class of algebras that related to
distributive implication groupoids(DIG) and semigroups, call it a DIG-semigroup.

We also define the concept of left(resp. right) deductive systems(LDS (resp. RDS)

for short) of a DIG-semigroup and of unit divisors in DIG-semigroups. The notion
of DIG-homomorphisms between DIG-semigroups is introduced and investigate

some of their properties and the quotient of DIG-semigroup via deductive systems

is constructed.

1. Introduction

The concept of Hilbert algebras was introduced in early 50-ties by L.Henkin and
T.Skolem for some investigations of implication in intuitionistic and other classical
logics. In 60-ties, these algebras were studied especially, by A. Diego [5] from al-
gebraic point of view. Later, Hilbert algebras were treated by D. Busneag [2], Y.
B. Jun [6], I. Chajda and R. Halas [3] etc. I. Chajda and R. Halas introduced the
concept of implication groupoid as a generalization of a Hilbert algebra and studied
some connections among ideals, deductive systems and congruence kernels whenever
the implication groupoid is distributive [4]. Later, Bandaru [1], given a subset of a
distributive implication groupoid, the smallest ideal containing it is constructed and
a characterization of ideals in a distributive implication groupoid using upper sets is
given.

K. H. Kim et al. introduced a new class of algebras related to Hilbert algebras
and semigroups called a HS-algebra and studied some properties of HS-algebras [7, 8].
They characterized congruence relation in terms of both left and right compatible
relation and constructed quotient HS-algebra whenever HS-algebra is commutative.

In this paper, by combining distributive implication groupoids and semigroups,
we introduce the notion of DIG-semigroups as a generalization of HS-algebras. We
describe left(resp. right) deductive systems(LDS (resp. RDS) for short) generated by
a nonempty subset in a DIG-semigroup as a simple form and the element of < D∪E >l
( resp. < D ∪ E >r) where D and E are LDS(resp. RDS) of a DIG-semigroup X.
Also, we construct the quotient of DIG-semigroup via deductive systems.
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2. Preliminaries

We recall some basic definitions and results that are necessary in the sequel.

Definition 2.1. [2] A Hilbert algebra is an algebra H = (H, ∗, 1) of type (2, 0)
satisfying the axioms
(H1) x ∗ (y ∗ x) = 1
(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1
(H3) x ∗ y = 1 and y ∗ x = 1 imply x = y.

Definition 2.2. [4] An algebra (X, ∗, 1) of type (2,0) is called a Distributive
Implication Groupoid(DIG) if it satisfies the following identities:
(1) x ∗ x = 1
(2) 1 ∗ x = x
(3) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

One can observe that, every Hilbert algebra is a distributive implication groupoid
but converse need not be true.

Example 2.3. [4] Let X = {1, a, b, c, d}. The operation ‘∗’ is defined by

∗ 1 a b c d
1 1 a b c d
a 1 1 b b 1
b 1 a 1 1 d
c 1 a 1 1 d
d 1 1 c c 1

Then (X, ∗, 1) is a distributive implication groupoid but not a Hilbert algebra.

In every distributive implication groupoid, one can introduce the so called induced
relation 6 by the setting

x 6 y if and only if x ∗ y = 1

Lemma 2.4. [4] Let (X, ∗, 1) be a distributive implication groupoid. Then X sat-
isfies the identities

x ∗ 1 = 1 and x ∗ (y ∗ x) = 1

Moreover, the induced relation 6 is a quasi-order on X and the following relationships
are satisfied
(i) x 6 1 (ii) x 6 y ∗ x (iii) x ∗ ((x ∗ y) ∗ y) = 1 (iv) 1 6 x implies x = 1
(v) y ∗ z 6 (x ∗ y) ∗ (x ∗ z) (vi) x 6 y implies y ∗ z 6 x ∗ z
(vii) x ∗ (y ∗ z) 6 y ∗ (x ∗ z)
(viii) x ∗ y 6 (y ∗ z) ∗ (x ∗ z)

Definition 2.5. [4] Let (X, ∗, 1) be a distributive implication groupoid. A subset
I ⊆ X is called an ideal of X if, for all x, y ∈ X,
(I1) 1 ∈ X
(I2) x ∈ I and x ∗ y ∈ I imply y ∈ I.

Theorem 2.6. [4] Let X = (X, ∗, 1) be a distributive implication groupoid. Then
a subset I ⊆ X is an ideal of X if and only if
(1) 1 ∈ I
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(2) x ∈ X, y ∈ I imply x ∗ y ∈ I.
(3) x ∈ X, y1, y2 ∈ I imply (y2 ∗ (y1 ∗ x)) ∗ x ∈ I

Theorem 2.7. [4] Let I be an ideal of a distributive implication groupoid X =
(X, ∗, 1). If a ∈ I and a 6 b, then b ∈ I.

Theorem 2.8. [1] Let I be a subset of a distributive implication groupoid X
containing 1. Then I ∈ I(X), the set of all ideals of X if and only if for any a, b ∈ I
and x ∈ X, a ∗ (b ∗ x) = 1 implies x ∈ I.

