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c© Universidad Técnica Federico Santa Maŕıa 2003

Abel summability and angular convergence

Ricardo Estrada

Abstract. We construct an example of a series that is Abel summable but whose
associated power series does not converge on angular sectors. We also give some
related results.

1. Introduction

A basic result in complex variables is Abel’s theorem [10], that says that if the nu-
merical series

∑∞
n=0 an converges then the power series f (z) =

∑∞
n=0 anzn converges

for |z| < 1, the function f (z) es analytic in |z| < 1 and

(1.1) lim
z→1
Ang.

f (z) =
∞∑

n=0

an .

The notation Ang. in the limit means in an angular way, that is, the limit exists as
z → 1 in any angular sector, π/2+ε < arg (z − 1) < 3π/2−ε , for ε > 0. Some authors
use the term non-tangential instead of angular.

Motivated by Abel’s theorem, one can define the concept of Abel summability.
Indeed, if

∑∞
n=0 an is a divergent series, one can consider the auxiliary series f (x) =∑∞

n=0 anxn. If this auxiliary series converges for 0 6 x < 1, and if

(1.2) lim
x→1−

f (x) = S ,

then one says that the series
∑∞

n=0 an is Abel summable to the value S and writes

(1.3)
∞∑

n=0

an = S (A) .

For instance, the series
∑∞

n=0 (−1)n is divergent, but
∑∞

n=0(−1)nxn converges for
0 6 x < 1 to the sum 1/ (1 + x) , whose limit when x → 1− is 1/2; thus

(1.4)
∞∑

n=0

(−1)n =
1
2

(A) .
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Many examples of sums in the Abel sense of divergent series can be found in [5].
Observe that according to Abel’s theorem, every convergent series is (A) summa-

ble, to the same limit. The technical term is regularity: Abel summability is a regular
summation method since it sums convergent series to their sum.

We now come to the question we would like to study. Suppose that
∑∞

n=0 an =
S (A). Then it is easy to see that the auxiliary series f (z) =

∑∞
n=0 anzn not only

converges for 0 6 z < 1 but also in the disc |z| < 1 and, in fact, f (z) is analytic in
the disc. Abel summability to S means that f (z) → S as z → 1−, when z is a real
number, namely, along the radius of the disc that goes through z = 1. The question
is, does f (z) converge to S when z → 1 in an angular fashion?

The aim of this article is to show how one can construct an extreme coun-
terexample to this question. Namely, in Section 2 we show a procedure that pro-
duces a series

∑∞
n=0 an that is Abel summable to S but such that in no sector

π − ε < arg (z − 1) < π + ε , no matter how small ε > 0 is, it is true that f (z) → S
as z → 1.

In Section 3, the last section, we consider several related results, that show that
it is not always possible to construct counterexamples if f satisfies some additional
conditions.

As suggested by a referee, it would be interesting to study if counterexamples of
this kind are “exceptional” in the sense that they occur only in a small set of boundary
points, whether a set of zero measure or of zero capacity; this is the usual situation in
several questions related to the existence of angular limits [9].

2. The counterexample

Interestingly, to construct our counterexample it is enough to build a simpler
example, namely, one of a series

∑∞
n=0 an that is Abel summable to S but such that

there exists some sector π
2 +ε < arg (z − 1) < 3π

2 −ε where it is not true that f (z) → S
as z → 1. This simpler example is easy: take

(2.1) f (z) = e−(1−z)−α

,

where α > 0 and where the branch of ω−α = (1− z)−α is the one defined for ω ∈
Cr(−∞, 0] which has the value 1 at ω = 1. The series

∑∞
n=0 an is the one obtained by

setting z = 1 in the power series expansion f (z) =
∑∞

n=0 anzn. Then f (z) is analytic
in |z| < 1 and f (z) → 0 as z → 1 in the sector π − π

2α < arg (z − 1) < π + π
2α but

f (z) 9 0 as z → 1 in any sector π − ε < arg (z − 1) < π + ε if ε > π
2α . Hence, the

bigger the value of α, the sector where f (z) → 0 as z → 1 gets smaller. In particular,
if α > 1, the series is (A) summable but there is no angular convergence.

