SCIENTIA
Series A: Mathematical Sciences, Vol. 26 (2015), 101–114
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2015

DIG-Semigroups

Ravi Kumar Bandaru ^a and Arsham Borumand Saeid ^b

ABSTRACT. In this paper, we introduce a new class of algebras that related to distributive implication groupoids(DIG) and semigroups, call it a DIG-semigroup. We also define the concept of left(resp. right) deductive systems(LDS (resp. RDS) for short) of a DIG-semigroup and of unit divisors in DIG-semigroups. The notion of DIG-homomorphisms between DIG-semigroups is introduced and investigate some of their properties and the quotient of DIG-semigroup via deductive systems is constructed.

1. Introduction

The concept of Hilbert algebras was introduced in early 50-ties by L.Henkin and T.Skolem for some investigations of implication in intuitionistic and other classical logics. In 60-ties, these algebras were studied especially, by A. Diego [5] from algebraic point of view. Later, Hilbert algebras were treated by D. Busneag [2], Y. B. Jun [6], I. Chajda and R. Halas [3] etc. I. Chajda and R. Halas introduced the concept of implication groupoid as a generalization of a Hilbert algebra and studied some connections among ideals, deductive systems and congruence kernels whenever the implication groupoid is distributive [4]. Later, Bandaru [1], given a subset of a distributive implication groupoid, the smallest ideal containing it is constructed and a characterization of ideals in a distributive implication groupoid using upper sets is given.

K. H. Kim et al. introduced a new class of algebras related to Hilbert algebras and semigroups called a HS-algebra and studied some properties of HS-algebras [7, 8]. They characterized congruence relation in terms of both left and right compatible relation and constructed quotient HS-algebra whenever HS-algebra is commutative.

In this paper, by combining distributive implication groupoids and semigroups, we introduce the notion of DIG-semigroups as a generalization of HS-algebras. We describe left(resp. right) deductive systems(LDS (resp. RDS) for short) generated by a nonempty subset in a DIG-semigroup as a simple form and the element of $\langle D \cup E \rangle_l$ (resp. $\langle D \cup E \rangle_r$) where D and E are LDS(resp. RDS) of a DIG-semigroup X. Also, we construct the quotient of DIG-semigroup via deductive systems.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25.

 $Key\ words\ and\ phrases.$ Distributive Implication Groupoid (DIG), DIG-semigroup, Deductive System (DS), homomorphism.

2. Preliminaries

We recall some basic definitions and results that are necessary in the sequel.

DEFINITION 2.1. [2] A Hilbert algebra is an algebra $\mathcal{H} = (H, *, 1)$ of type (2, 0) satisfying the axioms

(H1) x * (y * x) = 1(H2) (x * (y * z)) * ((x * y) * (x * z)) = 1(H3) x * y = 1 and y * x = 1 imply x = y.

DEFINITION 2.2. [4] An algebra (X, *, 1) of type (2,0) is called a Distributive Implication Groupoid(DIG) if it satisfies the following identities:

- (1) x * x = 1
- (2) 1 * x = x
- (3) x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

One can observe that, every Hilbert algebra is a distributive implication groupoid but converse need not be true.

EXAMPLE 2.3. [4] Let $X = \{1, a, b, c, d\}$. The operation '*' is defined by

*	1	a	b	С	d
1	1	a	b	С	d
a	1	1	b	b	1
b	1	a	1	1	d
С	1	a	1	1	d
d	1	1	С	С	1

Then (X, *, 1) is a distributive implication groupoid but not a Hilbert algebra.

In every distributive implication groupoid, one can introduce the so called induced relation \leq by the setting

$$x \leq y$$
 if and only if $x * y = 1$

LEMMA 2.4. [4] Let (X, *, 1) be a distributive implication groupoid. Then X satisfies the identities

$$x * 1 = 1$$
 and $x * (y * x) = 1$

Moreover, the induced relation \leq is a quasi-order on X and the following relationships are satisfied

(i) $x \leq 1$ (ii) $x \leq y * x$ (iii) x * ((x * y) * y) = 1 (iv) $1 \leq x$ implies x = 1(v) $y * z \leq (x * y) * (x * z)$ (vi) $x \leq y$ implies $y * z \leq x * z$ (vii) $x * (y * z) \leq y * (x * z)$ (viii) $x * y \leq (y * z) * (x * z)$

DEFINITION 2.5. [4] Let (X, *, 1) be a distributive implication groupoid. A subset $I \subseteq X$ is called an ideal of X if, for all $x, y \in X$, (I1) $1 \in X$ (I2) $x \in I$ and $x * y \in I$ imply $y \in I$.

THEODEM 2.6 [4] Let $\mathcal{Y} = (Y + 1)$ be a distribution

THEOREM 2.6. [4] Let $\mathcal{X} = (X, *, 1)$ be a distributive implication groupoid. Then a subset $I \subseteq X$ is an ideal of \mathcal{X} if and only if (1) $1 \in I$

(2) $x \in X, y \in I$ imply $x * y \in I$.

(3) $x \in X, y_1, y_2 \in I$ imply $(y_2 * (y_1 * x)) * x \in I$

THEOREM 2.7. [4] Let I be an ideal of a distributive implication groupoid $\mathcal{X} = (X, *, 1)$. If $a \in I$ and $a \leq b$, then $b \in I$.

THEOREM 2.8. [1] Let I be a subset of a distributive implication groupoid X containing 1. Then $I \in \mathcal{I}(X)$, the set of all ideals of X if and only if for any $a, b \in I$ and $x \in X$, a * (b * x) = 1 implies $x \in I$.

DEFINITION 2.9. [8] An HS-algebra is a non-empty set X with two binary operations ' \odot ' and '*' and constant '1' satisfying the axioms:

(DIGS1): (X, \odot) is a semigroup. (DIGS2): (X, *, 1) is a Hilbert algebra.

