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DIG-Semigroups
Ravi Kumar Bandaru @ and Arsham Borumand Saeid P

ABSTRACT. In this paper, we introduce a new class of algebras that related to
distributive implication groupoids(DIG) and semigroups, call it a DIG-semigroup.
We also define the concept of left(resp. right) deductive systems(LDS (resp. RDS)
for short) of a DIG-semigroup and of unit divisors in DIG-semigroups. The notion
of DIG-homomorphisms between DIG-semigroups is introduced and investigate
some of their properties and the quotient of DIG-semigroup via deductive systems
is constructed.

1. Introduction

The concept of Hilbert algebras was introduced in early 50-ties by L.Henkin and
T.Skolem for some investigations of implication in intuitionistic and other classical
logics. In 60-ties, these algebras were studied especially, by A. Diego [5] from al-
gebraic point of view. Later, Hilbert algebras were treated by D. Busneag [2], Y.
B. Jun [6], I. Chajda and R. Halas [3] etc. I. Chajda and R. Halas introduced the
concept of implication groupoid as a generalization of a Hilbert algebra and studied
some connections among ideals, deductive systems and congruence kernels whenever
the implication groupoid is distributive [4]. Later, Bandaru [1], given a subset of a
distributive implication groupoid, the smallest ideal containing it is constructed and
a characterization of ideals in a distributive implication groupoid using upper sets is
given.

K. H. Kim et al. introduced a new class of algebras related to Hilbert algebras
and semigroups called a HS-algebra and studied some properties of HS-algebras [7, 8].
They characterized congruence relation in terms of both left and right compatible
relation and constructed quotient HS-algebra whenever HS-algebra is commutative.

In this paper, by combining distributive implication groupoids and semigroups,
we introduce the notion of DIG-semigroups as a generalization of HS-algebras. We
describe left(resp. right) deductive systems(LDS (resp. RDS) for short) generated by
a nonempty subset in a DIG-semigroup as a simple form and the element of < DUE >,
(resp. < DUE >,) where D and E are LDS(resp. RDS) of a DIG-semigroup X.
Also, we construct the quotient of DIG-semigroup via deductive systems.
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2. Preliminaries
We recall some basic definitions and results that are necessary in the sequel.

DEFINITION 2.1. [2] A Hilbert algebra is an algebra H = (H,*,1) of type (2,0)
satisfying the axioms
(H) z*(y*xxz)=1
(H3) zxy=1andyxx =1 imply z = y.
DEFINITION 2.2. [4] An algebra (X,x,1) of type (2,0) is called a Distributive
Implication Groupoid(DIG) if it satisfies the following identities:
(1) zxx=1
(2) lxx==x
(3) zx(y*xz)=(xxy)*x(x*2) foralzy zeX.

One can observe that, every Hilbert algebra is a distributive implication groupoid
but converse need not be true.

EXAMPLE 2.3. [4] Let X = {1,a,b,c,d}. The operation “«’ is defined by

x| 1la|blcl|d
1|1|la|blcl|d
all1]1]b|b]|1
b|1]lal1]|1]|d
c|l1|lal|l1|1]d
d{1|1]lc|c|1

Then (X, *,1) is a distributive implication groupoid but not a Hilbert algebra.

In every distributive implication groupoid, one can introduce the so called induced
relation < by the setting

r<yifandonly if x xy =1

LEMMA 2.4. [4] Let (X, *,1) be a distributive implication groupoid. Then X sat-

isfies the identities
zxl=1andzx*(yxx)=1

Moreover, the induced relation < is a quasi-order on X and the following relationships
are satisfied
() x <1 (i) z<yx*z (4i1) v+ ((xxy)*xy) =1 () 1 < x implies z =1
(W) yxz< (xxy)*(x*z) (vi) z <y impliessy*z < T *z
(vit) z* (y*2) < y* (T *2)

DEFINITION 2.5. [4] Let (X, *,1) be a distributive implication groupoid. A subset
I C X is called an ideal of X if, for all z,y € X,
(I1)1eX
(I2) x el andxxy € I imply y € 1.

THEOREM 2.6. [4] Let X = (X, x,1) be a distributive implication groupoid. Then
a subset I C X is an ideal of X if and only if
H1erl
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2)zeX,yel implyzxyel.
(3) z € X,y1,y2 € I imply (y2 * (y1 % z))xx €1

THEOREM 2.7. [4] Let I be an ideal of a distributive implication groupoid X =
(X,%,1). Ifae I and a < b, then b€ I.

THEOREM 2.8. [1] Let I be a subset of a distributive implication groupoid X
containing 1. Then I € Z(X), the set of all ideals of X if and only if for any a,b € I
andx € X, ax (bxxz) =1 implies x € I.