Definition 2.9. [8] An HS-algebra is a non-empty set X with two binary opera-
tions ‘�’ and ‘∗’ and constant ‘1’ satisfying the axioms:
(DIGS1) : (X,�) is a semigroup.
(DIGS2) : (X, ∗, 1) is a Hilbert algebra.
(DIGS3) : x� (y ∗ z) = (x� y) ∗ (x� z) and
(x ∗ y)� z = (x� z) ∗ (y � z), for all x, y, z ∈ X.

3. DIG-Semigroups

In this section we introduce the notion of DIG-semigroup and study its properties.

Definition 3.1. A distributive implication groupoid-semigroup (simply DIG-semigroup)
is a non-empty set X with two binary operations ‘�’ and ‘∗’ and constant ‘1’ satisfying
the axioms:
(DIGS1) : (X,�) is a semigroup.
(DIGS2) : (X, ∗, 1) is a distributive implication groupoid.
(DIGS3) : x� (y ∗ z) = (x� y) ∗ (x� z) and
(x ∗ y)� z = (x� z) ∗ (y � z), for all x, y, z ∈ X.

Clearly, every DIG-semigroup is a DIG but converse need not be true.

Example 3.2. Let X = {1, a, b, c}. Define the operation ‘∗’ by

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 1 1 c
c 1 b b 1

Define � on X by x� y = x ∗ y, for all x, y ∈ X. Then a� (a� b) = a� 1 = a ∗ 1 =
1 6= b = 1 ∗ b = (a ∗ a) � b = (a � a) � b. Thus � is not associative. Hence X is a
distributive implication groupoid, but is not a DIG-semigroup.

Example 3.3. Let X = {1, a, b, c}. The operations ‘�’ and ‘∗’ are defined by

� 1 a b c
1 1 1 1 1
a 1 1 a 1
b 1 a b 1
c 1 1 1 1

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 a b 1

Then (X,�, ∗, 1) is a DIG-semigroup.
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The proof of the following proposition is straightforward.

Proposition 3.4. Every HS-algebra is a DIG-semigroup

By the following example we show that the converse of above proposition need
not be true.

Example 3.5. Let X = {1, a, b, c}. The operations ‘�’ and ‘∗’ are defined by

� 1 a b c
1 1 1 1 1
a 1 1 1 1
b 1 1 1 1
c 1 1 1 c

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 1 1 c
c 1 b b 1

Then (X,�, ∗, 1) is a DIG-semigroup, but is not an HS-algebra

In every DIG-semigroup X, one can introduce the so called induced relation 6 by
the setting for all x, y ∈ X

x 6 y if and only if x ∗ y = 1

Clearly 6 is reflexive.
From now on, (X,�, ∗, 1) or simply X is a DIG-semigroup.

Lemma 3.6. The induced relation 6 on X is a quasi-order(i.e., reflexive and
transitive relation) on X.

Proof. Let x, y, z ∈ X and x 6 y, y 6 z. Then x ∗ y = 1 = y ∗ z and

x ∗ z = 1 ∗ (x ∗ z) = (x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) = x ∗ 1 = 1.

Therefore x 6 z. Hence 6 is a quasi-order on X. �

Theorem 3.7. The induced quasi-order 6 on X is an order if and only if (X,�, ∗, 1)
is an HS-algebra.

Proof. Suppose 6 is an order on X. Then, by antisymmetry of 6, (X, ∗, 1) is a
Hilbert algebra. Hence (X,�, ∗, 1) is an HS-algebra. Converse is clear. �

Proposition 3.8. In X, the following holds:
(i) 1� x = x� 1 = 1.
(ii) x 6 y ⇒ z � x 6 z � y, x� z 6 y � z.

Proof. (i) 1� x = (x ∗ x)� x = (x� x) ∗ (x� x) = 1 and
x� 1 = x� (x ∗ x) = (x� x) ∗ (x� x) = 1.
(ii) Let x 6 y and z ∈ X. Then x∗y = 1 and (z�x)∗ (z�y) = z� (x∗y) = z�1 = 1.
Also (x� z) ∗ (y � z) = (x ∗ y)� z = 1� z = 1. Therefore (ii) holds. �

Definition 3.9. A non-empty subset D of X is called a left(resp. right) deductive
system(LDS resp. RDS) if it satisfies
(DS1) x� a ∈ D(resp. a� x ∈ D) for all x ∈ X and a ∈ D
(DS2) For any x, y ∈ X,x ∗ y ∈ D,x ∈ D ⇒ y ∈ D.
If D is both left and right deductive system of X, then D is called a deductive sys-
tem(DS) of X.
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Example 3.10. Let X = {1, a, b, c}. The operations ‘�’ and ‘∗’ are defined by

� 1 a b c
1 1 1 1 1
a 1 1 a 1
b 1 a b 1
c 1 1 1 c

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 a b 1

Then (X,�, ∗, 1) is a DIG-semigroup. Clearly D = {1, a} is a DS of X. But E = {1, b}
is not a DS of X, since a� b = a /∈ E.

Definition 3.11. A non-empty subset S of X is called a subalgebra of X if x∗y ∈
S and x� y ∈ S, for all x, y ∈ S.