 $(DIGS3): x \odot (y * z) = (x \odot y) * (x \odot z)$ and

 $(x * y) \odot z = (x \odot z) * (y \odot z), \text{ for all } x, y, z \in X.$

3. DIG-Semigroups

In this section we introduce the notion of DIG-semigroup and study its properties.

DEFINITION 3.1. A distributive implication groupoid-semigroup (simply DIG-semigroup) is a non-empty set X with two binary operations ' \odot ' and '*' and constant '1' satisfying the axioms:

 $(DIGS1): (X, \odot)$ is a semigroup. (DIGS2): (X, *, 1) is a distributive implication groupoid. $(DIGS3): x \odot (y * z) = (x \odot y) * (x \odot z)$ and

 $(x * y) \odot z = (x \odot z) * (y \odot z)$, for all $x, y, z \in X$.

Clearly, every DIG-semigroup is a DIG but converse need not be true.

EXAMPLE 3.2. Let $X = \{1, a, b, c\}$. Define the operation '*' by

	-			
*	1	a	b	С
1	1	a	b	С
a	1	1	1	С
b	1	1	1	С
C	1	b	b	1

Define \odot on X by $x \odot y = x * y$, for all $x, y \in X$. Then $a \odot (a \odot b) = a \odot 1 = a * 1 = 1 \neq b = 1 * b = (a * a) \odot b = (a \odot a) \odot b$. Thus \odot is not associative. Hence X is a distributive implication groupoid, but is not a DIG-semigroup.

EXAMPLE 3.3. Let $X = \{1, a, b, c\}$. The operations ' \odot ' and '*' are defined by

\odot	1	a	b	с
1	1	1	1	1
a	1	1	a	1
b	1	a	b	1
c	1	1	1	1

*	1	a	b	c
1	1	a	b	c
a	1	1	b	С
b	1	1	1	С
С	1	a	b	1

Then $(X, \odot, *, 1)$ is a DIG-semigroup.

The proof of the following proposition is straightforward.

PROPOSITION 3.4. Every HS-algebra is a DIG-semigroup

By the following example we show that the converse of above proposition need not be true.

EXAMPLE 3.5. Let $X = \{1, a, b, c\}$. The operations ' \odot ' and '*' are defined by

)	1	a	b	С	*	1	a	b
1	1	1	1	1	1	1	a	b
a	1	1	1	1	a	1	1	1
b	1	1	1	1	b	1	1	1
с	1	1	1	С	C	1	b	b

Then $(X, \odot, *, 1)$ is a DIG-semigroup, but is not an HS-algebra

In every DIG-semigroup X, one can introduce the so called induced relation \leq by the setting for all $x, y \in X$

 $x \leq y$ if and only if x * y = 1

Clearly \leq is reflexive.

From now on, $(X, \odot, *, 1)$ or simply X is a DIG-semigroup.

LEMMA 3.6. The induced relation \leq on X is a quasi-order (i.e., reflexive and transitive relation) on X.

PROOF. Let $x, y, z \in X$ and $x \leq y, y \leq z$. Then x * y = 1 = y * z and

$$x * z = 1 * (x * z) = (x * y) * (x * z) = x * (y * z) = x * 1 = 1.$$

Therefore $x \leq z$. Hence \leq is a quasi-order on X.

THEOREM 3.7. The induced quasi-order $\leq on X$ is an order if and only if $(X, \odot, *, 1)$ is an HS-algebra.

PROOF. Suppose \leq is an order on X. Then, by antisymmetry of \leq , (X, *, 1) is a Hilbert algebra. Hence $(X, \odot, *, 1)$ is an HS-algebra. Converse is clear. \square

PROPOSITION 3.8. In X, the following holds:

(*i*) $1 \odot x = x \odot 1 = 1$.

 $(ii) \ x \leqslant y \Rightarrow z \odot x \leqslant z \odot y, x \odot z \leqslant y \odot z.$

PROOF. (i) $1 \odot x = (x * x) \odot x = (x \odot x) * (x \odot x) = 1$ and $x \odot 1 = x \odot (x * x) = (x \odot x) * (x \odot x) = 1.$ (ii) Let $x \leq y$ and $z \in X$. Then x * y = 1 and $(z \odot x) * (z \odot y) = z \odot (x * y) = z \odot 1 = 1$. Also $(x \odot z) * (y \odot z) = (x * y) \odot z = 1 \odot z = 1$. Therefore (*ii*) holds.

DEFINITION 3.9. A non-empty subset D of X is called a left(resp. right) deductive system(LDS resp. RDS) if it satisfies $(DS1) \ x \odot a \in D(resp. \ a \odot x \in D)$ for all $x \in X$ and $a \in D$ (DS2) For any $x, y \in X, x * y \in D, x \in D \Rightarrow y \in D$. If D is both left and right deductive system of X, then D is called a deductive system(DS) of X.

104

 \square

EXAMPLE 3.10. Let $X = \{1, a, b, c\}$. The operations ' \odot ' and '*' are defined by

\odot	1	a	b	С	*	1	a	b	
1	1	1	1	1	1	1	a	b	
a	1	1	a	1	a	1	1	b	Γ
b	1	a	b	1	b	1	1	1	Γ
С	1	1	1	С	c	1	a	b	Γ

Then $(X, \odot, *, 1)$ is a DIG-semigroup. Clearly $D = \{1, a\}$ is a DS of X. But $E = \{1, b\}$ is not a DS of X, since $a \odot b = a \notin E$.

DEFINITION 3.11. A non-empty subset S of X is called a subalgebra of X if $x * y \in S$ and $x \odot y \in S$, for all $x, y \in S$.

THEOREM 3.12. Every deductive system of X is a subalgebra of X.

PROOF. Let D be a deductive system of X and $a, b \in D$. Then $a \odot b \in D$. Since $b \leq a * b$, we have, by (DS2), $a * b \in D$.

The converse of the above theorem need not be true, in Example 3.10, the set $E = \{1, b\}$ is a subalgebra of X, but not deductive system of X.