DEFINITION 2.9. [8] An HS-algebra is a non-empty set X with two binary opera-
tions ‘©” and ‘*” and constant ‘1’ satisfying the axioms:
(DIGS1) : (X,0) is a semigroup.
(DIGS2) : (X, *,1) is a Hilbert algebra.
(DIGS3): 2@ (yx2)=(zQy) * (x © 2) and
(xxy)Oz=(x©2)x(y© 2), for all x,y,z € X.

3. DIG-Semigroups

In this section we introduce the notion of DIG-semigroup and study its properties.

DEFINITION 3.1. A distributive implication groupoid-semigroup (simply DIG-semigroup)
is a non-empty set X with two binary operations ‘®©’ and ‘*” and constant ‘1’ satisfying
the axioms:
(DIGS1) : (X,0) is a semigroup.
(DIGS2) : (X, *,1) is a distributive implication groupoid.
(DIGS3) : 20 (y*x2)=(x@y)*x(x®z) and
(xxy)Oz=(x©2)x(y© 2), for all x,y,z € X.

Clearly, every DIG-semigroup is a DIG but converse need not be true.

EXAMPLE 3.2. Let X = {1,a,b,c}. Define the operation ‘*’ by

x| 1]la|b]|ec
1|1|lalb|c
a|ll1|1]|1]c
bl 1|1|1]c
c|l1|blb|1

Define ©® on X byx @y =x =y, forallz,y € X. Thena® (a®b) =a®l=ax1=
1#b=1+%b=(a*xa)®b=(a®a)®b. Thus ® is not associative. Hence X is a
distributive implication groupoid, but is not a DIG-semigroup.

EXAMPLE 3.3. Let X = {1,a,b,c}. The operations ‘©’ and ‘x’ are defined by

1lal|b]c x| 1]la|b]|ec
111|111 1|1]alb]|ec
al|l1|1|al|l all]1|b]ec
bl1lal|b]|1 bl1|1]1]c
cl|1]1|1]1 cl1|lalb|l1

Then (X, ®,*,1) is a DIG-semigroup.
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The proof of the following proposition is straightforward.
PROPOSITION 3.4. FEvery HS-algebra is a DIG-semigroup

By the following example we show that the converse of above proposition need
not be true.

EXAMPLE 3.5. Let X = {1,a,b,c}. The operations ‘©” and ‘*’ are defined by

Ol1la|b]|c x| 1]la|b]|ec
1111|111 1|1]alb]|ec
al|1|1|1]|1 al|ll1|1|1]c
b|1|1|1]1 b|1]1]1]c¢
cl1]1]|1]c¢ c|l1|blb|1

Then (X, ®,*,1) is a DIG-semigroup, but is not an HS-algebra

In every DIG-semigroup X, one can introduce the so called induced relation < by
the setting for all x,y € X

r<yifandonlyifxxy=1

Clearly < is reflexive.
From now on, (X, ®,*,1) or simply X is a DIG-semigroup.

LEMMA 3.6. The induced relation < on X is a quasi-order(i.e., reflexive and
transitive relation) on X.

PROOF. Let z,y,z€ X and x < y,y < z. Thenz+y =1=1y* 2z and
zxz=1x(xxz)=(xxy)*x(x*xz)=cx*x(y*xz)=c*x1=1.
Therefore z < z. Hence < is a quasi-order on X. O

THEOREM 3.7. The induced quasi-order < on X is an order if and only if (X, ®, x,1)
is an HS-algebra.

PROOF. Suppose < is an order on X. Then, by antisymmetry of <, (X,*,1) is a
Hilbert algebra. Hence (X, ®,*,1) is an HS-algebra. Converse is clear. O

ProprosITION 3.8. In X, the following holds:
()leoxz=2z601=1.
(i) s <y=202<20y,202<y0O 2.

PrOOF. () 10z =(zx2)0z=(z0z)*(z®z) =1 and
xOl=z0(xxx)=(z0z)*x(z0z)=1.
(ti) Let x <yand z € X. Thenzxy =1 and (202)x(20y) =20 (xxy) =201 =1.
Also (@ 2)*x (y©®2) = (x*xy) ®2z =10 2z = 1. Therefore (i) holds. O

DEFINITION 3.9. A non-empty subset D of X is called a left(resp. right) deductive
system(LDS resp. RDS) if it satisfies
(DS1) x©®a € D(resp. a®x € D) for allz € X and a € D
(DS2) For any x,y € X,xxy € D,x € D=y € D.
If D is both left and right deductive system of X, then D is called a deductive sys-
tem(DS) of X.
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EXAMPLE 3.10. Let X = {1,a,b,c}. The operations ‘©’ and ‘x’ are defined by

Ol1lalb]c x| 1|la|b]|c
1111|111 1|1|lalb|ec
a|1|1|al|l all1]1]|b]c
blI1lal|b]|1 bl1|1]1]c
c|l1|1|1]c¢ cl1|lalb]|l

Then (X, ®,*,1) is a DIG-semigroup. Clearly D = {1,a} is a DS of X. But E = {1,b}
is not a DS of X, sincea ®b=a ¢ E.