Let us now go to the extreme counterexample. If 0 6 δ < π/2 let Xδ be the
space of analytic functions in |z| < 1 whose limit as z → 1 exists in the closed sector
π − δ 6 arg (z − 1) 6 π + δ. Observe that X0 is the space of analytic functions in
|z| < 1 whose limit as z → 1 along the radius exists. The extreme counterexample is
a function f ∈ X0 that does not belong to Xδ for any δ > 0.
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In the space Xδ we introduce a topology by giving the following family of semi-
norms (norms, actually)

(2.2) ‖f‖δ,r = sup {|f (z)| : z ∈ Sδ,r} ,

where if 0 < r < 1 the set Sδ,r is the union of the disc {z ∈ C : |z| 6 r} and the
sectorial set {z ∈ C : π − δ 6 arg (z − 1) 6 π + δ, |z| > r, <e z > 0}; sets of this type
are called Stoltz angles.

With these seminorms Xδ becomes a locally convex topological vector space. Since
‖ ‖δ,r 6 ‖ ‖δ,s for 0 < r < s < 1, it follows that if {rn}∞n=1 is an increasing sequence
that converges to 1, rn ↗ 1, then the seminorms ‖ ‖δ,rn

generate the topology of Xδ,

thus Xδ is a metrizable vector space [11]. It is easy to see that Xδ is complete, since
if {fn}∞n=1 is a Cauchy sequence, then

(2.3) lim
n,m→∞

‖fn − fm‖δ,r = 0 ,

for all r, with 0 < r < 1, and consequently the sequence {fn (z)}∞n=1 is a Cauchy
sequence for all z ∈ {ω ∈ C : |ω| < 1} ∪ {1}. Let

(2.4) f (z) = lim
n→∞

fn (z) , z ∈ {ω ∈ C : |ω| < 1} ∪ {1} .

Using (2.3) we deduce that {fn} converges uniformly to f in each set Sδ,r and therefore
in each compact set contained in the disc {ω ∈ C : |ω| < 1}. If we now employ the
well-known Weierstrass theorem on the analyticity of a limit, uniform over compacts,
of a sequence of analytic functions, we conclude that f is analytic in the disc {ω ∈ C :
|ω| < 1}. Finally, the uniform convergence of the fn’s to f in Sδ,r gives the continuity
of f in Sδ,r, and this, in turn, guarantees that f ∈ Xδ. Consequently, Xδ is a Fréchet
space, that is, a complete metric vector space.

Observe now that in any complete metric space Y, Baire’s theorem holds [6].
Baire’s theorem says that Y is of the second category, i.e., if {Yn} is a sequence of
subsets of Y with

⋃∞
n=1 Yn = Y then at least one of the Yn’s is not nowhere-dense,

that is, the interior of its closure is non-empty; those spaces that can be written as
a countable union of nowhere-dense sets are called of the first category. Thus, in a
Fréchet space X , if {Vn} is a sequence of vector subspaces of X of the first category,
then not only Vn 6= X ∀n, but also

⋃∞
n=1 Vn 6= X .

Let us apply these ideas to the space Xδ. If δ′ > δ then Xδ′ is a vector subspace
of Xδ and, as we shall see in a moment, of the first category in Xδ. Let r ∈ (0, 1) be
fixed and let

(2.5) V =
{

f ∈ Xδ′ : ‖f‖δ′,r 6 1
}

.

Let W be the closure of V in Xδ. Observe that convergence in the space Xδ implies
pointwise convergence in |z| < 1 and at z = 1. Therefore, if f ∈ W then |f(z)| 6 1
for z ∈ Sδ′,r. The simpler example shows that for each s ∈ (0, 1) and each ε > 0 there
exists g ∈ Xδ with ‖g‖δ,s < ε but with sup {|f(z)| : z ∈ Sδ′,r} > 1, and, consequently,
g /∈ W. We deduce that 0 is not an interior point of W in Xδ, since no neighborhood
of 0 in Xδ is contained in W. By translation, we conclude that the interior of W is
empty. In other words, V is a nowhere-dense subset of Xδ and since Xδ′ =

⋃∞
n=1 nV,

we obtain that Xδ′ is of the first category in Xδ.
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Moreover, if {δn}∞n=1 is a decreasing sequence with δn ↘ δ, then Baire’s theorem
allows us to conclude that

⋃
δ′>δ Xδ′ =

⋃∞
n=1 Xδn 6= Xδ. We have proved the ensuing

result.

Theorem 2.1. There exist analytic functions in |z| < 1 such that f (z) has a
limit as z → 1 in the sector π − δ 6 arg (z − 1) 6 π + δ but not in any sector
π − δ′ 6 arg (z − 1) 6 π + δ′ for δ′ > δ.

The extreme counterexample corresponds to the case δ = 0.

