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Some remarks, generalizations and misprints
in the integrals in Gradshteyn and Ryzhik

Dirk Veestraeten

Abstract. This paper presents some remarks, generalizations and misprints to

the classic table of integrals of Gradshteyn and Ryzhik. It is noted that the

conditions for convergence in a number of integrals, that in the original source
were obtained via Bessel transforms, are too restrictive. Also, a property of the

parabolic cylinder function is used to simplify one of the integrals in Gradshteyn

and Ryzhik into a result that enables the calculation of integrals for squares and
higher powers of the error function. Subsequently, an indefinite integral for the

normal distribution is specialized into several expressions that are reported in

Gradshteyn and Ryzhik. The paper ends by listing integrals for which the afore-
mentioned overly restrictive conditions emerge and/or for which generalizations

or misprints are found.

1. Introduction

This paper presents some remarks, generalizations and misprints to the classic
table of integrals in [12]. Section 2 illustrates that the conditions for convergence in a
number of integrals in [12] are too restrictive. This observation finds its origin in the
fact that [12] intensively used expressions that were obtained via Bessel transforms
in [8]. For instance, in the case of the Hankel transform with kernel Jν (xy) with
the integral being evaluated with respect to x, [8] conditions the parameter y to be
a positive real variable. The resulting integrals that appear in [12] often retain the
latter condition, notwithstanding the fact that the solutions in a number of cases also
hold for negative values of y. Section 3 deals with the integral 7.751.3 of which the
solution consists of a sum of two products of two parabolic cylinder functions. We
generalize and simplify 7.751.3 and show that 7.751.2 is a limiting case. Further-
more, it is shown that the simplified expression for 7.751.3 can be used to obtain
integrals for squares and higher powers of the (complementary) error function. In a
next step, the paper draws attention to the integrals for the error function and the
normal distribution in [17], [9] and [19] that correct a number of entries in [12] and
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that also can be used to extend results in [12]. As an example, Section 4 shows that
one of the indefinite integrals in [19] can be specialized into several definite integrals
that are reported in [12]. Section 5 lists a number of integrals for which the afore-
mentioned overly restrictive restrictions can be found, for which generalizations can
be offered and/or in which misprints are detected.

2. A remark on the conditions for convergence in [12]

The conditions for convergence in [12] can be too restrictive, especially when the
integral in the original source was obtained via Bessel transforms. We will illustrate
this for some examples and list additional cases in Section 5.

In [8], the Hankel transform of order ν is defined in terms of the kernel Jν (xy)
with y being a positive real variable (see p. 3 in [8]). For instance, (16) on p. 19 in

[8] specifies the Hankel transform of order 1, g (y; 1), for f (x) = x−
1
2 sin

(
1
4ax

2
)

with

a > 0 as g (y; 1) =

∞∫
0

f (x) J1 (xy) (xy)
1
2 dx = y−

1
2 sin

(
y2

a

)
with y > 0. This result is

reproduced in 6.686.5 as

∞∫
0

sin

(
1

4
ax2

)
J1 (xy) dx =

1

y
sin

(
y2

a

)
, a > 0, y > 0,

where J1 (z) denotes the Bessel function of the first kind with order 1. However, the
two conditions for convergence in 6.686.5 are too restrictive. In fact, the solution also
holds for negative values of y as can be inferred from the series expansion for J1 (z) in
8.441.2

J1 (z) =
z

2

∞∑
k=0

(−1)
k
z2k

22kk! (k + 1)!
.

Also, a may take on negative values given

sin (z) = − sin (−z) .

The condition for convergence in 6.686.5 thus is less restrictive at a 6= 0, y 6= 0.
A second example evolves around the Y -transform in [8] for which the kernel is

the Bessel function of the second kind, Yν (xy), again for y > 0 (see p. 93 in [8]). For
example, the result in (1) on p. 105 of [8] is reproduced in [12] as 6.611.2

∞∫
0

e−αxYν (bx) dx =
(
α2 + b2

)− 1
2 cosec (νπ)×

{
bν
[(
α2 + b2

) 1
2 + α

]−ν
cos (νπ)

−b−ν
[(
α2 + b2

) 1
2 + α

]ν}
, Reα > 0, b > 0, |Re ν| < 1.

However, negative values for b must not prevent convergence as can be verified by nu-
merical integration. Actually, the condition for convergence is Re (a± ib) > 0, |Re ν| <
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1. This is confirmed by noting that 6.611.2 can be obtained as a limiting case of
6.621.2

∞∫
0

e−αxYν (bx)xµ−1dx =

cot (νπ)

(
b

2

)ν
Γ (ν + µ)√

(α2 + b2)
ν+µ

Γ (ν + 1)
F

(
ν + µ

2
,
ν − µ+ 1

2
; ν + 1;

b2

α2 + b2

)

− cosec (νπ)

(
b

2

)−ν
Γ (µ− ν)√

(α2 + b2)
µ−ν

Γ (1− ν)
F

(
µ− ν

2
,

1− ν − µ
2

; 1− ν;
b2

α2 + b2

)
,

Reµ > |Re ν| , Re (α± ib) > 0,

where F (a, b; c; z) is the Gauss hypergeometric function. Using µ = 1 and applying
the identity

F

(
1 + q

2
,
q

2
; 1 + q; z

)
= 2q

(
1 +
√

1− z
)−q

indeed reduces 6.621.2 into 6.611.2. The condition Reµ > |Re ν| , Re (α± ib) > 0
of 6.621.2 accordingly simplifies into Re (a± ib) > 0, |Re ν| < 1.