DEFINITION 3.11. A non-empty subset S of X is called a subalgebra of X if xxy €
SandxoyeS, forallz,y €S.

THEOREM 3.12. Every deductive system of X is a subalgebra of X.

PROOF. Let D be a deductive system of X and a,b € D. Then a ®b € D. Since
b < axb, we have, by (DS2), axb € D. O

The converse of the above theorem need not be true, in Example 3.10, the set
E = {1,b} is a subalgebra of X, but not deductive system of X.

THEOREM 3.13. Let X with xxy = (x@y)*y for all x,y € X. Then the following
holds:

)z <z0Oy.
) z<yifand only if t Oy < y.
Y Ife <y, thenz Oy <y .

(1
(2
(3
4) Ifroy=1, thenxxy=y.

PROOF. Suppose X satisfies x xy = (x ® y) x y, for all z,y € X. Then

(1) zx(z0y) = (z0(z0y))*(z0y) = (tOz)OY)*(zOy) = (tOT)*x) Oy =
(zxz)Oy=10y=1.
(2) It is clear.
(3) Let z < y. Thenzxy = (x@y)*xy = 1. Then (z O y) * (y © x) =
(z0Y)O(yo)*(yor) = (r0y)Oy)ry)Or = (tOy)*y) Oz = 10z = L.
(4) Let x@y=1. Thenzxy=(zQy)*xy=1*xy =vy.
0

EXAMPLE 3.14. Let X = {1,a,b,c}. The operations ‘©@’ and ‘*’ are defined by

Ol1lalb]ec x| 1lal|lbl|ec
1111|111 1|1]alb]|ec
a | 11|11 all1|1]|1]c
bl1]1]|1]1 bl1|1]1]c
cl1]1]|1]c¢ c|l1|b|b|1

Then (X, ®,%,1) is a DIG-semigroup. Butaxa=1#a=1%xa=(a®a)*a. Also
a®@b=1, butaxb=1=#b.

Hence the condition z xy = (z ® y) x y, for all x,y € X is necessary to prove
Theorem 3.13.
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EXAMPLE 3.15. Let X = {1,a,b,c}. Define the operations ‘©’ and ‘x’ by

Ol1lalblec x| 1]la|b]|ec
1111|111 1|1]alb]|ec
alllal|llla all1]1|b]|bd
bl1]1|b]|bd bl1|lallla
c|l1|lalb]ec c|1|1|1]|1

Then (X, ®,*,1) is a DIG-semigroup with x xy = (x ©y) xy for all x,y € X.
DEFINITION 3.16. An element a(# 1) € X is said to be a left unit divisor if
there exists b(# 1) € X such that (a ®b) =1
An element a(# 1) € X is said to be a right unit divisor if
there exists b(# 1) € X such thatb®a =1
An element of X which is both left and right unit divisor is called a unit divisor of X.
In Example 3.3, a, b, ¢ are unit divisors.

THEOREM 3.17. If there are no left(resp. right) unit divisors in X, then X satisfies
the left(resp. right) cancellation law for the operation ©.

PrROOF. Let z,y,z € X be such that t @y =2 ® z and = # 1. Then
TOy*z)=(r0y)x(r0z)=1
and
TO(zxy)=(r0z)x(z0y) =1

Since X has no left unit divisor, it follows that y*z = 1 = zxy so that y = z. Similarly
we can show the right cancellation law for the operation ©. O

THEOREM 3.18. If X satisfies the left(resp. right) cancellation law for the opera-
tion © i.e.,

xrQy=xz0z(resp. y0r=z0z)=>y=z foralx,y,z€ X
then X contains no left(resp. right) unit divisors in X.

PROOF. Let X satisfying left cancellation law for the operation ® and assume
that x © y = 1 where x # 1. Then x ©y = 1 = 2 ©® 1 and hence y = 1. Similarly it
holds for the right case. Hence there is no left(resp. right) unit divisors in X. O

Let (X,*,1) be a distributive implication groupoid and a,b € X. Then the set
A(a,b) ={z e X |ax*x(bxx) =1}
is non-empty since 1,a,b € A(a,b).

PROPOSITION 3.19. If D is a left deductive system(LDS) of X, then A(a,b) C D,
for all a,b € D.