THEOREM 3.13. Let X with $x * y = (x \odot y) * y$ for all $x, y \in X$. Then the following holds:

(1) $x \leq x \odot y$.

- (2) $x \leq y$ if and only if $x \odot y \leq y$.
- (3) If $x \leq y$, then $x \odot y \leq y \odot x$.
- (4) If $x \odot y = 1$, then x * y = y.

PROOF. Suppose X satisfies $x * y = (x \odot y) * y$, for all $x, y \in X$. Then

- (1) $x * (x \odot y) = (x \odot (x \odot y)) * (x \odot y) = ((x \odot x) \odot y) * (x \odot y) = ((x \odot x) * x) \odot y = (x * x) \odot y = 1 \odot y = 1.$
- (2) It is clear.
- (3) Let $x \leq y$. Then $x * y = (x \odot y) * y = 1$. Then $(x \odot y) * (y \odot x) = ((x \odot y) \odot (y \odot x)) * (y \odot x) = (((x \odot y) \odot y) * y) \odot x = ((x \odot y) * y) \odot x = 1 \odot x = 1$.
- (4) Let $x \odot y = 1$. Then $x * y = (x \odot y) * y = 1 * y = y$.

EXAMPLE 3.14. Let $X = \{1, a, b, c\}$. The operations ' \odot ' and '*' are defined by

•	1	a	b	c	*	1	a	b
1	1	1	1	1	1	1	a	b
a	1	1	1	1	a	1	1	1
b	1	1	1	1	b	1	1	1
с	1	1	1	С	С	1	b	b

Then $(X, \odot, *, 1)$ is a DIG-semigroup. But $a * a = 1 \neq a = 1 * a = (a \odot a) * a$. Also $a \odot b = 1$, but $a * b = 1 \neq b$.

Hence the condition $x * y = (x \odot y) * y$, for all $x, y \in X$ is necessary to prove Theorem 3.13.

EXAMPLE 3.15. Let $X = \{1, a, b, c\}$. Define the operations ' \odot ' and '*' by

			-		-					
\odot	1	a	b	c		*	1	a	b	c
1	1	1	1	1		1	1	a	b	С
a	1	a	1	a		a	1	1	b	b
b	1	1	b	b		b	1	a	1	a
c	1	a	b	С		С	1	1	1	1

Then $(X, \odot, *, 1)$ is a DIG-semigroup with $x * y = (x \odot y) * y$ for all $x, y \in X$.

DEFINITION 3.16. An element $a \neq 1 \in X$ is said to be a left unit divisor if

there exists $b(\neq 1) \in X$ such that $(a \odot b) = 1$

An element $a \neq 1 \in X$ is said to be a right unit divisor if

there exists $b(\neq 1) \in X$ such that $b \odot a = 1$

An element of X which is both left and right unit divisor is called a unit divisor of X.

In Example 3.3, a, b, c are unit divisors.

THEOREM 3.17. If there are no left(resp. right) unit divisors in X, then X satisfies the left(resp. right) cancellation law for the operation \odot .

PROOF. Let $x, y, z \in X$ be such that $x \odot y = x \odot z$ and $x \neq 1$. Then

$$x \odot (y * z) = (x \odot y) * (x \odot z) = 1$$

and

$$x \odot (z * y) = (x \odot z) * (x \odot y) = 1$$

Since X has no left unit divisor, it follows that y * z = 1 = z * y so that y = z. Similarly we can show the right cancellation law for the operation \odot .

THEOREM 3.18. If X satisfies the left(resp. right) cancellation law for the operation \odot i.e.,

$$x \odot y = x \odot z (resp. \ y \odot x = z \odot x) \Rightarrow y = z \text{ for all } x, y, z \in X$$

then X contains no left(resp. right) unit divisors in X.

PROOF. Let X satisfying left cancellation law for the operation \odot and assume that $x \odot y = 1$ where $x \neq 1$. Then $x \odot y = 1 = x \odot 1$ and hence y = 1. Similarly it holds for the right case. Hence there is no left(resp. right) unit divisors in X.

Let (X, *, 1) be a distributive implication groupoid and $a, b \in X$. Then the set

$$A(a,b) = \{x \in X \mid a * (b * x) = 1\}$$

is non-empty since $1, a, b \in A(a, b)$.

PROPOSITION 3.19. If D is a left deductive system(LDS) of X, then $A(a,b) \subseteq D$, for all $a, b \in D$.

PROOF. Let $x \in A(a, b)$ where $a, b \in D$. Then $a * (b * x) = 1 \in D$ and so $x \in D(by DS2)$. Therefore $A(a, b) \subseteq D$.

The following theorem can be proved easily.

THEOREM 3.20. Let $\{D_i\}_{i \in I}$ be an arbitrary collection of LDSs of X. Then $\bigcap_{i \in I} D_i$ is also a LDS of X.

For any subset D of X, the intersection of all LDS(resp. RDS) of X containing D is called the LDS(resp. RDS) generated by D and is denoted by $< D >_l$ (resp. $< D >_r$). It is clear that if D and E are subsets of X satisfying $D \subseteq E$, then $< D >_l \subseteq < E >_l$ (resp. $< D >_r \subseteq < E >_r$) and if D is a LDS(resp. RDS) of X, then $< D >_l \equiv D$ (resp. $< D >_r \equiv D$).