We end this section with an example in [12] for which the condition y > 0 from
[8] is required, but for which the solutions under alternative conditions can easily be
found. For example, 6.566.5 is specified as

∞∫
0

x−νJν (ax)
dx

x2 + b2
=

π

2bν+1
[Iν (ab)−Lν (ab)] , a > 0,Re b > 0, Re ν > −5

2

and is based on (11) on p. 426 of [21] and (14) on p. 23 in [8]. However, solutions
for other combinations in a and b can be calculated from the above result and the
definitions in 8.476, 8.550 and 8.553 as

∞∫
0

x−νJν (ax)
dx

x2 + b2
=

−π
2 (−b)ν+1 [Iν (−ab)−Lν (−ab)] , a < 0, Re b > 0 Re ν > −5

2
,

=
π

2 (−b)ν+1 [Iν (−ab)−Lν (−ab)] , a > 0,Re b < 0, Re ν > −5

2
,

=
π

2 (−b)ν+1 [Iν (−ab) + Lν (−ab)] , a < 0, Re b < 0, Re ν > −5

2
.



118 DIRK VEESTRAETEN

3. Simplifying an integral for the parabolic cylinder function

7.751.3 is specified as

∞∫
0

J0 (xy)Dν (x)Dν+1 (x) dx =
1

2y
[Dν (−y)Dν+1 (y)−Dν+1 (−y)Dν (y)] ,

where Dν (z) denotes the parabolic cylinder function of order ν (see [6]). This result
first can be generalized into

∞∫
0

J0 (xy)Dν (ax)Dν+1 (ax) dx =
1

2y

[
Dν

(
−y
a

)
Dν+1

(y
a

)
−Dν+1

(
−y
a

)
Dν

(y
a

)]
,

y 6= 0, a > 0 or y 6= 0, a 6= 0, ν = 0, 1, 2, ....
(3.1)

The solution in (3.1) then can be written more compactly via a property of the para-
bolic cylinder function that [20] used in the derivation of the inverse Laplace transform
for products of two parabolic cylinder functions. This simplification requires combining
the derivative and the Wronskian of the parabolic cylinder function. The derivatives
of Dν (z) to the argument are given by

D′ν (z) =
1

2
zDν (z)−Dν+1 (z) ,(3.2)

D′ν (−z) =
1

2
zDν (−z) +Dν+1 (−z) ,(3.3)

which follow from (16) on p. 119 in [6]. The Wronskian is specified in (10) on p. 117
in [6] as

(3.4) Dν (z)D′ν (−z)−Dν (−z)D′ν (z) =

√
2π

Γ (−ν)
.

Connecting (3.2)-(3.4) gives

Dν

(z
a

)
Dν+1

(
−z
a

)
+Dν

(
−z
a

)
Dν+1

(z
a

)
=

√
2π

Γ (−ν)
,

through which (3.1) can be reduced into

∞∫
0

J0 (xy)Dν (ax)Dν+1 (ax) dx =
1

y

[ √
π√

2Γ [−ν]
−Dν

(y
a

)
Dν+1

(
−y
a

)]
,

y 6= 0, a > 0 or y 6= 0, a 6= 0, ν = 0, 1, 2, ...

This result can be simplified further by noting that

lim
ν→n

[
1

Γ [−ν]

]
= 0, for n = 0, 1, 2, ...,
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see (6.1.7) in [1]. As a result, 7.751.3 can be rewritten as

∞∫
0

J0 (xy)Dν (ax)Dν+1 (ax) dx =
1

y

[ √
π√

2Γ [−ν]
−Dν

(y
a

)
Dν+1

(
−y
a

)]
, y 6= 0, a > 0,

(3.5)

= −1

y
Dn

(y
a

)
Dn+1

(
−y
a

)
, y 6= 0, a 6= 0, n = 0, 1, 2, ...,(3.6)

This result has interesting limiting cases. Setting ν at −1 in (3.5) allows to switch to
the error function in view of the relations 9.253 and 9.254.1, respectively

D0 (z) = exp

(
−z

2

4

)
,

D−1 (z) =

√
π

2
exp

(
z2

4

)(
1− erf

(
z√
2

))
,

where erf (z) denotes the error function that is defined in 8.250.1 as

(3.7) erf (z) =
2√
π

z∫
0

e−t
2

dt.