PROOF. Let x € A(a,b) where a,b € D. Then a*(bxxz) =1 € D and so x € D(by
DS2). Therefore A(a,b) C D. O

The following theorem can be proved easily.
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THEOREM 3.20. Let {D;}icr be an arbitrary collection of LDSs of X. Then (| D;
iel
is also a LDS of X.

For any subset D of X, the intersection of all LDS(resp. RDS) of X containing
D is called the LDS(resp. RDS) generated by D and is denoted by < D >;(resp.
< D >,). Tt is clear that if D and E are subsets of X satisfying D C E, then
< D > C< E >(resp. < D >,C< E >,) and if D is a LDS(resp. RDS) of X, then
< D >;= D(resp. < D >,= D).

THEOREM 3.21. Let D be a non-empty subset of X such that X©D C D( resp. DO
X C D). Then

<D>={aeX |yp*(---*(1%a)...) =1 for somey1,ya,...,yn € D}
<D>={aeX |ypx(--*(y1*xa)...)=1 for someyi,yo,...,yn € D}
PROOF. Let x € X,b € B. Where

B={aeX |yp*x(---*x(y1%a)...) =1 for some y1,y2,...,yn € D}

Then there exist y1,y2,...,yn € D such that y, * (- * (y1 *b)...) = 1. Hence
1=201=20(Yn*x(---*(y1%xb)...)) = (@Oyn)*(---*((xOy1)*x(x®b)) ... )(resp. 1 =
10z =(ypx (- x(y1%b)...)0x=(yo @)% (- *((11 ©x) * (b®x))...)). Since
2x@y; € D(resp.y;@x € D) fori=1,2,...,n, we have t®b € B(resp. bOx € B). Let
z,a € X besuch that axz € B and a € B. Then there exist y1,Y2, .-, Yn, 21, -- -, 2m €
D such that y, * (- % (y1 *x (a*x))...) =1 and z,, * (---* (21 xa)...) = 1. Hence
a* (Yn*(x(rxx)...)=1)1le,a<yp*(--*(y1*xx)...). Also, 1 =z, % (-~ %
(zrxa)...) < zm* (- % (21 % (Yn*x (... (Y1 %2)...)))...). Thus

Zmk (ox(zrx (Yynx (o (Y1 xx)..))...) =1

which implies that € B. Therefore B is a LDS(resp. RDS) of X. Obviously, D C B.
Let G be a LDS(resp. RDS) containing D. To show B C G, let a be an element of B.
Then there exist y1,y2,...,yn € D such that y, * (-+-* (y1 *a)...) =1. Then a € G.
Therefore B C G. Hence B =< D >; (resp. < D >,). O

In the following example we show that the union of LDS(resp. RDS’s) D and E
may not be LDS(resp. RDS) of X.

EXAMPLE 3.22. Let X = {1,a,b,c,d}. The operations ‘@’ and ‘*’ are defined by

OlI1lalb|c|d x| 1|la|b|lc|d
111|111 11 1|lalblc|d
al|l1|1]1|1]|1 all1l1|b|b]|d
bl1|1|1|1]1 bl1|lall]lal|d
cl|1|1|1]|1]|1 cl1|1111]|1]|d
dl1]1|1]1]|d d|111|b]|b]|1

Then (X,®,*,1) is a DIG-semigroup. We know that D = {1,a} and E = {1,b} are
LDS of X but DUE = {1,a,b} is not a LDS of X sincebxc=a € DUE,c¢ DUE.
We can observe that if D = {1,a,c¢} C X such that X ® D C D(resp. D ® X C D)
then < D >; (resp. < D >,)={1,a,b,c}.
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THEOREM 3.23. Let D and E be LDS of X. Then
<DUE > (resp. < DUE>,)={a€ X | z*(y*xa) =1 for somex € D,y € E}

PROOF. Let H = {a € X | 2 * (y*a) = 1for some xz € D,y € E}. Clearly,
H C< DUE > (tesp. < DUE >,). Let b e< DUFE >; (resp. < DUE >,.). Then, by
Theorem 3.21, there exist y1,¥a2,...,yn € DUE such that y, * (- * (y1 xb)...) = 1.
Ify; € Dforalli =1,2,...,n,then b € D. If y; € E, for all i = 1,2,...,n, then
b € E. Hence b € H. If some of y1,y2,...,y, € D and others belong to E, then we
can assume that y1,y2,...,yx € D and yx41,...,yn € FE for 1 < k < n, without loss
of generality. Let p = yg * (- - (y1 xb)...). Then y, * (- * (yx+1 *p)...) =1 and
hencepGE.Letq:p*bfyk*( % (y1 xb)...) xb. Then

)