Theorem 3.12. Every deductive system of X is a subalgebra of X.

Proof. Let D be a deductive system of X and a, b ∈ D. Then a� b ∈ D. Since
b 6 a ∗ b, we have, by (DS2), a ∗ b ∈ D. �

The converse of the above theorem need not be true, in Example 3.10, the set
E = {1, b} is a subalgebra of X, but not deductive system of X.

Theorem 3.13. Let X with x∗y = (x�y)∗y for all x, y ∈ X. Then the following
holds:

(1) x 6 x� y.
(2) x 6 y if and only if x� y 6 y.
(3) If x 6 y, then x� y 6 y � x.
(4) If x� y = 1, then x ∗ y = y.

Proof. Suppose X satisfies x ∗ y = (x� y) ∗ y, for all x, y ∈ X. Then

(1) x∗(x�y) = (x�(x�y))∗(x�y) = ((x�x)�y)∗(x�y) = ((x�x)∗x)�y =
(x ∗ x)� y = 1� y = 1.

(2) It is clear.
(3) Let x 6 y. Then x ∗ y = (x � y) ∗ y = 1. Then (x � y) ∗ (y � x) =

((x�y)�(y�x))∗(y�x) = (((x�y)�y)∗y)�x = ((x�y)∗y)�x = 1�x = 1.
(4) Let x� y = 1. Then x ∗ y = (x� y) ∗ y = 1 ∗ y = y.

�

Example 3.14. Let X = {1, a, b, c}. The operations ‘�’ and ‘∗’ are defined by

� 1 a b c
1 1 1 1 1
a 1 1 1 1
b 1 1 1 1
c 1 1 1 c

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 1 1 c
c 1 b b 1

Then (X,�, ∗, 1) is a DIG-semigroup. But a ∗ a = 1 6= a = 1 ∗ a = (a � a) ∗ a. Also
a� b = 1, but a ∗ b = 1 6= b.

Hence the condition x ∗ y = (x � y) ∗ y, for all x, y ∈ X is necessary to prove
Theorem 3.13.
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Example 3.15. Let X = {1, a, b, c}. Define the operations ‘�’ and ‘∗’ by

� 1 a b c
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
c 1 a b c

∗ 1 a b c
1 1 a b c
a 1 1 b b
b 1 a 1 a
c 1 1 1 1

Then (X,�, ∗, 1) is a DIG-semigroup with x ∗ y = (x� y) ∗ y for all x, y ∈ X.

Definition 3.16. An element a(6= 1) ∈ X is said to be a left unit divisor if

there exists b( 6= 1) ∈ X such that (a� b) = 1

An element a(6= 1) ∈ X is said to be a right unit divisor if

there exists b(6= 1) ∈ X such that b� a = 1

An element of X which is both left and right unit divisor is called a unit divisor of X.

In Example 3.3, a, b, c are unit divisors.

Theorem 3.17. If there are no left(resp. right) unit divisors in X, then X satisfies
the left(resp. right) cancellation law for the operation �.

Proof. Let x, y, z ∈ X be such that x� y = x� z and x 6= 1. Then

x� (y ∗ z) = (x� y) ∗ (x� z) = 1

and

x� (z ∗ y) = (x� z) ∗ (x� y) = 1

Since X has no left unit divisor, it follows that y∗z = 1 = z∗y so that y = z. Similarly
we can show the right cancellation law for the operation �. �

Theorem 3.18. If X satisfies the left(resp. right) cancellation law for the opera-
tion � i.e.,

x� y = x� z( resp. y � x = z � x)⇒ y = z for all x, y, z ∈ X
then X contains no left(resp. right) unit divisors in X.

Proof. Let X satisfying left cancellation law for the operation � and assume
that x � y = 1 where x 6= 1. Then x � y = 1 = x � 1 and hence y = 1. Similarly it
holds for the right case. Hence there is no left(resp. right) unit divisors in X. �

Let (X, ∗, 1) be a distributive implication groupoid and a, b ∈ X. Then the set

A(a, b) = {x ∈ X | a ∗ (b ∗ x) = 1}
is non-empty since 1, a, b ∈ A(a, b).

Proposition 3.19. If D is a left deductive system(LDS) of X, then A(a, b) ⊆ D,
for all a, b ∈ D.

Proof. Let x ∈ A(a, b) where a, b ∈ D. Then a∗ (b∗x) = 1 ∈ D and so x ∈ D(by
DS2). Therefore A(a, b) ⊆ D. �

The following theorem can be proved easily.
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Theorem 3.20. Let {Di}i∈I be an arbitrary collection of LDSs of X. Then
⋂
i∈I

Di

is also a LDS of X.

For any subset D of X, the intersection of all LDS(resp. RDS) of X containing
D is called the LDS(resp. RDS) generated by D and is denoted by < D >l(resp.
< D >r). It is clear that if D and E are subsets of X satisfying D ⊆ E, then
< D >l⊆< E >l(resp. < D >r⊆< E >r) and if D is a LDS(resp. RDS) of X, then
< D >l= D(resp. < D >r= D).