Plugging the latter expressions into (3.5) and rescaling a gives

∞∫
0

J0 (xy) (1− erf (ax)) dx =
1

y
erf
( y

2a

)
, y 6= 0, a > 0,(3.8)

=
1

y

(
2 + erf

( y
2a

))
, y > 0, a < 0,(3.9)

=
1

y

(
erf
( y

2a

)
− 2
)
, y < 0, a < 0,(3.10)

in which 1 − erf (z) denotes the complementary error function (see 8.250.4). The
expression in (3.8) is directly obtained from (3.5), whereas the solutions in (3.9) and
(3.10) are easily derived from (3.8) by using the following relations

erf (x) = − erf (−x) ,

J0 (xy) = J0 (−xy) ,
∞∫

0

J0 (xy) dx =
1

|y|
,

that follow from (3.7), the series expression for J0 (z) in 8.441.1 and 6.511.1, respec-
tively. Note that the result in (3.8) also can be obtained from a result in [12], namely
by evaluating a limiting case of 6.784.2

∞∫
0

xν (1− Φ (ax)) Jν (bx) dx =

√
2

π

a
1
2−νΓ

(
ν + 1

2

)
b

3
2 Γ
(
ν + 3

2

) exp

(
− b2

8a2

)
M 1

2ν−
1
4 ,

1
2ν+

1
4

exp

(
b2

4a2

)
,
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in which Φ (z) denotes the error function and Mµ,λ (z) is a Whittaker function. For
ν = 0 and b = y, the Whittaker function can be rewritten as

M
− 1

4 ,
1
4

(
b2

4a2

)
= exp

(
− b2

8a2

)(
b2

4a2

) 3
4

Φ

(
1,

3

2
;
b2

4a2

)
,

where Φ (α, γ; z) is a confluent hypergeometric function for which we used the relation
Mκ,µ (z) = exp (−z/2) zµ+1/2Φ (1/2− κ+ µ, 2µ+ 1; z) in (1) on p. 264 of [5]. The
confluent hypergeometric function and the error function in turn are connected by
8.253.1

erf (z) =
2√
π
z exp

(
−z2

)
Φ

(
1,

3

2
; z2

)
,

such that we obtain

M
− 1

4 ,
1
4

(
b2

4a2

)
=

1

2

√
π exp

(
b2

8a2

)(
b2

4a2

) 1
4

erf

(
2a

y

)
.

Using the latter result then confirms that 6.784.2 indeed simplifies into (3.8).
The integral (3.5) can also be used to obtain solutions for integrands that contain

the square of a complementary error function. Setting ν at −2 in (3.5) and using
9.254.2

D−2 (z) = exp

(
−z

2

4

)
− z
√
π

2
exp

(
z2

4

)(
1− erf

(
z√
2

))
,

which yields
∞∫

0

J0 (xy)x exp
(
a2x2

)
[1− erf (ax)]

2
dx =

2

ay
√
π

erf
( y

2a

)
+

1

2a2
exp

(
y2

4a2

)([
erf
( y

2a

)]2
− 1

)
, y 6= 0, a > 0.

Setting ν at larger negative integer values then offers expressions for integrands with
complementary error functions that are raised to third and higher powers.

The rewritten expression for 7.751.3 also has 7.751.2 as a limiting case. Hereto,
we use (3.6) and the linear relation between parabolic cylinder functions in 9.248.1

Dp (z) = epπiDp (−z) +

√
2π

Γ (−p)
eπ(p+1)i/2D−p−1 (−iz) ,

which for non-negative integers gives

Dn (−z) = (−1)
n
Dn (z) , for n = 0, 1, 2, ...

Plugging the latter result into (3.6) then gives 7.751.2

∞∫
0

J0 (xy)Dn (ax)Dn+1 (ax) dx =
(−1)

n

y
Dn

(y
a

)
Dn+1

(y
a

)
, y 6= 0, a 6= 0, n = 0, 1, 2, ....
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4. An indefinite integral for the error function and its specializations in
[12]

The tables in [17], [9] and [19] offer a wide variety of definite and indefinite
integrals for the error function and the normal distribution that confirm, extend and
also correct integrals in [12]. We will intensively refer to [17] and [9] in Section 5
when addressing a number of misprints and errata. This section employs an indefinite
integral from [19] and shows that several of its specializations are reported in [12].

The following indefinite integral can be found in (10,010.3) in [19]∫
G′ (y)G (α+ βy) dy = T

(
y,

α

y
√

1 + β2

)
+ T

(
α√

1 + β2
,
y
√

1 + β2

α

)
− T

(
y,
α+ βy

y

)

− T

(
α√

1 + β2
,
αβ + y

(
1 + β2

)
α

)
+G (y)G

(
α√

1 + β2

)
, α real, β real

(4.1)

in which G (z) and T (h, z) denote the cumulative standard normal distribution and
Owen’s T function [18], respectively. The latter two functions, see [19], are defined as

G (z) =
1√
2π

z∫
−∞

exp

(
−1

2
t2
)
dt,

T (h, z) =
1

2π

z∫
0

exp

(
−1

2
h2
(
1 + t2

)) dt

1 + t2
.