L= [yex(- (yl*b e lye * (% (y1 % D) ... )]
= yk*[yk*( #(yrxb).. ) x (o x (yrxD)...)]
= yr*[- *(yl*(k (o (yrxb)...))xD)...]
= yp*[*x(1xq)...]

and so ¢ € D. Since p* (¢ +xb) = 1, we have b € H. So that < DU E >; (resp. <
DUE >,) CH. O

We denote the set of all deductive systems of X by D(X). Let Dy, Dy € D(X).
We define the meet of Dy and Dy by Dy A Dy = D1 N Dy and the join of Dy and Do
by D1V Dy =< D1 UDs >. We note that (D(X),V, A) is a lattice. Also, {1} € D(X)
and X € D(X) and it is almost evident that the set theoretical intersection of an
arbitrary set of deductive systems of X is deductive system of X again. Hence, the
set D(X) forms a complete lattice with respect to set inclusion where the operation
meet coincides with set intersection, the least(or greatest) element of D(X) is {1}(or
X respectively).

4. DIG-homomorphism of DIG-semigroups

In this section, we introduce DIG-homomorphisms of DIG-semigroups and study
their properties.

DEFINITION 4.1. Let X and Y be two DIG-semigroups. A mapping ¢ : X =Y is
called a DIG-homomorphism if for all a,b € X,

p(axb) = ¢(a) * $(b) and ¢(a © b) = ¢(a) © H(b).

A DIG-homomorphism ¢ is called a DIG-monomorphism(resp. DIG-epimorphism)
if it is injective(resp. surjective). A bijective DIG-homomorphism is called a DIG-
isomorphism. For any DIG-homomorphism ¢ : X — Y the set {z € X | ¢(z) =1} is
called the kernel of ¢, denoted by ker ¢ and the set {¢(z) | x € X} is called the image
of ¢, denoted by I'm(¢). We denote by Hom(X,Y) the set of all DIG-homomorphisms
of DIG-semigroups from X to Y.

EXAMPLE 4.2. Let X = {1,a,b,c¢} and Y = {1,2,y,2}. The operations ‘®’ and
‘«” are defined by
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Ol1la|b]|c x| 1]la|b]|c
1111|111 1|1]alb]|ec
a | 11|11 all1|1|1]|c
b|1|1|1]1 b|1]1]1]c¢c
c|1|1|1]c¢c c|l1]b|b]|1
Oll|lz|lyl| =z x| 1|lz|y| =z
111|111 1V 1|z|yl| =
x| 1111 x| 1|1y =
y|I1]1|y|1 ylI1|lz|1]| =%
z| 1|11z z|1]1|y]|1
Then (X, ®,*,1) and (Y,®,*,1) are DIG-semigroups. Define a map ¢ : X =Y by

z, ifr=c

(r) = { 1, ifr=1,a,b

Then ¢ is a DIG-homomorphism from X into Y.

PROPOSITION 4.3. Suppose that ¢ : X — Y is a DIG-homomorphism of DIG-
semigroups. Then, for x,y € X, (i) ¢(1) =1 (it) Ifzxy =1, then ¢(x) * d(y) =1

PROOF. Since ¢(1) = ¢(1 x 1) = ¢(1) * ¢(1) = 1,(¢) holds. Let z,y € X and
xxy=1. Then ¢(z) * d(y) = ¢p(z xy) = ¢(1) = 1. 0

NOTE 4.4. Suppose that ¢ : X — Y is a DIG-homomorphism of DIG-semigroups.
Then ¢ is a monomorphism if and only if ker ¢ = {1}.

PROPOSITION 4.5. Let X,Y be DIG-semigroups and ¢ € Hom(X,Y). Then
(1) p(zo 1) =0(1oz) =1
(1) o(1+x) = p(x)
(731) ¢p(xzx 1) = ¢(1) for all z € X.

ProPOSITION 4.6. Let ¢ : X — Y be a homomorphism of DIG-semigroups. If
x € X is aleft(resp. right) unit divisor of X, then ¢(z) is left(resp. right) unit divisor
of Y.

PROOF. Let z € X be a left unit divisor of X. Then there exists y(# 1) € X such
that z © y = 1. Now y € X implies that ¢(y) € Y and ¢(z) © ¢(y) = ¢(z O y) =
(1) =1. a

NotEk 4.7. Let X,Y and Z be DIG-semigroups. If ¢ € Hom(X,Y) and ¢ €
Hom(Y, Z), then v o ¢ € Hom(X, Z).

PROPOSITION 4.8. Let X and Y be DIG-semigroups and B a left(resp.right) de-
ductive system of Y. Then for any ¢ € Hom(X,Y),p~*(B) is a left(resp. right)
deductive system of X containing ker ¢.