THEOREM 3.21. Let D be a non-empty subset of X such that $X \odot D \subseteq D($ resp. $D \odot X \subseteq D)$. Then

$$< D >_l = \{a \in X \mid y_n * (\dots * (y_1 * a) \dots) = 1 \text{ for some } y_1, y_2, \dots, y_n \in D\}$$

 $< D >_r = \{a \in X \mid y_n * (\dots * (y_1 * a) \dots) = 1 \text{ for some } y_1, y_2, \dots, y_n \in D\}$

PROOF. Let $x \in X, b \in B$. Where

$$B = \{a \in X \mid y_n * (\dots * (y_1 * a) \dots) = 1 \text{ for some } y_1, y_2, \dots, y_n \in D\}$$

Then there exist $y_1, y_2, \ldots, y_n \in D$ such that $y_n * (\cdots * (y_1 * b) \ldots) = 1$. Hence $1 = x \odot (y_n * (\cdots * (y_1 * b) \ldots)) = (x \odot y_n) * (\cdots * ((x \odot y_1) * (x \odot b)) \ldots)$ (resp. $1 = 1 \odot x = (y_n * (\cdots * (y_1 * b) \ldots)) \odot x = (y_n \odot x) * (\cdots * ((y_1 \odot x) * (b \odot x)) \ldots)$). Since $x \odot y_i \in D$ (resp. $y_i \odot x \in D$) for $i = 1, 2, \ldots, n$, we have $x \odot b \in B$ (resp. $b \odot x \in B$). Let $x, a \in X$ be such that $a * x \in B$ and $a \in B$. Then there exist $y_1, y_2, \ldots, y_n, z_1, \ldots, z_m \in D$ such that $y_n * (\cdots * (y_1 * (a * x)) \ldots) = 1$ and $z_m * (\cdots * (z_1 * a) \ldots) = 1$. Hence $a * (y_n * (\cdots * (y_1 * x) \ldots) = 1)$ i.e., $a \leq y_n * (\cdots * (y_1 * x) \ldots)$. Also, $1 = z_m * (\cdots * (z_1 * a) \ldots) \leq z_m * (\cdots * (z_1 * (y_n * (\ldots (y_1 * x) \ldots)))) \ldots$.

$$z_m * (\dots * (z_1 * (y_n * (\dots (y_1 * x) \dots)))) \dots) = 1$$

which implies that $x \in B$. Therefore B is a LDS(resp. RDS) of X. Obviously, $D \subseteq B$. Let G be a LDS(resp. RDS) containing D. To show $B \subseteq G$, let a be an element of B. Then there exist $y_1, y_2, \ldots, y_n \in D$ such that $y_n * (\cdots * (y_1 * a) \ldots) = 1$. Then $a \in G$. Therefore $B \subseteq G$. Hence $B = \langle D \rangle_l$ (resp. $\langle D \rangle_r$).

In the following example we show that the union of LDS (resp. RDS's) D and E may not be LDS (resp. RDS) of X.

EXAMPLE 3.22. Let $X = \{1, a, b, c, d\}$. The operations ' \odot ' and '*' are defined by

\odot	1	a	b	С	d	*	1	a	b	c	
1	1	1	1	1	1	1	1	a	b	c	
a	1	1	1	1	1	a	1	1	b	b	
b	1	1	1	1	1	b	1	a	1	a	
С	1	1	1	1	1	C	1	1	1	1	
d	1	1	1	1	d	d	1	1	b	b	Γ

Then $(X, \odot, *, 1)$ is a DIG-semigroup. We know that $D = \{1, a\}$ and $E = \{1, b\}$ are LDS of X but $D \cup E = \{1, a, b\}$ is not a LDS of X since $b * c = a \in D \cup E, c \notin D \cup E$. We can observe that if $D = \{1, a, c\} \subseteq X$ such that $X \odot D \subseteq D(resp. \ D \odot X \subseteq D)$ then $\langle D \rangle_l$ (resp. $\langle D \rangle_r$) = $\{1, a, b, c\}$.

THEOREM 3.23. Let D and E be LDS of X. Then

$$< D \cup E >_l (resp. < D \cup E >_r) = \{a \in X \mid x * (y * a) = 1 \text{ for some } x \in D, y \in E\}$$

PROOF. Let $H = \{a \in X \mid x * (y * a) = 1 \text{ for some } x \in D, y \in E\}$. Clearly, $H \subseteq \langle D \cup E \rangle_l \text{ (resp. } \langle D \cup E \rangle_r \text{)}$. Let $b \in \langle D \cup E \rangle_l \text{ (resp. } \langle D \cup E \rangle_r \text{)}$. Then, by Theorem 3.21, there exist $y_1, y_2, \ldots, y_n \in D \cup E$ such that $y_n * (\cdots * (y_1 * b) \ldots) = 1$. If $y_i \in D$ for all $i = 1, 2, \ldots, n$, then $b \in D$. If $y_i \in E$, for all $i = 1, 2, \ldots, n$, then $b \in E$. Hence $b \in H$. If some of $y_1, y_2, \ldots, y_n \in D$ and others belong to E, then we can assume that $y_1, y_2, \ldots, y_k \in D$ and $y_{k+1}, \ldots, y_n \in E$ for $1 \leq k < n$, without loss of generality. Let $p = y_k * (\cdots * (y_1 * b) \ldots)$. Then $y_n * (\cdots * (y_{k+1} * p) \ldots) = 1$ and hence $p \in E$. Let $q = p * b = y_k * (\cdots * (y_1 * b) \ldots) * b$. Then

$$1 = [y_k * (\dots * (y_1 * b) \dots)] * [y_k * (\dots * (y_1 * b) \dots)]$$

= $y_k * [y_k * (\dots * (y_1 * b) \dots) * (\dots * (y_1 * b) \dots)]$
= $y_k * [\dots * (y_1 * (y_k * (\dots (y_1 * b) \dots)) * b) \dots]$
= $y_k * [\dots * (y_1 * q) \dots]$

and so $q \in D$. Since p * (q * b) = 1, we have $b \in H$. So that $\langle D \cup E \rangle_l$ (resp. $\langle D \cup E \rangle_r) \subseteq H$.