Theorem 3.21. Let D be a non-empty subset of X such that X�D ⊆ D( resp. D�
X ⊆ D). Then

< D >l= {a ∈ X | yn ∗ (· · · ∗ (y1 ∗ a) . . . ) = 1 for some y1, y2, . . . , yn ∈ D}

< D >r= {a ∈ X | yn ∗ (· · · ∗ (y1 ∗ a) . . . ) = 1 for some y1, y2, . . . , yn ∈ D}

Proof. Let x ∈ X, b ∈ B. Where

B = {a ∈ X | yn ∗ (· · · ∗ (y1 ∗ a) . . . ) = 1 for some y1, y2, . . . , yn ∈ D}

Then there exist y1, y2, . . . , yn ∈ D such that yn ∗ (· · · ∗ (y1 ∗ b) . . . ) = 1. Hence
1 = x�1 = x�(yn∗(· · ·∗(y1∗b) . . . )) = (x�yn)∗(· · ·∗((x�y1)∗(x�b)) . . . )(resp. 1 =
1� x = (yn ∗ (· · · ∗ (y1 ∗ b) . . . ))� x = (yn � x) ∗ (· · · ∗ ((y1 � x) ∗ (b� x)) . . . )). Since
x�yi ∈ D( resp.yi�x ∈ D) for i = 1, 2, . . . , n, we have x�b ∈ B(resp. b�x ∈ B). Let
x, a ∈ X be such that a∗x ∈ B and a ∈ B. Then there exist y1, y2, . . . , yn, z1, . . . , zm ∈
D such that yn ∗ (· · · ∗ (y1 ∗ (a ∗ x)) . . . ) = 1 and zm ∗ (· · · ∗ (z1 ∗ a) . . . ) = 1. Hence
a ∗ (yn ∗ (· · · ∗ (y1 ∗ x) . . . ) = 1) i.e., a 6 yn ∗ (· · · ∗ (y1 ∗ x) . . . ). Also, 1 = zm ∗ (· · · ∗
(z1 ∗ a) . . . ) 6 zm ∗ (· · · ∗ (z1 ∗ (yn ∗ (. . . (y1 ∗ x) . . . ))) . . . ). Thus

zm ∗ (· · · ∗ (z1 ∗ (yn ∗ (. . . (y1 ∗ x) . . . ))) . . . ) = 1

which implies that x ∈ B. Therefore B is a LDS(resp. RDS) of X. Obviously, D ⊆ B.
Let G be a LDS(resp. RDS) containing D. To show B ⊆ G, let a be an element of B.
Then there exist y1, y2, . . . , yn ∈ D such that yn ∗ (· · · ∗ (y1 ∗ a) . . . ) = 1. Then a ∈ G.
Therefore B ⊆ G. Hence B =< D >l (resp. < D >r). �

In the following example we show that the union of LDS(resp. RDS’s) D and E
may not be LDS(resp. RDS) of X.

Example 3.22. Let X = {1, a, b, c, d}. The operations ‘�’ and ‘∗’ are defined by

� 1 a b c d
1 1 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 1 1 1 1 d

∗ 1 a b c d
1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d 1 1 b b 1

Then (X,�, ∗, 1) is a DIG-semigroup. We know that D = {1, a} and E = {1, b} are
LDS of X but D∪E = {1, a, b} is not a LDS of X since b ∗ c = a ∈ D∪E, c /∈ D∪E.
We can observe that if D = {1, a, c} ⊆ X such that X � D ⊆ D(resp. D � X ⊆ D)
then < D >l (resp. < D >r) = {1, a, b, c}.
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Theorem 3.23. Let D and E be LDS of X. Then

< D ∪ E >l (resp. < D ∪ E >r) = {a ∈ X | x ∗ (y ∗ a) = 1 for some x ∈ D, y ∈ E}

Proof. Let H = {a ∈ X | x ∗ (y ∗ a) = 1 for some x ∈ D, y ∈ E}. Clearly,
H ⊆< D∪E >l (resp. < D∪E >r). Let b ∈< D∪E >l (resp. < D∪E >r). Then, by
Theorem 3.21, there exist y1, y2, . . . , yn ∈ D ∪E such that yn ∗ (· · · ∗ (y1 ∗ b) . . . ) = 1.
If yi ∈ D for all i = 1, 2, . . . , n, then b ∈ D. If yi ∈ E, for all i = 1, 2, . . . , n, then
b ∈ E. Hence b ∈ H. If some of y1, y2, . . . , yn ∈ D and others belong to E, then we
can assume that y1, y2, . . . , yk ∈ D and yk+1, . . . , yn ∈ E for 1 6 k < n, without loss
of generality. Let p = yk ∗ (· · · ∗ (y1 ∗ b) . . . ). Then yn ∗ (· · · ∗ (yk+1 ∗ p) . . . ) = 1 and
hence p ∈ E. Let q = p ∗ b = yk ∗ (· · · ∗ (y1 ∗ b) . . . ) ∗ b. Then