PROOF. Let z € X and y € ¢~1(B). Then ¢(y) € B and ¢(z ©y) = ¢(z) ® ¢(y).
Since B is a left deductive system of Y, we have ¢(z ®y) € B ie., z ®y € ¢~ 1(B).
Hence X ® ¢~Y(B) C ¢~ 1(B). Now, let z,y € X be such that y € ¢~1(B) and
y*x € ¢~ 1(B). Then ¢(y) € B and ¢(y x x) = ¢(y) * ¢(x) € B. Since B is a left
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deductive system, we have ¢(z) € B i.e., x € ¢~ 1(B). Hence ¢~ 1(B) is a left deductive
system of X. Since {1} C B, ker¢ = ¢~ ({1}) C ¢~ *(B).
0

THEOREM 4.9. Let X and Y be DIG-semigroups and ¢ : X — Y be a DIG-
epimorphism of DIG-semigroups. If D is a left(resp. right) deductive system of X,
then ¢(D) is a left(resp. right) deductive system of Y.

PROOF. Let z € ¢(D) and y € Y. Since ¢ is onto, there exist a« € X and b € D
such that ¢(a) = y and ¢(b) = . Then a ® b € D implies that y © x € ¢(D).
Hence Y @ ¢(D) C ¢(D). Now, suppose a € ¢(D),y € Y and a xy € ¢(D). Since
¢ is onto, there exist b € D and z € X such that ¢(b) = a and ¢(x) = y. Thus
pbxx) =) xp(x) =ax*y. Sobxxz € D. It follows from (DS2) that z € D. Hence
y = ¢(x) € ¢(D). Therefore ¢(D) is a left deductive system of Y. O

THEOREM 4.10. Let ¢ : X — Y be a DIG-homomorphism of DIG-semigroups.
Then ker ¢ is a deductive system of X.

PROOF. Let z € X and y € ker¢. Then ¢(y) = 1. Now, ¢(zOy) = ¢(x) © p(y) =
d(x) ®1 = 1. Therefore © ® y € ker ¢. Now, let a x x € ker¢ and a € ker ¢. Then
¢(a*x) =1 and hence ¢(a) * ¢p(x) = 1. Therefore ¢(x) = 1. Hence x € ker ¢. ker ¢ is
a left deductive system of X. O

DEFINITION 4.11. X is said to be commutative if (x xy) xy = (y *x x) * z, for all
z,y € X.

EXAMPLE 4.12. Let X = {1,a,b,c}. Define the operations ‘©” and ‘x’ by

®Ol1|a c x| 1]la|b]|c
111|111 1|1]alb]|ec
a | 11|11 all1|1]|1]|c
bl1]1]|1]1 bl1|1]1]c
cl1]1]|1]c c|l1|b|b|1

Then (X, ®,*,1) is a commutative DIG-semigroup.
NOTE 4.13. Every commutative DIG-semigroup is an HS-algebra.

THEOREM 4.14. Let XY and Z be commutative DIG-semigroups. Suppose that
¢ : X — Y is a DIG-epimorphism and ¥ : X — Z be a DIG-homomorphism. If
ker ¢ C ker), then there exists a unique DIG-homomorphism v 1Y — Z such that
Yoo =1.

PrOOF. Let y € Y. Since ¢ is onto, there exists x € X such that ¢(z) = y.
Define a mapping v : ¥ = Z by v(y) = ¢(z). f y = é(x1) = ¢(x2), 21,22 € X,
then 1 = ¢(x1) * ¢p(x2) = P(x1 * x2). Hence 1 * 9 € ker¢. Since ker ¢ C ker,
we have 1 = ¢(x1) * ¥(x2) = ¥(x1 * x2). Similarly, we get that ¥(xs) * ¥(z1) = 1.
Thus ¥ (x1) = ¥(x2). This means that v is well-defined. Next we show that v is a
DIG-homomorphism. Let a,b € Y. Then there exist x1,22 € X such that a = ¢(z1)
and b = ¢(z2). Now, we have

(a©b) =7(d(21) © ¢(x2)) = V(¢(z1 © 22)) = P(21) © Y(22) = 7(a) © (D)
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V(axb) =y((x1) * ¢(22)) = V(d(x1 * T2)) = (x1) * (32) = 7(a) * (D).
Hence v is a DIG-homomorphism. The uniqueness of v follows directly from the fact
that ¢ is DIG-epimorphism. O

THEOREM 4.15. Let XY and Z be commutative DIG-semigroups and g : X — Z
be a DIG-homomorphism and h :' Y — Z be a DIG-monomorphism with Im(g) C
Im(h) then there exists a unique DIG-homomorphism f: X =Y satisfying ho f =g