Note that Owen’s T function is implemented in Mathematica as OwenT[h,a]. Intensive
use will be made of the following properties of Owen’s T function (see [18])

T (h, z) = −T (h,−z) ,
T (h, z) = T (−h, z) ,
T (h, 0) = 0,

T (0, z) =
1

2π
arctan z,

T (h, 1) =
1

2
G (h) (1−G (h)) ,(4.2)

T (h,∞) =


1

2
(1−G (h)) , for h > 0,

1

2
G (h) , for h 6 0.

As the results in [12] are expressed in terms of the error function, we rewrite the above
expressions via the connection between the error function and G (z) in (26.2.29) in [1]

G (z) =
1

2
erf

(
x√
2

)
+

1

2
.
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The last two properties of the T function in (4.2) then can be rewritten as

T (h, 1) =
1

8

(
1−

[
erf

(
h√
2

)]2
)
,

T (h,∞) =


1

4

(
1− erf

(
h√
2

))
, for h > 0,

1

4

(
1 + erf

(
h√
2

))
, for h 6 0.

In what follows, we also frequently employ the following properties of the error function

erf (+∞) = 1,

erf (−∞) = −1,(4.3)

erf (0) = 0,

that directly follow from the definition of the error function in (3.7) and from (a
slightly generalized) 3.321.3

∞∫
0

e−q
2x2

dx =

√
π

2
√
q2
, Re q2 > 0.

Expressing (4.1) in terms of the error function yields:

(4.4)

∫
e−px

2

erf (a+ bx) dx =
2
√
π

√
p

{
T

(
x
√

2p,
a

x
√
p+ b2

)
+ T

(
a
√

2p√
p+ b2

,
x
√
p+ b2

a

)

−T
(
x
√

2p,
a+ bx

x
√
p

)
− T

(
a
√

2p√
p+ b2

,
ab+ x

(
p+ b2

)
a
√
p

)

+
1

4
erf

(
a
√
p√

p+ b2

)(
1 + erf

(
x
√
p
))

+
1

4

}

Re p > 0, a real, b real
The result in (4.4) can be used to compute several definite integrals in [12] such
as 8.259.1, 8.250.7, 8.250.9 and, in terms of the complementary error function,
6.285.1. These specializations will be illustrated here and also point to two misprints
and a generalization in one of the results in [12].

First, 8.259.1 is given by

+∞∫
−∞

e−px
2

erf (a+ bx) dx =

√
π
√
p

erf

(
a
√
p√

p+ b2

)
, Re p > 0, a real, b real

Taking Re p > 0, assuming first a > 0 in the evaluation of the limits in (4.4) and using
the properties in (4.2) and (4.3) straightforwardly yields the above solution. It is easy
to show that the solution in 8.259.1 also arises for a = 0 and a < 0.
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Second, 8.250.7 is given by
p∫

0

e−x
2

erf (p− x) dx =

√
π

2

[
erf

(
p√
2

)]2

.

Obtaining the latter expression as a limiting case of (4.4) is somewhat more involved.
Using p = 1, a = p and b = −1 in (4.4) and employing the properties in (4.2) and
(4.3) gives

p∫
0

e−x
2

erf (p− x) dx =

√
π

2

[
erf

(
p√
2

)]2

+ 2
√
π

{
T

(
p
√

2,
1√
2

)
+ T

(
p,
√

2
)
− 1

4
+

1

4
erf

(
p√
2

)
erf (p)

}
.

The second term in this solution vanishes in view of the identity in (3.5) in [18]

T (h, a) = 1
2G (h) + 1

2G (ah)−G (h)G (ah)− T
(
ah,

1

a

)
, a > 0,

which in terms of the error function is

T (h, a) =
1

4
− 1

4
erf

(
h√
2

)
erf

(
ah√

2

)
− T

(
ah,

1

a

)
, a > 0.

Using the latter result indeed gives 8.250.7. Integration by parts of (4.4) and the
above simplifications also straightforwardly give 8.250.8, for which, however, is to be

noted that the term Φ

(
−x

2

2

)
in the solution in [12] is to be replaced by exp

(
−p

2

2

)
.

Obtaining 8.250.9 evolves along similar lines such that we refrain from presenting
details. However, it should be noted that the solution in 8.250.9 contains a misprint
as (4.4) can be shown to simplify into −

√
πΦ (a) Φ (b).

A final specialization refers to 6.285.1
∞∫

0

(1− erf (x)) e−µ
2x2

dx =
arctanµ√

πµ
,Reµ > 0.

Rewriting (4.4) towards the complementary error function and evaluating the limits
gives
∞∫

0

(1− erf (x)) e−µ
2x2

dx =

√
π

2
√
µ2
− 1
√
π
√
µ2

{
arctan

2√
µ2

+ arctan
2 + µ2√

µ2
− arctan

1√
1 + µ2

− arctan
√

1 + µ2

}
The term within parentheses then can be simplified via 1.627.1

arctanx+ arctan
1

x
=
π

2
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and the identity

arctan
2

x
+ arctan

2 + x2

x
= π − arctanx.