We denote the set of all deductive systems of X by $\mathcal{D}(X)$. Let $D_1, D_2 \in \mathcal{D}(X)$. We define the meet of D_1 and D_2 by $D_1 \wedge D_2 = D_1 \cap D_2$ and the join of D_1 and D_2 by $D_1 \vee D_2 = \langle D_1 \cup D_2 \rangle$. We note that $(\mathcal{D}(X), \vee, \wedge)$ is a lattice. Also, $\{1\} \in \mathcal{D}(X)$ and $X \in \mathcal{D}(X)$ and it is almost evident that the set theoretical intersection of an arbitrary set of deductive systems of X is deductive system of X again. Hence, the set $\mathcal{D}(X)$ forms a complete lattice with respect to set inclusion where the operation meet coincides with set intersection, the least(or greatest) element of $\mathcal{D}(X)$ is $\{1\}$ (or X respectively).

4. DIG-homomorphism of DIG-semigroups

In this section, we introduce DIG-homomorphisms of DIG-semigroups and study their properties.

DEFINITION 4.1. Let X and Y be two DIG-semigroups. A mapping $\phi : X \to Y$ is called a DIG-homomorphism if for all $a, b \in X$,

$$\phi(a * b) = \phi(a) * \phi(b)$$
 and $\phi(a \odot b) = \phi(a) \odot \phi(b)$.

A DIG-homomorphism ϕ is called a DIG-monomorphism(resp. DIG-epimorphism) if it is injective(resp. surjective). A bijective DIG-homomorphism is called a DIGisomorphism. For any DIG-homomorphism $\phi : X \to Y$ the set $\{x \in X \mid \phi(x) = 1\}$ is called the kernel of ϕ , denoted by ker ϕ and the set $\{\phi(x) \mid x \in X\}$ is called the image of ϕ , denoted by $Im(\phi)$. We denote by Hom(X, Y) the set of all DIG-homomorphisms of DIG-semigroups from X to Y.

EXAMPLE 4.2. Let $X = \{1, a, b, c\}$ and $Y = \{1, x, y, z\}$. The operations ' \odot ' and '*' are defined by

\odot	1	a	b	с	*	1	a	b	Γ
1	1	1	1	1	1	1	a	b	
a	1	1	1	1	a	1	1	1	
b	1	1	1	1	b	1	1	1	
С	1	1	1	С	c	1	b	b	
\odot	1	x	y	z	*	1	x	y	
1	1	1	1	1	1	1	x	y	
x	1	1	1	1	x	1	1	y	
$\frac{x}{y}$	1 1	1 1	1 y	1 1	$\frac{x}{y}$	1 1	$\begin{array}{c} 1 \\ x \end{array}$	y 1	

Then $(X, \odot, *, 1)$ and $(Y, \odot, *, 1)$ are DIG-semigroups. Define a map $\phi : X \to Y$ by

$$\phi(r) = \begin{cases} 1, & \text{if } r = 1, a, b \\ z, & \text{if } r = c \end{cases}$$

Then ϕ is a DIG-homomorphism from X into Y.

PROPOSITION 4.3. Suppose that $\phi : X \to Y$ is a DIG-homomorphism of DIGsemigroups. Then, for $x, y \in X$, (i) $\phi(1) = 1$ (ii) If x * y = 1, then $\phi(x) * \phi(y) = 1$

PROOF. Since $\phi(1) = \phi(1 * 1) = \phi(1) * \phi(1) = 1$, (i) holds. Let $x, y \in X$ and x * y = 1. Then $\phi(x) * \phi(y) = \phi(x * y) = \phi(1) = 1$.

NOTE 4.4. Suppose that $\phi: X \to Y$ is a DIG-homomorphism of DIG-semigroups. Then ϕ is a monomorphism if and only if ker $\phi = \{1\}$.

PROPOSITION 4.5. Let X, Y be DIG-semigroups and $\phi \in Hom(X,Y)$. Then (i) $\phi(x \odot 1) = \phi(1 \odot x) = 1$ (ii) $\phi(1 * x) = \phi(x)$ (iii) $\phi(x * 1) = \phi(1)$ for all $x \in X$.

PROPOSITION 4.6. Let $\phi : X \to Y$ be a homomorphism of DIG-semigroups. If $x \in X$ is a left(resp. right) unit divisor of X, then $\phi(x)$ is left(resp. right) unit divisor of Y.

PROOF. Let $x \in X$ be a left unit divisor of X. Then there exists $y \neq 1 \in X$ such that $x \odot y = 1$. Now $y \in X$ implies that $\phi(y) \in Y$ and $\phi(x) \odot \phi(y) = \phi(x \odot y) = \phi(1) = 1$.

NOTE 4.7. Let X, Y and Z be DIG-semigroups. If $\phi \in Hom(X,Y)$ and $\psi \in Hom(Y,Z)$, then $\psi \circ \phi \in Hom(X,Z)$.

PROPOSITION 4.8. Let X and Y be DIG-semigroups and B a left(resp.right) deductive system of Y. Then for any $\phi \in Hom(X,Y), \phi^{-1}(B)$ is a left(resp. right) deductive system of X containing ker ϕ .

PROOF. Let $x \in X$ and $y \in \phi^{-1}(B)$. Then $\phi(y) \in B$ and $\phi(x \odot y) = \phi(x) \odot \phi(y)$. Since B is a left deductive system of Y, we have $\phi(x \odot y) \in B$ i.e., $x \odot y \in \phi^{-1}(B)$. Hence $X \odot \phi^{-1}(B) \subseteq \phi^{-1}(B)$. Now, let $x, y \in X$ be such that $y \in \phi^{-1}(B)$ and $y * x \in \phi^{-1}(B)$. Then $\phi(y) \in B$ and $\phi(y * x) = \phi(y) * \phi(x) \in B$. Since B is a left

deductive system, we have $\phi(x) \in B$ i.e., $x \in \phi^{-1}(B)$. Hence $\phi^{-1}(B)$ is a left deductive system of X. Since $\{1\} \subseteq B$, ker $\phi = \phi^{-1}(\{1\}) \subseteq \phi^{-1}(B)$.

THEOREM 4.9. Let X and Y be DIG-semigroups and $\phi : X \to Y$ be a DIGepimorphism of DIG-semigroups. If D is a left(resp. right) deductive system of X, then $\phi(D)$ is a left(resp. right) deductive system of Y.