PRrROOF. Foreachz € X, g(z) € Im(g) C Im(h). Since h is a DIG-monomorphism
there exists unique b € Y such that g(a) = h(b). Define a map f : X — Y by
f(a) =b. Then ho f = g. Let ¢,d € X. Then h(f(c*d)) = glc*xd) = g(c) * g(d) =
h(f(c))*h(f(d)) = h(f(c)*f(d)). Since h is a DIG-monomorphism, we have f(cxd) =
f(e)* f(d). Similarly we can prove that f(c®d) = f(c) ® f(d). The uniqueness follows
from the fact that A is monomorphism. 0

DEFINITION 4.16. Let 8 be a binary relation on X. Then

(1) 8 is said to be compatible if (x,y) € 0 and (u,v) € 0 then (z *xu,y*v) € 0
and (x O u,y ©v) € 0 for all x,y,u,v € X.

(2) A compatible equivalence relation on X is called a congruence relation on X.

43 R

Let D be a deductive system of X. For any x,y € X, we define a relation “ ~p
on X as follows.

x~pyifandonlyifzxy € D and y*x € D.

PROPOSITION 4.17. Let D be a deductive system of X. Then ~p is a congruence
relation on X.

PROOF. Let D be a deductive system of X. Since 1 € D, the relation ~p is
reflexive. Clearly, ~p is symmetric. We prove transitivity of ~p:
Let (z,y) €~p and (y,z) €~p . Then xxy,y*x,yxz,z*xy € D. Since (yxz)* (z* (yx*
2)) =1 € D and yxz € D, we get that xx(y*z) € D. Consider zx(y*z) = (z*y)*(x*2),
then (z xy) % (xx2) € D and x *y € D imply that z x z € D. Similarly, we can prove
z+x € D, thus (z,z) €é~p. Let us prove the compatibility of ~p . Assume (z,y) €~p
and (u,v) €~p. Then x *xy,y * z,u*v,v*u € D and
(xxu)*(x*xv)=x*(uxv) €D
(xxv)*(zxu)=x*(v*u) €D
Therefore, (z*u,z*v) E~p. Further, by Lemma 2.4, we have (y*x) < (z*v)* (y*v)
and zxy < (y*v) * (z % v)
By Theorem 2.7, (z*v)*(y*v) € D and (y*v)*(z*v) € D. That is (z*v,y*v) E~p .
By using transitivity of ~p, we get that (x * u,y *v) €~p. Since D is a deductive
system of X and ~p is transitive, we can prove that (z ® u,y ®v) E~p. Thus ~p is
a congruence relation on X. O

Let D be a deductive system of X. Denote the equivalence class containing x by
[z]p and the set of equivalence classes in X by X/D ie., [z|]p ={y€ X |y ~p z}
and X/D = {[z]p | x € X}. Clearly [1]p = D and [z]p = [y]p if and only if z ~p y.
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LEMMA 4.18. If 0 is a congruence relation on X, then [1lg = {zx € X | (z,1) € 0}
is a deductive system of X.

PROOF. Let 6 be a congruence relation on X. Clearly, 1 € [1]p. Suppose z €
X,y € [1]p. Then (y,1) € 6 and hence

(zoy,)=(zoy,zel)efand (yoz,1)=(yo0z,10x) €6.

Thus z ©y € [1]p and y © x € [1]y. Suppose z € [1]p and x xy € [1]p. Then (z,1) € 6
and hence (z*y,y) = (x*y, Lxy) € 0. On the other hand, x*y € [1]p gives (z*y,1) € 6.
We obtain (y,1) € 6 proving y € [1]y. O

THEOREM 4.19. If D is a deductive system of X, then the relation 0p defined by
(x,y) €0p if and only if txy € D and yxx € D
is a congruence of X such that [1]g, = D

Proor. Clearly, by Proposition 4.17, p is a congruence on X. If x € D, then
lxz=2z¢€ Dand x+1=1¢c D which means (z,1) € 0p, i.e. z € [1]p,. Conversely,
if x € [1]g,, then (x,1) € p and hence = 1%z € D. Thus [1]g, = D. O

THEOREM 4.20. If D is a deductive system of X, then (X/D,®,®,[1]p) is a
DIG-semigroup under the operations

[z]p ® [ylp = [ © ylp and [z]p ® [y]p = [z *y]p.