Theorem 2.2. There exist series
∑∞

n=0 an that are Abel summable but such that
the function f (z) =

∑∞
n=0 anzn does not have a limit as z → 1 in any sector π − ε 6

arg (z − 1) 6 π + ε for any ε > 0.

3. Other results

In this section we consider some related results.
We would like to point out, first of all, that it is not possible to construct a

counterexample as the one of the previous section if we also ask the function f to be
bounded. Indeed, according to a classical result, Montel’s theorem [8] (see also [10,
pg. 170]), if g is analytic and bounded in the semi-strip <e z > 0, a < =m z < b, and
if there exists some value y0 for which the limit

(3.1) lim
x→∞

g (x + iy0) = L ,

exists, then

(3.2) lim
x→∞

g (x + iy) = L ,

for all y ∈ (a, b) and, in fact, the convergence is uniform in [a + ε, b− ε] for all ε > 0.
Using a conformal mapping we deduce the impossibility of such a counterexample.

Lemma 3.1. Let f be analytic and bounded in Sδ,r for some r < 1, δ > 0. Suppose
f ∈ Xε for some ε > 0. Then f ∈ Xρ for all ρ < δ.

In particular, if f (z) =
∑∞

n=0 anzn is analytic and bounded in Sδ,r and if

(3.3)
∞∑

n=0

an = L (A) ,

then f (z) → L as z → 1 in any sector π − ρ 6 arg (z − 1) 6 π + ρ for ρ < δ.

Notice that the Lemma guarantees that f ∈ Xρ for ρ < δ, but it does not say that

f belongs to Xδ. In general this is not true: the function f (z) = exp
(
− (1− z)−α

)

introduced before is an example for δ = π
2α , since f (z) → 0 as z → 1 in π − ρ 6

arg (z − 1) 6 π+ρ if ρ < δ, but when |arg (z − 1)− π| = δ the function f (z) oscillates
as z → 1.
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Another classical result [10, pg. 179] says that if h is analytic and bounded in a
semi-strip Ω : <e z > 0, a < =mz < b , and if the limits

(3.4) lim
x→∞

h (x + ia) = La , lim
x→∞

h (x + ib) = Lb ,

exist, then La = Lb = L and

(3.5) lim
x→∞

h (x + iy) = L , ∀y ∈ [a, b] .

The values of h along the boundary lines, x + ia and x + ib used in (3.4) are defined
as we now explain. Observe that since h is analytic and bounded in Ω, then [1, 9] the
angular boundary values

(3.6) h (ξ) = lim
z→ξ,z∈Ω

Ang.

h (z) ,

exist almost everywhere in the boundary ∂Ω, and thus h (x + ia) and h (x + ib) are
defined almost everywhere in x > 0 as angular boundary values.

Using an appropriate conformal mapping we deduce that if f is analytic in |z| < 1,
bounded in Sδ,r for some r < 1, δ > 0, and if f (z) has a limit when z → 1 along the
lines arg (z − 1) = π − δ and arg (z − 1) = π + δ, then f ∈ Xδ.

However, it is more interesting to use a conformal mapping that sends the unit
disc onto the semi-strip, with the point z = eiθ0 corresponding to ω = ∞, so that the
lines =mω = a, =m ω = b correspond to arcs of the unit circle that end to the right
and left of z = eiθ, respectively: we then deduce that if f is analytic and bounded in
|z| < 1, and if ϕ (θ) = f

(
eiθ

)
, then ϕ cannot have a jump discontinuity at θ = θ0.

Other types of discontinuity are possible, but not those of jump type, for functions
like ϕ that are boundary values of bounded analytic functions.

The hypothesis that f is bounded cannot be eliminated. Consider for instance
the function

(3.7) f (z) =
∫ Tz

0

e−ω2
dω ,

where T is a conformal mapping that sends the unit disc to the upper half-plane, in
such a way that T (−1) = 0, T (1) = ∞, and additionally limθ→0± T

(
eiθ

)
= ∓∞.

Then ϕ (θ) = f
(
eiθ

)
has a jump discontinuity at θ = 0, since ϕ (0±) = ±√π/2.

Nevertheless, there is a more general hypothesis that permits one to conclude that
there are no jump discontinuities. Instead of assuming f bounded, we just ask that the
limit of f

(
reiθ

)
as r → 1− exists in the distributional sense. It is convenient to point

out that if f (z) =
∑∞

n=0 anzn then f has distributional boundary values in |z| = 1
if and only if an = O (|n|α) , n → ∞ for some α and this, in turn, is equivalent to
the estimate f

(
reiθ

)
= O

(
(1− r)−β

)
, r → 1− uniformly in θ for some β [2]. Also,

in this case ϕ (θ) = f
(
eiθ

)
is a distribution, so that the lateral limits ϕ

(
θ±0

)
can be

considered in the distributional sense of ÃLojasiewicz [7] (see also [4]).