This yields
∞∫

0

(1− erf (x)) e−µ
2x2

dx =
arctan

√
µ2

√
π
√
µ2

,Reµ2 > 0,

which generalizes 6.285.1 to values of µ with negative real part.

5. Remarks, generalizations and misprints in [12]

2.33.16: for exp
(√
βx
)
, read erf

(√
βx
)
.

3.311.1: Re p > 0 is to be included. This integral is derived via the method of brackets
in [11].

3.311.5: for Re ν < 1, read Re ν < 0.

3.312.1: for Reβ > 0, Re ν > 0, Reµ > 0, read Reβ > 0, Re ν > 1, Reµ > 0.

3.318.2: for
√
πe
−u

2 (µ+ν)
, read

√
πe−

u
2 (µ+ν). This misprint is reported in [13].

3.321.3: for

√
π

2q
, q > 0 , read

√
π

2
√
q2
, Re q2 > 0.

3.322.1: delete Reβ > 0, u > 0.

3.323.2: for

√
π

p
, read

√
π√
p2

.

3.323.3: add Re a > 0.

3.323.4: add Reβ2 > 0, Re γ2 > 0.

3.354.5: for
π

a
, read

π

|a|
as noted in [13].

3.416.3: for 22n

, read 22n as reported in [13].

3.417.1: for
π

2ab
ln

(
b

a

)
, ab > 0, read

π

2 |ab|
ln

∣∣∣∣ ba
∣∣∣∣ , a 6= 0, b 6= 0.

3.462.25: for Re a > 0, Re b > 0, read Re a > 0, Re p > 0. This integral is derived in
[10].

3.466.1: the solution for negative real part in b is − [1 + Φ (bµ)]
π

2b
eb

2µ2

Re b < 0, |argµ| < π
4 .

3.691.2: for S (
√
a), read S

(√
2a

π

)
.

3.691.3: for C (
√
a), read C

(√
2a

π

)
.

3.691.4: for C

(
b√
a

)
, read C

(
b

√
2

aπ

)
; for S

(
b√
a

)
, read S

(
b

√
2

aπ

)
.
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3.691.6: for C

(
b√
a

)
, read C

(
b

√
2

aπ

)
; for S

(
b√
a

)
, read S

(
b

√
2

aπ

)
.

3.691.8: for C
( a

2b

)
, read C

(
a

b
√

2π

)
; for S

( a
2b

)
, read S

(
a

b
√

2π

)
.

3.691.9: for C
( a

2b

)
, read C

(
a

b
√

2π

)
; for S

( a
2b

)
, read S

(
a

b
√

2π

)
.

3.725.3: the solution must depend on β (as also noted in [4]).

Let γ1 =
π

2β2
e−βb sinh (aβ) , γ2 =

−π
2β2

eβb sinh (aβ) , γ3 =
−π
2β2

e−aβ cosh (bβ) +
π

2β2

and γ4 =
−π
2β2

eaβ cosh (bβ) +
π

2β2
. The solution for 0 < a < b, Reβ > 0 and

a < 0 < b, Reβ > 0 is γ1 and the solution for b < a < 0, Reβ < 0 is −γ1. The
solution for 0 < a < b, Reβ < 0 and a < 0 < b, Reβ < 0 is γ2 and the solution
for b < a < 0, Reβ > 0 is −γ2. The solution for 0 < b < a, Reβ > 0 and
b < 0 < a, Reβ > 0 is γ3 and the solution for a < b < 0, Reβ < 0 is −γ3.
The solution for 0 < b < a, Reβ < 0 and b < 0 < a, Reβ < 0 is γ4 and the solution
for a < b < 0, Reβ > 0 is −γ4.

3.755.1: for a > 0, read a > 0, Re b > 0.

3.772.5: for ET I 12(4), read ET I 12(14).

4.358.2: for ζ (2, ν − 1), read ζ (2, ν) as noted in [22] and [15] in which also a deriva-
tion of this integral can be found.

6.282.2: add Reµ > 0.

6.283.1: for Reα > 0, Reβ > Reα, read Reβ < 0, Reα > Reβ.

6.285.1 replace µ in the solution and condition by
√
µ2.

6.285.2: for − 1

2ai
√
π

, read
1

2ai
√
π

.

6.291: for
µ

a
, read

µ

4
.

6.295.2: for − 1

µ2
, read − 1

µ
as can be seen from (31) on p. 9 of [17].

6.296: for |argµ| < π
4 , a > 0, read |argµ| < π

4 , a real.

6.297.1: for Reβ > 0, Reµ > 0, read Reβ > 0, Reµ > 0, Re
(
γ2 − µ

)
< 0.

6.297.2: for a > 0, b > 0, Reµ > 0, read b > 0, Re
(
µ2 − a2

)
> 0.

6.297.3: for a > 0, b > 0, Reµ > 0, read b > 0, Reµ > 0.

6.298: for a > 0, b > 0, Reµ > 0, read b > 0, Reµ > 0, Re
(
µ− a2

)
> 0.