PROOF. Since ~p is a congruence relation, the operation ® is well-defined. Clearly,
(X/D,®,[1]p) is a distributive implication groupoid. Let [x]p = [u]p and [y]p = [v]p.
Then since D is a deductive system, we have (z @ u) x (x ©v) =2 ® (uxv) € D and
(xOv)*x(x@u) =20 (vxu) € D. Then (z ©®u) ~p (x ®v). On the other hand,
ov)x(yov)=(x*y) v e Dand (yov)*(xOv) = (y*x) ©v € D. Hence
xOv~p yOuv that is [x ©®u]p = [y ©®v]p. This shows that ® is well defined. Clearly,
(X/D,®) is a semigroup. For every [z]p, [y|p,[¢]p € X/D, we have

[zlp @ ([ylp®[2]p) = [z]lp©@[y=*2]p

z® (y*2)|p
(zoy)*(r©2)|p
TOYp®[xOzp

= ([zlp @ lp) ® ([z]p @ [2]p)

[
[
=
[

and
(Zlp®@lp)@lz]lp = [z*ylp@[2]p
= [(@xy)©zlbp
= [(£02)*(yo2)p
= [ro0zp®[yo2p
= (zlp @ [zlp) ® ([ylp @ [z]p)
Hence (X/D,®,®,[1]p) is a DIG-semigroup. O

THEOREM 4.21. If X is commutative and D is a deductive system of X, then
(X/D,©,®,[1]p) is an HS-algebra under the operations

[zlp @ [ylp = [ © ylp and [z]p ® [y]p = [z * y]p.
EXAMPLE 4.22. Let X = {1,a,b,c,d}. The operations ‘©’ and ‘x’ are defined by
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Ol1lalblc|d x| 1|la|b|c|d
111|111 1|1|lalblc|d
al|1|1|1|1]|1 all1l1|b|b]|d
bl|1|1]|1|1|1 bl1|lal|l|lald
cl|1|1|1|1]|1 c|1|11|1]d
d|1|1|1|1]d d{1]1|b|b]|1

Then (X,®,%,1) is a DIG-semigroup. We can observe that D = {1,a,b,c} is a de-

ductive system of X and

~p={(z,y) e X x X | x ~p y}
1), (a,a), (b,b), (¢, ¢), (d,d), (1,a),(1,b),(1,¢), (a,1), (b, 1), (¢, 1),
a,b), (b,a), (a,c),(c,a),(b,c),(c,b)}

is a congruence relation on X. Then [1]p = [a]p = [blp = [¢]p = D = D;(say)
and [d|p = {d} = Ds. Therefore X/D = {D1, Da} with the following tables

©® | D1 | Dy ® | Dy | Dy
Dl D1 Dl Dl Dl D2
Dy | Dy | Dy Dy | Dy | Dy

is a DIG-semigroup under the conditions [x]p ® [y]p = [x @ y]p and [z]p & [y]p =
[z*y|p.

ProprosSITION 4.23. If D and E are deductive systems of X and D C E, then
(i) D is also a deductive system of E.
(i1) E/D is a deductive system of X/D.

THEOREM 4.24. Let ¢ : X — Y be a DIG-homomorphism of commutative DIG-
semigroups. Then for any deductive system D of X, D/(ker(y)) N D) = (D).

ProOOF. Let A = ker(¢)) N D. Clearly A is a deductive system of D. Define a
mapping o : D/A — Y by o([z]a) = ¢(x) for all z € D. Then for any [x]4, [y]a € D/A,
we have
rxy€eAyxx e A
Pl ry) =1Lo(y*z) =1
V() ®@P(y) =1L (y) ® Y(z) =1
U(x) = P(y)

o([z]a) = o([yla).

Hence o is well-defined and one to one. For all [x]4, [y]a € D/A, we have
o([z]la ® [yla) = o([z x yla) = P(z xy) = P(z) xY(y) = o([z]a) * o([y]a)

o([z]a@[yla) = o[z ©yla) = P(z O y) = ¥(z) © ¥(y) = o([z]a) © o([y]a)
Hence o is a DIG-homomorphism of DIG-semigroups. Thus Im(c) = {o([z]a) | = €
D} ={¢(z) | x € D} = (D). Therefore D/(ker(y) N D) = (D). O

teeee

COROLLARY 4.25. If ¢ : X — Y is a DIG-epimorphism of commutative DIG-
semigroups, then X/ker(¢) =Y.
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5. Conclusion

In this paper, we have introduced a new class of algebras related to distributive
implication groupoids and semigroups, called a DIG-semigroup and also considered
the concept of deductive systems and of unit divisors in DIG-semigroups. We have
described left(resp. right) deductive system(LDS (resp. RDS) for short) generated by
a nonempty subset in a DIG-semigroup as a simple form. We have given a description
of the element of < DUEFE >; (resp. < DUFE >,) where D and E are left(resp.
right) deductive system of a DIG-semigroup X. We have introduced the notion of DIG-
homomorphisms between DIG-semigroups and investigated some of their properties.
Also, we have constructed the quotient DIG-semigroup via deductive systems.
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