1 = [yk ∗ (· · · ∗ (y1 ∗ b) . . . )] ∗ [yk ∗ (· · · ∗ (y1 ∗ b) . . . )]
= yk ∗ [yk ∗ (· · · ∗ (y1 ∗ b) . . . ) ∗ (· · · ∗ (y1 ∗ b) . . . )]
= yk ∗ [· · · ∗ (y1 ∗ (yk ∗ (. . . (y1 ∗ b) . . . )) ∗ b) . . . ]
= yk ∗ [· · · ∗ (y1 ∗ q) . . . ]

and so q ∈ D. Since p ∗ (q ∗ b) = 1, we have b ∈ H. So that < D ∪ E >l (resp. <
D ∪ E >r) ⊆ H. �

We denote the set of all deductive systems of X by D(X). Let D1, D2 ∈ D(X).
We define the meet of D1 and D2 by D1 ∧D2 = D1 ∩D2 and the join of D1 and D2

by D1 ∨D2 =< D1 ∪D2 >. We note that (D(X),∨,∧) is a lattice. Also, {1} ∈ D(X)
and X ∈ D(X) and it is almost evident that the set theoretical intersection of an
arbitrary set of deductive systems of X is deductive system of X again. Hence, the
set D(X) forms a complete lattice with respect to set inclusion where the operation
meet coincides with set intersection, the least(or greatest) element of D(X) is {1}(or
X respectively).

4. DIG-homomorphism of DIG-semigroups

In this section, we introduce DIG-homomorphisms of DIG-semigroups and study
their properties.

Definition 4.1. Let X and Y be two DIG-semigroups. A mapping φ : X → Y is
called a DIG-homomorphism if for all a, b ∈ X,

φ(a ∗ b) = φ(a) ∗ φ(b) and φ(a� b) = φ(a)� φ(b).

A DIG-homomorphism φ is called a DIG-monomorphism(resp. DIG-epimorphism)
if it is injective(resp. surjective). A bijective DIG-homomorphism is called a DIG-
isomorphism. For any DIG-homomorphism φ : X → Y the set {x ∈ X | φ(x) = 1} is
called the kernel of φ, denoted by kerφ and the set {φ(x) | x ∈ X} is called the image
of φ, denoted by Im(φ). We denote by Hom(X,Y ) the set of all DIG-homomorphisms
of DIG-semigroups from X to Y .

Example 4.2. Let X = {1, a, b, c} and Y = {1, x, y, z}. The operations ‘�’ and
‘∗’ are defined by
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� 1 a b c
1 1 1 1 1
a 1 1 1 1
b 1 1 1 1
c 1 1 1 c

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 1 1 c
c 1 b b 1

� 1 x y z
1 1 1 1 1
x 1 1 1 1
y 1 1 y 1
z 1 1 1 z

∗ 1 x y z
1 1 x y z
x 1 1 y z
y 1 x 1 z
z 1 1 y 1

Then (X,�, ∗, 1) and (Y,�, ∗, 1) are DIG-semigroups. Define a map φ : X → Y by

φ(r) =

{
1, if r = 1,a,b
z, if r = c

Then φ is a DIG-homomorphism from X into Y.

Proposition 4.3. Suppose that φ : X → Y is a DIG-homomorphism of DIG-
semigroups. Then, for x, y ∈ X, (i) φ(1) = 1 (ii) If x ∗ y = 1, then φ(x) ∗ φ(y) = 1

Proof. Since φ(1) = φ(1 ∗ 1) = φ(1) ∗ φ(1) = 1, (i) holds. Let x, y ∈ X and
x ∗ y = 1. Then φ(x) ∗ φ(y) = φ(x ∗ y) = φ(1) = 1. �

Note 4.4. Suppose that φ : X → Y is a DIG-homomorphism of DIG-semigroups.
Then φ is a monomorphism if and only if kerφ = {1}.

Proposition 4.5. Let X,Y be DIG-semigroups and φ ∈ Hom(X,Y ). Then
(i) φ(x� 1) = φ(1� x) = 1
(ii) φ(1 ∗ x) = φ(x)
(iii) φ(x ∗ 1) = φ(1) for all x ∈ X.

Proposition 4.6. Let φ : X → Y be a homomorphism of DIG-semigroups. If
x ∈ X is a left(resp. right) unit divisor of X, then φ(x) is left(resp. right) unit divisor
of Y.

Proof. Let x ∈ X be a left unit divisor of X. Then there exists y(6= 1) ∈ X such
that x � y = 1. Now y ∈ X implies that φ(y) ∈ Y and φ(x) � φ(y) = φ(x � y) =
φ(1) = 1. �

Note 4.7. Let X,Y and Z be DIG-semigroups. If φ ∈ Hom(X,Y ) and ψ ∈
Hom(Y,Z), then ψ ◦ φ ∈ Hom(X,Z).

Proposition 4.8. Let X and Y be DIG-semigroups and B a left(resp.right) de-
ductive system of Y . Then for any φ ∈ Hom(X,Y ),φ−1(B) is a left(resp. right)
deductive system of X containing kerφ.