6.299: for Kν

(
a2
)
, read Kν

(
1
2a

2
)

as noted in (36) on p. 152 of [9].
6.311: for a > 0, b > 0, read a > 0, b 6= 0. For negative a, the solution is
1

b

(
1 + e−

b2

4a2

)
, a < 0, b 6= 0.
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6.312: for a > 0, b > 0, read a > 0, b > 0, a <
√
b. For a >

√
b, the solution is

1

4
√

2πb

(
ln
b+ a2 + a

√
2b

b+ a2 − a
√

2b
+ 2 arctan

a
√

2b

b− a2
+ 2π

)
, a > 0, b > 0, a >

√
b,

see (10) on p. 154 of [9].

6.314.1: the integral and its solution should be replaced by

∞∫
0

sin (bx) Φ

[√
a

x

]
dx = b−1

(
1− exp

[
− (2ab)

1
2

]
cos
[
(2ab)

1
2

])
, Re a > 0, b > 0,

as noted in (16) on p. 155 in [9].

6.314.2: the integral and its solution should be replaced by

∞∫
0

cos (bx) Φ

[√
a

x

]
dx = b−1 exp

[
− (2ab)

1
2

]
sin
[
(2ab)

1
2

]
, Re a > 0, b > 0,

see (17) on p. 155 in [9].
6.315.3: for a > 0, b > 0, read a > 0, b 6= 0.

6.315.4: for Ei
[ p

4a2

]
, read Ei

[
− p

4a2

]
; for a > 0, b > 0, p > 0, read a > 0, b >

0, p 6= 0.

6.315.5: for a > 0, b > 0, read a > 0, b > 0, a <
√
b. For a >

√
b, the solution is

1

2
√

2πb

(
ln
b+ a

√
2b+ a2

b− a
√

2b+ a2
+ 2 arctan

[
a
√

2b

b− a2

]
+ 2π

)
, a > 0, b > 0, a >

√
b.

6.317: for b > 0, read Re a2 > 0, b > 0. For negative b, the solution is − i
a

√
π

2
e−

b2

4a2

Re a2 > 0, b < 0.

6.318: the correct solution is

e−p
2 − 1

2p
+

√
π

2
Φ (p) , Re p > 0.

6.511.6: the formula can be generalized by modifying the expression in ET II 7(2)
into

a∫
0

J0 (xy) dx = aJ0 (ay) +
πa

2
[J1 (ay) H0 (ay)− J0 (ay) H1 (ay)] , a > 0.

6.511.7: the formula in ET II 18(1) is more general and the restriction on y can be
relaxed

a∫
0

J1 (xy) dx =
1

y
(1− J0 (ay)) , a > 0, y 6= 0.



SOME REMARKS, GENERALIZATIONS AND MISPRINTS 127

6.511.8: the formula can be generalized by modifying the expression in ET II 7(3)
into

∞∫
a

J0 (xy) dx =
1

|y|
− aJ0 (ay) +

πa

2
[J0 (ay) H1 (ay)− J1 (ay) H0 (ay)] , y 6= 0.

6.511.9: the formula in ET II 18(2) is more general and the restriction on y can be
relaxed

∞∫
a

J1 (xy) dx =
1

y
J0 (ay) , y 6= 0.

6.512.9: for a > 0, b > 0, read a > 0, b 6= 0.

6.512.10: for a > 0, b > 0, read a > 0, b 6= 0, a > |b|.

6.516.1: for negative b, the solution is −b−1Jν

(
a2

4b

)
, a > 0, b < 0, Re ν > − 1

2 .

6.516.4: for a > 0, b > 0, read a > 0, b > 0, Re ν > − 1
2 .

6.521.2: for Re a > 0, b > 0, Re ν > −1, read Re (a± ib) > 0, Re ν > −1. In fact,
6.521.2 is the limiting case of 6.576.3 for λ = −1, µ = ν with F (q + 1, 1; q + 1, x) =

1

1− x
. The condition Re (a± ib) > 0, Re (ν − λ+ 1) > |Reµ| in 6.576.3 then sim-

plifies into Re (a± ib) > 0, Re ν > −1.

6.521.7: for a > 0, b > 0, read a > 0.

6.521.8: for a > b > 0, read a > |b| > 0.

6.521.9: for a > b > 0, read a > |b| > 0.

6.521.12: for a > 0, b > 0, read a > 0.

6.521.13: for a > b > 0, read a > 0.

6.521.14: for a > b > 0, read a > |b| > 0.

6.521.15: for a > b > 0, read a > |b| > 0.

6.522.4: for Re b > Re a, c > 0, read Re b > Re a; for Re b > Re c, a > 0, read
Re b > Re c.

6.522.5: for Re b > |Im a| , c > 0, read Re b > |Im a|; for Re a > |Im b| , c > 0, read
[Re a > |Im b|.

6.524.2: for
π

8ab
− 1

4ab
arcsin

(
b2 − a2

b2 + a2

)
, a > 0, b > 0, read

π

8 |a| b
− 1

4 |a| b
arcsin

(
b2 − a2

b2 + a2

)
, a 6= 0, b > 0.

