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Gain of regularity for a nonlinear dispersive equation

Octavio Paulo Vera Villagrán

To Lorena Conde Baquedano

Abstract. In this paper we study the gain of regularity of solutions of a disper-
sive evolution nonlinear equation. We consider the equation

( 1 ) =

(
∂u
∂t

+ ∂
∂x

[ f(u) ] = ε ∂
∂x

[ g( ∂u
∂x

) ]− δ ∂3u
∂x3

u(x, 0) = ϕ(x)

where x ∈ IR, t ∈ [0, T ] and T is an arbitrary positive time. The flux f = f(u)
and the (degenerate) viscosity g = g(λ) are smooth functions satisfying certain
assumptions to be listed below. It is shown under certain additional conditions
on f that C∞ - solutions u(x, t) are obtained for all t > 0 if the initial data
u(x, 0) = ϕ(x) decays faster than polinomially on IR+ = {x ∈ IR ; x > 0} and it
has certain initial Sobolev regularity.

1. Introduction

In 1976, J. C. Saut and R. Temam [23] noted that a solution u of an equation of
Korteweg-de Vries type cannot gain or lose regularity. They showed that if u(x, 0) =
ϕ(x) ∈ Hs(IR) for s > 2, then u( · , t) ∈ Hs(IR) for all t > 0. The same results
were independently obtained making use of different methods by J. Bona and R.
Scott [2]. For the Korteweg - de Vries (KdV) equation on the line, and motivated
by the work of A. Cohen [6], T. Kato [16] showed that if u(x, 0) = ϕ(x) ∈ L2

b ≡
H2(IR)

⋂
L2(ebxdx) (b > 0), then the solution u(x, t) of the KdV equation becomes

C∞ for all t > 0. The main ingredient in the proof was the fact that formally the
semi-group S(t) = e−t ∂3

x in L2
b is equivalent to Sb(t) = e−t (∂x−b)3 in L2 , when

t > 0. One would be inclined to believe that this was a special property of the KdV
equation. This is not, however, the case. The effect is due to the dispersive nature of
the linear part of the equation. S. N. Kruzkov and A. V. Faminskii [20] proved that for
u(x, 0) = ϕ(x) ∈ L2 , such that xαϕ(x) ∈ L2((0, +∞)) , the weak solution of the KdV
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equation had l-continuous space derivatives for all t > 0 if l < 2 α. The proof of this
result was based on the asymptotic behavior of the Airy function and its derivatives,
and on the smooth effect of the KdV equation found in [16, 20]. Corresponding work
for special nonlinear Schrödinger equations were done by Hayashi et al. [12, 13] and
G. Ponce [22]. While the proof of T. Kato turns out to be dependent on special
a priori estimates, some of its mystery has been resolved by results of local gain of
finite regularity for various other linear and nonlinear dispersive equations due to P.
Constantin and J. C. Saut [10], P. Sjolin [24], J. Ginibre and G. Velo [11], and others.
However, all of them require growth conditions on the nonlinear term.

All physically significant dispersive equations and systems are known to have lin-
ear parts displaying this local smooth property. We mention only a few: the KdV,
Benjamin-Ono, intermediate long wave, various Boussinesq, and Schrodinger equa-
tions. Continuing with the idea of W. Craig, T. Kappeler and W. Strauss [9] we study
smoothness properties of solutions of some evolution dispersive nonlinear equations.
We consider the nonlinear dispersive equation

( 1 ) =
{

∂u
∂t + ∂

∂x [ f(u) ] = ε ∂
∂x [ g(∂u

∂x ) ]− δ ∂3u
∂x3

u(x, 0) = ϕ(x)

with x ∈ IR, t ∈ [0, T ] and T is an arbitrary positive time. The flux f = f(u) and
the (degenerate) viscosity g = g(λ) are given by smooth functions satisfying certain
assumptions that we list below. We give a formal proof of our gain in a regularity the-
orem for the nonlinear equation (1). The results of Section 3 were proved in O. Vera
[27]. In Section 4 we state our main results on the gain of regularity for (1). We prove
the following principal theorem.

Theorem 1.1. (Main Theorem) Let T > 0 and u(x, t) be a solution of (1) in
the region IR× [0, T ] , such that u ∈ L∞([0, T ]; H3(W0 L 0)) for some L > 2 and all
σ > 0. Then

u ∈ L∞([0, T ]; H3+l(Wσ, L−l, l))
⋂

L2([0, T ]; H4+l(Wσ, L−l−1, l)),

for all 0 6 l 6 L− 1.