Proof. Let x ∈ X and y ∈ φ−1(B). Then φ(y) ∈ B and φ(x� y) = φ(x)� φ(y).
Since B is a left deductive system of Y , we have φ(x � y) ∈ B i.e., x � y ∈ φ−1(B).
Hence X � φ−1(B) ⊆ φ−1(B). Now, let x, y ∈ X be such that y ∈ φ−1(B) and
y ∗ x ∈ φ−1(B). Then φ(y) ∈ B and φ(y ∗ x) = φ(y) ∗ φ(x) ∈ B. Since B is a left
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deductive system, we have φ(x) ∈ B i.e., x ∈ φ−1(B). Hence φ−1(B) is a left deductive
system of X. Since {1} ⊆ B, kerφ = φ−1({1}) ⊆ φ−1(B).

�

Theorem 4.9. Let X and Y be DIG-semigroups and φ : X → Y be a DIG-
epimorphism of DIG-semigroups. If D is a left(resp. right) deductive system of X,
then φ(D) is a left(resp. right) deductive system of Y.

Proof. Let x ∈ φ(D) and y ∈ Y. Since φ is onto, there exist a ∈ X and b ∈ D
such that φ(a) = y and φ(b) = x. Then a � b ∈ D implies that y � x ∈ φ(D).
Hence Y � φ(D) ⊆ φ(D). Now, suppose a ∈ ψ(D), y ∈ Y and a ∗ y ∈ φ(D). Since
φ is onto, there exist b ∈ D and x ∈ X such that φ(b) = a and φ(x) = y. Thus
φ(b ∗ x) = φ(b) ∗ φ(x) = a ∗ y. So b ∗ x ∈ D. It follows from (DS2) that x ∈ D. Hence
y = φ(x) ∈ φ(D). Therefore φ(D) is a left deductive system of Y. �

Theorem 4.10. Let φ : X → Y be a DIG-homomorphism of DIG-semigroups.
Then kerφ is a deductive system of X.

Proof. Let x ∈ X and y ∈ kerφ. Then φ(y) = 1. Now, φ(x� y) = φ(x)�φ(y) =
φ(x) � 1 = 1. Therefore x � y ∈ kerφ. Now, let a ∗ x ∈ kerφ and a ∈ kerφ. Then
φ(a ∗ x) = 1 and hence φ(a) ∗ φ(x) = 1. Therefore φ(x) = 1. Hence x ∈ kerφ. kerφ is
a left deductive system of X. �

Definition 4.11. X is said to be commutative if (x ∗ y) ∗ y = (y ∗ x) ∗ x, for all
x, y ∈ X.

Example 4.12. Let X = {1, a, b, c}. Define the operations ‘�’ and ‘∗’ by

� 1 a b c
1 1 1 1 1
a 1 1 1 1
b 1 1 1 1
c 1 1 1 c

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 1 1 c
c 1 b b 1

Then (X,�, ∗, 1) is a commutative DIG-semigroup.

Note 4.13. Every commutative DIG-semigroup is an HS-algebra.

Theorem 4.14. Let X,Y and Z be commutative DIG-semigroups. Suppose that
φ : X → Y is a DIG-epimorphism and ψ : X → Z be a DIG-homomorphism. If
kerφ ⊆ kerψ, then there exists a unique DIG-homomorphism γ : Y → Z such that
γ ◦ φ = ψ.

Proof. Let y ∈ Y . Since φ is onto, there exists x ∈ X such that φ(x) = y.
Define a mapping γ : Y → Z by γ(y) = ψ(x). If y = φ(x1) = φ(x2), x1, x2 ∈ X,
then 1 = φ(x1) ∗ φ(x2) = φ(x1 ∗ x2). Hence x1 ∗ x2 ∈ kerφ. Since kerφ ⊆ kerψ,
we have 1 = ψ(x1) ∗ ψ(x2) = ψ(x1 ∗ x2). Similarly, we get that ψ(x2) ∗ ψ(x1) = 1.
Thus ψ(x1) = ψ(x2). This means that γ is well-defined. Next we show that γ is a
DIG-homomorphism. Let a, b ∈ Y . Then there exist x1, x2 ∈ X such that a = φ(x1)
and b = φ(x2). Now, we have

γ(a� b) = γ(φ(x1)� φ(x2)) = γ(φ(x1 � x2)) = ψ(x1)� ψ(x2) = γ(a)� γ(b)
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γ(a ∗ b) = γ(φ(x1) ∗ φ(x2)) = γ(φ(x1 ∗ x2)) = ψ(x1) ∗ ψ(x2) = γ(a) ∗ γ(b).

Hence γ is a DIG-homomorphism. The uniqueness of γ follows directly from the fact
that φ is DIG-epimorphism. �

Theorem 4.15. Let X,Y and Z be commutative DIG-semigroups and g : X → Z
be a DIG-homomorphism and h : Y → Z be a DIG-monomorphism with Im(g) ⊆
Im(h) then there exists a unique DIG-homomorphism f : X → Y satisfying h ◦ f = g

Proof. For each x ∈ X, g(x) ∈ Im(g) ⊆ Im(h). Since h is a DIG-monomorphism
there exists unique b ∈ Y such that g(a) = h(b). Define a map f : X → Y by
f(a) = b. Then h ◦ f = g. Let c, d ∈ X. Then h(f(c ∗ d)) = g(c ∗ d) = g(c) ∗ g(d) =
h(f(c))∗h(f(d)) = h(f(c)∗f(d)). Since h is a DIG-monomorphism, we have f(c∗d) =
f(c)∗f(d). Similarly we can prove that f(c�d) = f(c)�f(d). The uniqueness follows
from the fact that h is monomorphism. �

Definition 4.16. Let θ be a binary relation on X. Then

(1) θ is said to be compatible if (x, y) ∈ θ and (u, v) ∈ θ then (x ∗ u, y ∗ v) ∈ θ
and (x� u, y � v) ∈ θ for all x, y, u, v ∈ X.