PROOF. Let $x \in \phi(D)$ and $y \in Y$. Since ϕ is onto, there exist $a \in X$ and $b \in D$ such that $\phi(a) = y$ and $\phi(b) = x$. Then $a \odot b \in D$ implies that $y \odot x \in \phi(D)$. Hence $Y \odot \phi(D) \subseteq \phi(D)$. Now, suppose $a \in \psi(D), y \in Y$ and $a * y \in \phi(D)$. Since ϕ is onto, there exist $b \in D$ and $x \in X$ such that $\phi(b) = a$ and $\phi(x) = y$. Thus $\phi(b * x) = \phi(b) * \phi(x) = a * y$. So $b * x \in D$. It follows from (DS2) that $x \in D$. Hence $y = \phi(x) \in \phi(D)$. Therefore $\phi(D)$ is a left deductive system of Y.

THEOREM 4.10. Let $\phi : X \to Y$ be a DIG-homomorphism of DIG-semigroups. Then ker ϕ is a deductive system of X.

PROOF. Let $x \in X$ and $y \in \ker \phi$. Then $\phi(y) = 1$. Now, $\phi(x \odot y) = \phi(x) \odot \phi(y) = \phi(x) \odot 1 = 1$. Therefore $x \odot y \in \ker \phi$. Now, let $a * x \in \ker \phi$ and $a \in \ker \phi$. Then $\phi(a * x) = 1$ and hence $\phi(a) * \phi(x) = 1$. Therefore $\phi(x) = 1$. Hence $x \in \ker \phi$. ker ϕ is a left deductive system of X.

DEFINITION 4.11. X is said to be commutative if (x * y) * y = (y * x) * x, for all $x, y \in X$.

EXAMPLE 4.12. Let $X = \{1, a, b, c\}$. Define the operations ' \odot ' and '*' by

\odot	1	a	b	С	*	1	a	b	c
1	1	1	1	1	1	1	a	b	С
a	1	1	1	1	a	1	1	1	С
b	1	1	1	1	b	1	1	1	c
С	1	1	1	С	c	1	b	b	1

Then $(X, \odot, *, 1)$ is a commutative DIG-semigroup.

NOTE 4.13. Every commutative DIG-semigroup is an HS-algebra.

THEOREM 4.14. Let X, Y and Z be commutative DIG-semigroups. Suppose that $\phi : X \to Y$ is a DIG-epimorphism and $\psi : X \to Z$ be a DIG-homomorphism. If $\ker \phi \subseteq \ker \psi$, then there exists a unique DIG-homomorphism $\gamma : Y \to Z$ such that $\gamma \circ \phi = \psi$.

PROOF. Let $y \in Y$. Since ϕ is onto, there exists $x \in X$ such that $\phi(x) = y$. Define a mapping $\gamma : Y \to Z$ by $\gamma(y) = \psi(x)$. If $y = \phi(x_1) = \phi(x_2), x_1, x_2 \in X$, then $1 = \phi(x_1) * \phi(x_2) = \phi(x_1 * x_2)$. Hence $x_1 * x_2 \in \ker \phi$. Since $\ker \phi \subseteq \ker \psi$, we have $1 = \psi(x_1) * \psi(x_2) = \psi(x_1 * x_2)$. Similarly, we get that $\psi(x_2) * \psi(x_1) = 1$. Thus $\psi(x_1) = \psi(x_2)$. This means that γ is well-defined. Next we show that γ is a DIG-homomorphism. Let $a, b \in Y$. Then there exist $x_1, x_2 \in X$ such that $a = \phi(x_1)$ and $b = \phi(x_2)$. Now, we have

$$\gamma(a \odot b) = \gamma(\phi(x_1) \odot \phi(x_2)) = \gamma(\phi(x_1 \odot x_2)) = \psi(x_1) \odot \psi(x_2) = \gamma(a) \odot \gamma(b)$$

 $\gamma(a * b) = \gamma(\phi(x_1) * \phi(x_2)) = \gamma(\phi(x_1 * x_2)) = \psi(x_1) * \psi(x_2) = \gamma(a) * \gamma(b).$ Hence γ is a DIG-homomorphism. The uniqueness of γ follows directly from the fact that ϕ is DIG-epimorphism.

THEOREM 4.15. Let X, Y and Z be commutative DIG-semigroups and $g: X \to Z$ be a DIG-homomorphism and $h: Y \to Z$ be a DIG-monomorphism with $Im(g) \subseteq Im(h)$ then there exists a unique DIG-homomorphism $f: X \to Y$ satisfying $h \circ f = g$

PROOF. For each $x \in X$, $g(x) \in Im(g) \subseteq Im(h)$. Since h is a DIG-monomorphism there exists unique $b \in Y$ such that g(a) = h(b). Define a map $f : X \to Y$ by f(a) = b. Then $h \circ f = g$. Let $c, d \in X$. Then h(f(c * d)) = g(c * d) = g(c) * g(d) =h(f(c)) * h(f(d)) = h(f(c) * f(d)). Since h is a DIG-monomorphism, we have f(c * d) =f(c) * f(d). Similarly we can prove that $f(c \circ d) = f(c) \circ f(d)$. The uniqueness follows from the fact that h is monomorphism. \Box

DEFINITION 4.16. Let θ be a binary relation on X. Then

- (1) θ is said to be compatible if $(x, y) \in \theta$ and $(u, v) \in \theta$ then $(x * u, y * v) \in \theta$ and $(x \odot u, y \odot v) \in \theta$ for all $x, y, u, v \in X$.
- (2) A compatible equivalence relation on X is called a congruence relation on X.

Let D be a deductive system of X. For any $x, y \in X$, we define a relation " \sim_D " on X as follows.

 $x \sim_D y$ if and only if $x * y \in D$ and $y * x \in D$.

PROPOSITION 4.17. Let D be a deductive system of X. Then \sim_D is a congruence relation on X.