Theorem 3.1. Let f be analytic in |z| < 1, with distributional limits as |z| → 1.
Let ϕ (θ) = f

(
eiθ

)
. Let θ0 ∈ R be such that the lateral limits ϕ

(
θ±0

)
exist distribu-

tionally. Then ϕ
(
θ+
0

)
= ϕ

(
θ−0

)
and the distributional point value ϕ (θ0) exists.
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Proof. We may suppose that θ0 = 0. If the distributional lateral limits exist,
then there exists N ∈ N and constants a0, . . . , aN ∈ C such that

(3.8) ϕ (εθ) = ϕ
(
θ+

)
H (ε) + ϕ

(
θ−

)
H (−ε) +

N∑

j=0

ajδ
(j) (εθ) + o (1) ,

as ε → 0+, where H (ε) = 1, ε > 0, H (ε) = 0, ε < 0, is the Heaviside function.
Suppose first that a0 = · · · = aN = 0. Since f is analytic, then f

(
reiθ

)
=

〈ϕ (τ) , Pr (θ − τ)〉 , where Pr is the Poisson kernel [3, Seccin 3.11]. Hence, if lα is the
line arg (z − 1) = α, π

2 < α < 3π
2 , (3.8) shows that f (z) → λϕ (θ+)+(1− λ)ϕ (θ−) as

z → 1 along lα, where λ = 3
2 − α

π . But f is bounded in the sector between the lines lα1

and lα2 , and tends to limits λiϕ (θ+)+(1− λi)ϕ (θ−) , i = 1, 2, along them. However,
these limits must coincide, and if λ1 6= λ2 this is possible only if ϕ (θ+) = ϕ (θ−) .

In the general case, when (3.8) holds, we integrate N times, after substraction
of the corresponding constant, to obtain a primitive of order N of ϕ which is also a
distributional boundary value and whose jump is precisely aN . From what we already
proved, aN = 0. The result follows. ¤

A somewhat weaker version of the theorem is the following.

Corollary 3.1. Let f (z) =
∑∞

n=0 anzn, analytic in |z| < 1. Suppose that f is
bounded in Sδ,r for some r < 1, δ > 0. If f (z) → S± distributionally as z → 1 along
the lines arg (z − 1) = π± δ, then S+ = S− = S and

∑∞
n=0 an is Abel summable to S.

Using these ideas we can introduce an extended notion of Abel summability. Let∑∞
n=0 an be a series and construct the auxiliary series f (z) =

∑∞
n=0 anzn, which

we will suppose convergent for |z| < 1. Suppose now that the lateral limit f (1−) =
limx→1− f (x) = S exists in the distributional sense of ÃLojasiewicz. Then we say that∑∞

n=0 an is Abel-distributionally summable to S, and write

(3.9)
∞∑

n=0

an = S (A-dist.)

Naturally, Abel summability implies Abel-distributional summability . Nevertheless,
the reciprocal does not hold: if

∑∞
n=0 an is the series obtained by setting z = 1

in the Taylor series
∑∞

n=0 anzn = sen (z − 1)−1
, then

∑∞
n=0 an = 0 (A-dist.) since

limx→1− sen (x− 1)−1 = 0 distributionally, but since the limit does not exist in the
ordinary sense, the series is not (A) summable. However, we have:

Theorem 3.2. Let f (z) =
∑∞

n=0 anzn be analytic in |z| < 1. Suppose that f is
bounded in Sδ,r for some r < 1, δ > 0. If

∑∞
n=0 an is Abel-distributionally summable,

then it is Abel summable.

Proof. If
∑∞

n=0 an is (A-dist.) summable, there exists n ∈ N such that

(3.10) F (x) =
1

n! (1− x)n

∫ 1

x

(t− x)n
f (t) dt
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has an ordinary limit S as x → 1−. But F (z) is also bounded in Sδ,r, therefore Montel’s
theorem guarantees that F (z) → S as z → 1 in any sector π−ρ 6 arg (z − 1) 6 π +ρ
para ρ < δ. The Corollary permits us to conclude that

∑∞
n=0 an is Abel summable

to S, since F (z) → S as z → 1 along arg (z − 1) = π ± ρ means that f (z) → S
distributionally as z → 1 along these lines. ¤
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