(2) A compatible equivalence relation on X is called a congruence relation on X.

Let D be a deductive system of X. For any x, y ∈ X, we define a relation “ ∼D ”
on X as follows.

x ∼D y if and only if x ∗ y ∈ D and y ∗ x ∈ D.

Proposition 4.17. Let D be a deductive system of X. Then ∼D is a congruence
relation on X.

Proof. Let D be a deductive system of X. Since 1 ∈ D, the relation ∼D is
reflexive. Clearly, ∼D is symmetric. We prove transitivity of ∼D:
Let (x, y) ∈∼D and (y, z) ∈∼D . Then x∗y, y ∗x, y ∗z, z ∗y ∈ D. Since (y ∗z)∗ (x∗ (y ∗
z)) = 1 ∈ D and y∗z ∈ D, we get that x∗(y∗z) ∈ D. Consider x∗(y∗z) = (x∗y)∗(x∗z),
then (x ∗ y) ∗ (x ∗ z) ∈ D and x ∗ y ∈ D imply that x ∗ z ∈ D. Similarly, we can prove
z ∗x ∈ D, thus (x, z) ∈∼D. Let us prove the compatibility of ∼D . Assume (x, y) ∈∼D
and (u, v) ∈∼D. Then x ∗ y, y ∗ x, u ∗ v, v ∗ u ∈ D and

(x ∗ u) ∗ (x ∗ v) = x ∗ (u ∗ v) ∈ D
(x ∗ v) ∗ (x ∗ u) = x ∗ (v ∗ u) ∈ D

Therefore, (x∗u, x∗v) ∈∼D. Further, by Lemma 2.4, we have (y ∗x) 6 (x∗v)∗ (y ∗v)
and x ∗ y 6 (y ∗ v) ∗ (x ∗ v)
By Theorem 2.7, (x∗v)∗(y∗v) ∈ D and (y∗v)∗(x∗v) ∈ D. That is (x∗v, y∗v) ∈∼D .
By using transitivity of ∼D, we get that (x ∗ u, y ∗ v) ∈∼D. Since D is a deductive
system of X and ∼D is transitive, we can prove that (x� u, y � v) ∈∼D. Thus ∼D is
a congruence relation on X. �

Let D be a deductive system of X. Denote the equivalence class containing x by
[x]D and the set of equivalence classes in X by X/D i.e., [x]D = {y ∈ X | y ∼D x}
and X/D = {[x]D | x ∈ X}. Clearly [1]D = D and [x]D = [y]D if and only if x ∼D y.
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Lemma 4.18. If θ is a congruence relation on X, then [1]θ = {x ∈ X | (x, 1) ∈ θ}
is a deductive system of X.

Proof. Let θ be a congruence relation on X. Clearly, 1 ∈ [1]θ. Suppose x ∈
X, y ∈ [1]θ. Then (y, 1) ∈ θ and hence

(x� y, 1) = (x� y, x� 1) ∈ θ and (y � x, 1) = (y � x, 1� x) ∈ θ.
Thus x� y ∈ [1]θ and y � x ∈ [1]θ. Suppose x ∈ [1]θ and x ∗ y ∈ [1]θ. Then (x, 1) ∈ θ
and hence (x∗y, y) = (x∗y, 1∗y) ∈ θ. On the other hand, x∗y ∈ [1]θ gives (x∗y, 1) ∈ θ.
We obtain (y, 1) ∈ θ proving y ∈ [1]θ. �

Theorem 4.19. If D is a deductive system of X, then the relation θD defined by

(x, y) ∈ θD if and only if x ∗ y ∈ D and y ∗ x ∈ D
is a congruence of X such that [1]θD = D

Proof. Clearly, by Proposition 4.17, θD is a congruence on X. If x ∈ D, then
1 ∗ x = x ∈ D and x ∗ 1 = 1 ∈ D which means (x, 1) ∈ θD, i.e. x ∈ [1]θD . Conversely,
if x ∈ [1]θD , then (x, 1) ∈ θD and hence x = 1 ∗ x ∈ D. Thus [1]θD = D. �

Theorem 4.20. If D is a deductive system of X, then (X/D,},~, [1]D) is a
DIG-semigroup under the operations

[x]D } [y]D = [x� y]D and [x]D ~ [y]D = [x ∗ y]D.