PROOF. Let D be a deductive system of X. Since $1 \in D$, the relation \sim_D is reflexive. Clearly, \sim_D is symmetric. We prove transitivity of \sim_D : Let $(x, y) \in \sim_D$ and $(y, z) \in \sim_D$. Then $x * y, y * x, y * z, z * y \in D$. Since $(y * z) * (x * (y * z)) = 1 \in D$ and $y * z \in D$, we get that $x * (y * z) \in D$. Consider x * (y * z) = (x * y) * (x * z), then $(x * y) * (x * z) \in D$ and $x * y \in D$ imply that $x * z \in D$. Similarly, we can prove $z * x \in D$, thus $(x, z) \in \sim_D$. Let us prove the compatibility of \sim_D . Assume $(x, y) \in \sim_D$ and $(u, v) \in \sim_D$. Then $x * y, y * x, u * v, v * u \in D$ and

$$(x * u) * (x * v) = x * (u * v) \in D$$

 $(x * v) * (x * u) = x * (v * u) \in D$

Therefore, $(x * u, x * v) \in \sim_D$. Further, by Lemma 2.4, we have $(y * x) \leq (x * v) * (y * v)$ and $x * y \leq (y * v) * (x * v)$

By Theorem 2.7, $(x * v) * (y * v) \in D$ and $(y * v) * (x * v) \in D$. That is $(x * v, y * v) \in \sim_D$. By using transitivity of \sim_D , we get that $(x * u, y * v) \in \sim_D$. Since D is a deductive system of X and \sim_D is transitive, we can prove that $(x \odot u, y \odot v) \in \sim_D$. Thus \sim_D is a congruence relation on X.

Let D be a deductive system of X. Denote the equivalence class containing x by $[x]_D$ and the set of equivalence classes in X by X/D i.e., $[x]_D = \{y \in X \mid y \sim_D x\}$ and $X/D = \{[x]_D \mid x \in X\}$. Clearly $[1]_D = D$ and $[x]_D = [y]_D$ if and only if $x \sim_D y$.

LEMMA 4.18. If θ is a congruence relation on X, then $[1]_{\theta} = \{x \in X \mid (x, 1) \in \theta\}$ is a deductive system of X.

PROOF. Let θ be a congruence relation on X. Clearly, $1 \in [1]_{\theta}$. Suppose $x \in$ $X, y \in [1]_{\theta}$. Then $(y, 1) \in \theta$ and hence

$$(x \odot y, 1) = (x \odot y, x \odot 1) \in \theta$$
 and $(y \odot x, 1) = (y \odot x, 1 \odot x) \in \theta$.

Thus $x \odot y \in [1]_{\theta}$ and $y \odot x \in [1]_{\theta}$. Suppose $x \in [1]_{\theta}$ and $x * y \in [1]_{\theta}$. Then $(x, 1) \in \theta$ and hence $(x*y, y) = (x*y, 1*y) \in \theta$. On the other hand, $x*y \in [1]_{\theta}$ gives $(x*y, 1) \in \theta$. We obtain $(y, 1) \in \theta$ proving $y \in [1]_{\theta}$.

THEOREM 4.19. If D is a deductive system of X, then the relation θ_D defined by

 $(x,y) \in \theta_D$ if and only if $x * y \in D$ and $y * x \in D$

is a congruence of X such that $[1]_{\theta_D} = D$

PROOF. Clearly, by Proposition 4.17, θ_D is a congruence on X. If $x \in D$, then $1 * x = x \in D$ and $x * 1 = 1 \in D$ which means $(x, 1) \in \theta_D$, i.e. $x \in [1]_{\theta_D}$. Conversely, if $x \in [1]_{\theta_D}$, then $(x, 1) \in \theta_D$ and hence $x = 1 * x \in D$. Thus $[1]_{\theta_D} = D$.

THEOREM 4.20. If D is a deductive system of X, then $(X/D, \odot, \circledast, [1]_D)$ is a DIG-semigroup under the operations

$$[x]_D \odot [y]_D = [x \odot y]_D$$
 and $[x]_D \circledast [y]_D = [x * y]_D$.

PROOF. Since \sim_D is a congruence relation, the operation \circledast is well-defined. Clearly, $(X/D, \circledast, [1]_D)$ is a distributive implication groupoid. Let $[x]_D = [u]_D$ and $[y]_D = [v]_D$. Then since D is a deductive system, we have $(x \odot u) * (x \odot v) = x \odot (u * v) \in D$ and $(x \odot v) * (x \odot u) = x \odot (v * u) \in D$. Then $(x \odot u) \sim_D (x \odot v)$. On the other hand, $(x \odot v) * (y \odot v) = (x * y) \odot v \in D$ and $(y \odot v) * (x \odot v) = (y * x) \odot v \in D$. Hence $x \odot v \sim_D y \odot v$ that is $[x \odot u]_D = [y \odot v]_D$. This shows that \odot is well defined. Clearly, $(X/D, \odot)$ is a semigroup. For every $[x]_D, [y]_D, [z]_D \in X/D$, we have

$$[x]_{D} \odot ([y]_{D} \circledast [z]_{D}) = [x]_{D} \odot [y * z]_{D}$$

$$= [x \odot (y * z)]_{D}$$

$$= [(x \odot y) * (x \odot z)]_{D}$$

$$= [x \odot y]_{D} \circledast [x \odot z]_{D}$$

$$= ([x]_{D} \odot [y]_{D}) \circledast ([x]_{D} \odot [z]_{D})$$
and
$$([x]_{D} \circledast [y]_{D}) \odot [z]_{D} = [x * y]_{D} \odot [z]_{D}$$

$$= [(x * y) \odot z]_{D}$$

$$= [(x \odot z) * (y \odot z)]_{D}$$

$$= [x \odot z]_{D} \circledast [y \odot z]_{D}$$

$$= ([x]_{D} \odot [z]_{D}) \circledast ([y]_{D} \odot [z]_{D})$$
Hence $(X/D, \odot, \circledast, [1]_{D})$ is a DIG-semigroup.