6.525.1: for c > 0, Re b > |Im a| , Re a > 0, read Re b > |Im a|; for Re a > |Im b| , Re b >
0, c > 0, read Re a > |Im b|.
6.525.2: for Re b > |Re a| , c > 0, read Re b > |Re a|.
6.525.3: for K0 (bx), read K1 (bx); for Re a > |Im b| , c > 0, read Re b > 0.

6.526.1: for (2a)
−1
J 1

2ν

(
b2

4a

)
, a > 0, b > 0, Re ν > −1, read (2 |a|)−1

J 1
2ν

(
b2

4a

)
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a 6= 0, b > 0, Re ν > −1.

6.532.4: for a > 0, Re k > 0, read a > 0 and Re k > 0 or a < 0 and Re k < 0.
The solution is K0 (−ak) for a > 0 and Re k < 0 or a < 0 and Re k > 0.

6.532.5:
K0 (−ak)

k
is the solution for a > 0, Re k < 0.

6.532.6:
π

2k
[I0 (−ak)−L0 (−ak)] is the solution for a < 0, Re k > 0 and

−π
2k

[I0 (−ak)

−L0 (−ak)] is the solution for a > 0, Re k < 0. The solution for a < 0, Re k < 0 is
−π
2k

[I0 (ak) −L0 (ak)].

6.533.3: the solution − b
4

[
1 + 2 ln

(∣∣∣a
b

∣∣∣)] holds for 0 < b < a, a < b < 0, a < 0 < b

with a+b < 0 and for b < 0 < a with a+b > 0. The solution −a
2

4b
holds for 0 < a < b,

b < a < 0, a < 0 < b with a+ b > 0 and b < 0 < a with a+ b < 0.

6.554.1: the solution y−1eay holds for y > 0 and Re a < 0. The solution −y−1eay

holds for y < 0 and Re a > 0. The solution −y−1e−ay holds for y < 0 and Re a < 0.

6.566.2: the solution also applies for a < 0, Re b < 0, −1 < Re ν < 3
2 . For EH II

96(58), read EH II 96(58), ET II 23(12).

6.566.3: the solution
π2 (−b)ν−1

4 cos νπ
[H−ν (−ab)− Y−ν (−ab)] holds for a > 0, Re b < 0,

Re ν > − 1
2 .

6.566.4: the solution
π2

4 (−b)ν+1
cos νπ

[Hν (−ab)− Yν (−ab)] holds for a > 0,

Re b < 0, Re ν < 1
2 .

6.566.5: the solution
−π

2 (−b)ν+1 [Iν (−ab)−Lν (−ab)] is valid for a < 0, Re b > 0,

Re ν > − 5
2 and the solution

π

2 (−b)ν+1 [Iν (−ab)−Lν (−ab)] applies for a > 0,

Re b < 0, Re ν > − 5
2 . The solution

π

2 (−b)ν+1 [Iν (−ab) + Lν (−ab)] holds for a < 0,

Re b < 0 ,Re ν > − 5
2 as noted in Section 2.

6.592.7: for
1

2

√
π sec (νπ), read

1

2
π sec

(
1

2
νπ

)
as noted in [14]. For |Re ν| < 1, read

a 6= 0, |Re ν| < 1.

6.611.2: for Reα > 0, b > 0, |Re ν| < 1, read |Re ν| < 1, Re (α± ib) > 0 as noted
in Section 2.

6.613: for Re ν > −1, read Re z > 0, Re ν > −1.

6.633.2: for Re p > −1, |arg ρ| < π
4 , a > 0, β > 0, read Re p > −1 , | arg ρ| <

π
4 , a real, β > 0.

6.648: for

(
a+ bex

aex + b

)
, read

(
a+ bex

aex + b

)ν
.

6.671.7: add the solution ∞ for a = b as noted on p. 405 in [21].
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6.681.12: for
π

2
, read

π2

4
. For |Re (u+ ν)| < 1, read a 6= 0, |Re (u+ ν)| < 1.

6.686.5: for a > 0, b > 0, read a 6= 0, b 6= 0 as noted in Section 2.

6.772.1: add a > 0. For negative a, the solution is
1

a
[ln (−2a) + C] , a > 0.

6.772.2: add a > 0. For negative a, the solution is −1

a

[
ln

(
−a
2

)
+ C

]
, a < 0.

6.772.3: for
2

b
[K0 (ab) + ln a], read

2

b
[K0 (|ab|) + ln (|a|)], a 6= 0, b 6= 0.

6.772.4: add x > 0. For negative values of x, the solution is
2

x
ker (−x) , x < 0.

6.784.1: the solution is wrong. The correct solution is given in (8) on p. 15 in [17]

1

2
√
π

(
b

2

)ν
1

a2ν+2

Γ
[
ν + 3

2

]
Γ [ν + 2]

Φ

(
ν +

3

2
, ν + 2;− b2

4a2

)
,

where Φ (α, β; z) is the confluent hypergeometric function.
For |arg a| < π

4 , b > 0, Re ν > −1, read |arg a| < π
4 , b 6= 0, Re ν > −1.