Proof. Since∼D is a congruence relation, the operation~ is well-defined. Clearly,
(X/D,~, [1]D) is a distributive implication groupoid. Let [x]D = [u]D and [y]D = [v]D.
Then since D is a deductive system, we have (x� u) ∗ (x� v) = x� (u ∗ v) ∈ D and
(x � v) ∗ (x � u) = x � (v ∗ u) ∈ D. Then (x � u) ∼D (x � v). On the other hand,
(x � v) ∗ (y � v) = (x ∗ y) � v ∈ D and (y � v) ∗ (x � v) = (y ∗ x) � v ∈ D. Hence
x� v ∼D y� v that is [x�u]D = [y� v]D. This shows that } is well defined. Clearly,
(X/D,}) is a semigroup. For every [x]D, [y]D, [z]D ∈ X/D, we have

[x]D } ([y]D ~ [z]D) = [x]D } [y ∗ z]D
= [x� (y ∗ z)]D
= [(x� y) ∗ (x� z)]D
= [x� y]D ~ [x� z]D
= ([x]D } [y]D)~ ([x]D } [z]D)

and
([x]D ~ [y]D)} [z]D = [x ∗ y]D } [z]D

= [(x ∗ y)� z]D
= [(x� z) ∗ (y � z)]D
= [x� z]D ~ [y � z]D
= ([x]D } [z]D)~ ([y]D } [z]D)

Hence (X/D,},~, [1]D) is a DIG-semigroup. �

Theorem 4.21. If X is commutative and D is a deductive system of X, then
(X/D,},~, [1]D) is an HS-algebra under the operations

[x]D } [y]D = [x� y]D and [x]D ~ [y]D = [x ∗ y]D.

Example 4.22. Let X = {1, a, b, c, d}. The operations ‘�’ and ‘∗’ are defined by
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� 1 a b c d
1 1 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 1 1 1 1 d

∗ 1 a b c d
1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d 1 1 b b 1

Then (X,�, ∗, 1) is a DIG-semigroup. We can observe that D = {1, a, b, c} is a de-
ductive system of X and

∼D= {(x, y) ∈ X ×X | x ∼D y}
= {(1, 1), (a, a), (b, b), (c, c), (d, d), (1, a), (1, b), (1, c), (a, 1), (b, 1), (c, 1),
(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}

is a congruence relation on X. Then [1]D = [a]D = [b]D = [c]D = D = D1(say)
and [d]D = {d} = D2. Therefore X/D = {D1, D2} with the following tables

} D1 D2

D1 D1 D1

D2 D1 D2

~ D1 D2

D1 D1 D2

D2 D1 D1

is a DIG-semigroup under the conditions [x]D } [y]D = [x � y]D and [x]D ~ [y]D =
[x ∗ y]D.

Proposition 4.23. If D and E are deductive systems of X and D ⊂ E, then
(i) D is also a deductive system of E.
(ii) E/D is a deductive system of X/D.

Theorem 4.24. Let ψ : X → Y be a DIG-homomorphism of commutative DIG-
semigroups. Then for any deductive system D of X, D/(ker(ψ) ∩D) w ψ(D).

Proof. Let A = ker(ψ) ∩ D. Clearly A is a deductive system of D. Define a
mapping σ : D/A→ Y by σ([x]A) = ψ(x) for all x ∈ D. Then for any [x]A, [y]A ∈ D/A,
we have

[x]A = [y]A ⇔ x ∗ y ∈ A, y ∗ x ∈ A
⇔ ψ(x ∗ y) = 1, ψ(y ∗ x) = 1
⇔ ψ(x)~ ψ(y) = 1, ψ(y)~ ψ(x) = 1
⇔ ψ(x) = ψ(y)
⇔ σ([x]A) = σ([y]A).

Hence σ is well-defined and one to one. For all [x]A, [y]A ∈ D/A, we have

σ([x]A ~ [y]A) = σ([x ∗ y]A) = ψ(x ∗ y) = ψ(x) ∗ ψ(y) = σ([x]A) ∗ σ([y]A)

σ([x]A } [y]A) = σ([x� y]A) = ψ(x� y) = ψ(x)� ψ(y) = σ([x]A)� σ([y]A)

Hence σ is a DIG-homomorphism of DIG-semigroups. Thus Im(σ) = {σ([x]A) | x ∈
D} = {ψ(x) | x ∈ D} = ψ(D). Therefore D/(ker(ψ) ∩D) w ψ(D). �

Corollary 4.25. If ψ : X → Y is a DIG-epimorphism of commutative DIG-
semigroups, then X/ ker(ψ) w Y.
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5. Conclusion

In this paper, we have introduced a new class of algebras related to distributive
implication groupoids and semigroups, called a DIG-semigroup and also considered
the concept of deductive systems and of unit divisors in DIG-semigroups. We have
described left(resp. right) deductive system(LDS (resp. RDS) for short) generated by
a nonempty subset in a DIG-semigroup as a simple form. We have given a description
of the element of < D ∪ E >l ( resp. < D ∪ E >r) where D and E are left(resp.
right) deductive system of a DIG-semigroup X. We have introduced the notion of DIG-
homomorphisms between DIG-semigroups and investigated some of their properties.
Also, we have constructed the quotient DIG-semigroup via deductive systems.
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