Hence $(X/D, \odot, \circledast, [1]_D)$ is a DIG-semigroup.

THEOREM 4.21. If X is commutative and D is a deductive system of X, then $(X/D, \odot, \circledast, [1]_D)$ is an HS-algebra under the operations

$$[x]_D \odot [y]_D = [x \odot y]_D$$
 and $[x]_D \circledast [y]_D = [x * y]_D$.

EXAMPLE 4.22. Let $X = \{1, a, b, c, d\}$. The operations ' \odot ' and '*' are defined by

\odot	1	a	b	с	d
1	1	1	1	1	1
a	1	1	1	1	1
b	1	1	1	1	1
с	1	1	1	1	1
d	1	1	1	1	d

*	1	a	b	c	d
1	1	a	b	С	d
a	1	1	b	b	d
b	1	a	1	a	d
С	1	1	1	1	d
d	1	1	b	b	1

Then $(X, \odot, *, 1)$ is a DIG-semigroup. We can observe that $D = \{1, a, b, c\}$ is a deductive system of X and

 $\sim_D = \{(x, y) \in X \times X \mid x \sim_D y\}$ = {(1, 1), (a, a), (b, b), (c, c), (d, d), (1, a), (1, b), (1, c), (a, 1), (b, 1), (c, 1), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}

is a congruence relation on X. Then $[1]_D = [a]_D = [b]_D = [c]_D = D = D_1(say)$ and $[d]_D = \{d\} = D_2$. Therefore $X/D = \{D_1, D_2\}$ with the following tables

0	D_1	D_2	ĺ	*	D_1	D_2
D_1	D_1	D_1	ĺ	D_1	D_1	D_2
D_2	D_1	D_2	(D_2	D_1	D_1

is a DIG-semigroup under the conditions $[x]_D \odot [y]_D = [x \odot y]_D$ and $[x]_D \circledast [y]_D = [x * y]_D$.

PROPOSITION 4.23. If D and E are deductive systems of X and $D \subset E$, then (i) D is also a deductive system of E. (ii) E/D is a deductive system of X/D.

THEOREM 4.24. Let $\psi : X \to Y$ be a DIG-homomorphism of commutative DIGsemigroups. Then for any deductive system D of X, $D/(\ker(\psi) \cap D) \simeq \psi(D)$.

PROOF. Let $A = \ker(\psi) \cap D$. Clearly A is a deductive system of D. Define a mapping $\sigma : D/A \to Y$ by $\sigma([x]_A) = \psi(x)$ for all $x \in D$. Then for any $[x]_A, [y]_A \in D/A$, we have

$$\begin{split} [x]_A &= [y]_A &\Leftrightarrow x * y \in A, y * x \in A \\ &\Leftrightarrow \psi(x * y) = 1, \psi(y * x) = 1 \\ &\Leftrightarrow \psi(x) \circledast \psi(y) = 1, \psi(y) \circledast \psi(x) = 1 \\ &\Leftrightarrow \psi(x) = \psi(y) \\ &\Leftrightarrow \sigma([x]_A) = \sigma([y]_A). \end{split}$$

Hence σ is well-defined and one to one. For all $[x]_A, [y]_A \in D/A$, we have

$$\sigma([x]_A \circledast [y]_A) = \sigma([x * y]_A) = \psi(x * y) = \psi(x) * \psi(y) = \sigma([x]_A) * \sigma([y]_A)$$

$$\sigma([x]_A \odot [y]_A) = \sigma([x \odot y]_A) = \psi(x \odot y) = \psi(x) \odot \psi(y) = \sigma([x]_A) \odot \sigma([y]_A)$$

Hence σ is a DIG-homomorphism of DIG-semigroups. Thus $Im(\sigma) = \{\sigma([x]_A) \mid x \in D\} = \{\psi(x) \mid x \in D\} = \psi(D)$. Therefore $D/(\ker(\psi) \cap D) \simeq \psi(D)$. \Box

COROLLARY 4.25. If $\psi : X \to Y$ is a DIG-epimorphism of commutative DIGsemigroups, then $X/\ker(\psi) \simeq Y$.

5. Conclusion

In this paper, we have introduced a new class of algebras related to distributive implication groupoids and semigroups, called a DIG-semigroup and also considered the concept of deductive systems and of unit divisors in DIG-semigroups. We have described left(resp. right) deductive system(LDS (resp. RDS) for short) generated by a nonempty subset in a DIG-semigroup as a simple form. We have given a description of the element of $\langle D \cup E \rangle_l$ (resp. $\langle D \cup E \rangle_r$) where D and E are left(resp. right) deductive system of a DIG-semigroup X. We have introduced the notion of DIG-homomorphisms between DIG-semigroups and investigated some of their properties. Also, we have constructed the quotient DIG-semigroup via deductive systems.

References

- R. K. Bandaru, On ideals of implication groupoids, Advances in Decision Sciences, Volume 2012 (2012), Article ID 652814, 9 pages.
- [2] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math., 2(1985), 29-35.
- [3] I. Chajda and R. Halas, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429-432.
- [4] I. Chajda and R. Halas, Distributive implication groupoids, Central European Journal of Mathematics 5(3) (2007), 484-492.
- [5] A. Diego, Sur les algèbres de Hilbert, Collect. de Logique Math., Sèr. A, 21(1966),152.
- [6] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon. 43(1996),51-54.
- [7] K. H. Kim, On HS-algebras, Journal of the Chungcheong Mathematical Society, 24(3) (2011), 449-456.
- [8] S. M. Lee and K. H. Kim, A note on HS-algebras, International Mathematical Forum, 6(31) (2011), 1529-1534.

Received 21 03 2015 revised 20 07 2015

^a Department of Engineering Mathematics, GITAM University, Hyderabad Campus, India-502329.

E-mail address: ravimaths830gmail.com

^b Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

E-mail address: arsham@uk.ac.ir