6.794.9: for 25/2, read 27/2.

6.812.1: the solution for Re a > 0, b < 0 is
π

2a
[I1 (−ab)− L1 (−ab)]. For Re a <

0, b > 0, the solution is − π

2a
[I1 (−ab)− L1 (−ab)] and the solution for Re a < 0, b < 0

is − π

2a
[I1 (ab)− L1 (ab)].

6.812.2: for
a2b2

2
, read

a2b2

4
.

6.813.4: for a > 0, Re ν > − 3
2 , read a 6= 0, Re ν > − 3

2 .

6.813.5: for a > 0, read a 6= 0.

6.876.1: for x kei x J1 (ax), read kei x J1 (ax); for a > 0, read a 6= 0.

6.876.2: for x ker x J1 (ax), read ker x J1 (ax); for a > 0 read a 6= 0.

7.251.3: for y > 0, read y 6= 0.

7.355.1: a > 0 is to be deleted.

7.355.2: a > 0 is to be deleted.

7.374.4: for e−x
2

H2m+n (ax)Hn (x), read e−
1
2x

2

He2m+n (ax)Hen (x).

7.374.7: for Ln−mn

(
−2y2

)
, read Ln−mm

(
−2y2

)
as noted in [16]. The condition m 6 n

is to be deleted.

7.376.3: for Γ

(
ν + 1

2

)
Γ

(
n+

1

2

)
, read Γ

(ν
2

+ 1
)

Γ

(
n+

3

2

)
.

7.421.1: for y > 0, Reα > 0, read Reα > 0.

7.512.6: forB (λ, β − λ)F (α, λ; γ; z), readB (λ, β − λ)F (α, λ;λ; z) = B (λ, β − λ) (1− z)−α
(which corrects a misprint in the solution that was advanced in [14]).

7.531.1: for µ > 0, Reα > 1
2 , Reβ > 1

2 , read µ > 0, Reα > 1
2 , Reβ > 1

2 , c > 0.
This integral has been derived in [3].
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7.662.4: the solution for negative a is−ay−2 [Γ (2µ+ 1)]
2
W−µ,k

(
iy2

4a

)
, W−µ,k

(
− iy

2

4a

)
a < 0,Re y > 0, Reµ > − 1

2 .

7.731.1: for Re2 a > 0, read Re a2 > 0.

7.751.1: for y > 0, read y 6= 0, a 6= 0, n = 1, 3, 5, 7, ....

7.751.2: for y > 0, |arg a| < 1
4π, read y 6= 0, a 6= 0.

7.751.3: the integral can be rewritten as

∞∫
0

J0 (xy)Dν (ax)Dν+1 (ax) dx =
1

y

[ √
π√

2Γ [−ν]
−Dν

(y
a

)
Dν+1

(
−y
a

)]
, y 6= 0, a > 0,

= −1

y
Dn

(y
a

)
Dn+1

(
−y
a

)
, y 6= 0, a 6= 0, n = 0, 1, 2, ...,

as discussed in Section 3.

7.752.1: for y > 0, Re ν > − 1
2 , read y 6= 0, Re ν > − 1

2 .

7.752.3: for y > 0, Re ν > −1, read y 6= 0, Re ν > −1.

7.752.4: for y > 0, Re ν > − 1
2 , read y 6= 0, Re ν > − 1

2 .

7.752.5: for Re ν > −1, y > 0, read y 6= 0, Re ν > −1.

7.752.10: for y > 0, |arg a| < 1
4π, Re ν > − 1

2 , read y 6= 0, |arg a| < 1
4π, Re ν > − 1

2 .

7.752.12: for y > 0, |arg a| < 1
4π, Re ν > −1, read y 6= 0, |arg a| < 1

4π, Re ν > −1.

7.755.1: for 2−3/2, read 2−1/2; for y > 0, Re a > 0, read y 6= 0, Re a > 0.

7.771: for |a| < 1
2π, read |a| < 1

2π, β > 0; for |a| > 1
2π, read |a| > 1

2π, β > 0; for ET
II 298(22), read ET II 398(22).

8.250.5: add Re p > 0, y > 0.

8.250.8: for Φ

(
−x

2

2

)
in the solution, read exp

(
−p

2

2

)
.

8.250.9: for
√
πΦ (a) Φ (b), read −

√
πΦ (a) Φ (b).

8.253.1: for F1

(
1;

3

2
;x2

)
, read 1F1

(
1;

3

2
;x2

)
.

8.258.3: for (1 + β)
(
β2 + 2β + 2

)
, read (1 + β) (2 + β). A recurrence relation for

8.258.1-8.258.5 is derived in [2].

8.258.5: for 1 arctan
(√
β
)
, read arctan

(√
β
)
.

9.221: add Re (µ± λ) > − 1
2 . The integral then is also consistent with (16) on p. 274

of [5] in view of the identity B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
in 8.384.

9.245.1: for x is real, Re p < 0, read x > 0, Re p < 0.
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