2. Preliminaries

We consider the nonlinear dispersive equation

(2.1)
∂u

∂t
+

∂

∂x
[f(u)] = ε

∂

∂x

[
g

(
∂u

∂x

)]
− δ

∂3u

∂x3

with x ∈ IR, t ∈ [0, T ] and T an arbitrary positive time. The flux f = f(u) and the
viscosity g = g(λ) are given by smooth functions satisfying certain assumptions and
ε, δ > 0.
Notation 1. We write ∂ = ∂

∂x ; ∂tu = ∂u
∂t = ut and abbreviate uj = ∂ju =

∂ju
∂xj ; ∂j = ∂

∂uj
.
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Example 2.1. If ∂u/∂x = u1 then

∂

∂x

[
g

(
∂u

∂x

)]
=

∂

∂x
[ g(u1) ] =

∂

∂u1
[ g(u1) ]

∂

∂x
[ u1 ] =

∂

∂u1
[ g(u1) ] u2 = (∂1g)u2.

The assumptions on f are:
A.1 f : IR2 × [0, T ] 7→ IR is C∞ with respect to all its variables.
A.2 All derivatives of f = f(u, x, t) are bounded for x ∈ IR, t ∈ [0, T ] and

u ∈ IR lies in a bounded set.
A.3 xN∂j

xf(0, x, t) is bounded for all N > 0, j > 0, and x ∈ IR, t ∈ (0, T ].
Indeed, ∀N > 0, ∀j > 0, x ∈ IR, t ∈ (0, T ] there exists c > 0 such that
|xN∂j

xf(0, x, t )| 6 c.

The assumptions on g are as follows:
B.1 g : IR2 × [0, T ] 7→ IR is C∞ with respect to all its variables.
B.2 All the derivatives of g(y, x, t) are bounded for x ∈ IR, t ∈ [0, T ] and y is

from a bounded set.
B.3 xN∂j

xg(0, x, t) is bounded for all N > 0, j > 0 and x ∈ IR, t ∈ (0, T ].
B.4 There exists c > 0 , such that ∂1g(u1, x, t) > c > 0, for all u1 ∈ IR; x ∈ IR

and t ∈ [0, T ].

Lemma 2.1. The assumptions A.1–A.3 imply that f has the form f = u0f0+h ≡
uf0 + h , where f0 = f0(u0, x, t) ≡ f0(u, x, t) , and h = h(x, t). f0 , and h are C∞

and each of their derivatives is bounded for u bounded, x ∈ IR and t ∈ [0, T ].

Proof. We define (the same for g)

f0 =
{

f(u0, x, t)−f(0, x, t)
u0

for u0 6= 0
∂0f(0, x, t) for u0 = 0

and h(x, t) = f(0, x, t). ¤

Definition 2.1. An evolution equation enjoys a gain of regularity if its solutions
are smoother for all t > 0 than its initial data.

Definition 2.2. A function ξ(x, t) belongs to the weight class Wσ i k if it is a
positive C∞ function on IR× [0, T ], ξx > 0 and there exist constants cj , 0 6 j 6 5,
such that

0 < c1 6 t−ke−σxξ(x, t) 6 c2 for x < −1, 0 < t < T.(2.2)
0 < c3 6 t−kx−iξ(x, t) 6 c4 for x > 1, 0 < t < T.(2.3) (

t | ξt | + | ∂jξ |) /ξ 6 c5 in IR× [0, T ], ∀ j ∈ IN.(2.4)

Remark 2.1. We will always consider σ > 0, i > 1 and k > 0.

Example 2.2. Let

ξ(x) =
{

1 + e−1/x for x > 0,
1 for x 6 0.

Then ξ ∈ W0 i 0.
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Definition 2.3. For a fixed ξ ∈ Wσ i k we define the space (for a positive inte-
ger s)

Hs(Wσ i k) = {v : IR → IR ; such that the distributional derivatives
∂jv

∂xj

for 0 6 j 6 s satisfy ‖v‖2 =
s∑

j=0

∫ +∞

−∞
|∂jv(x)|2ξ(x, t)dx < +∞}.

Remark 2.2. Hs(Wσ i k) depends on t ( because ξ = ξ(x, t) ).

Lemma 2.2. For ξ ∈ Wσ i 0 and σ > 0, i > 0 there exists a constant c, such that

sup
x∈IR

| ξu2 |6 c

∫ +∞

−∞

(| u |2 + | ∂u |2) ξdx

for u ∈ H1(Wσ i 0) .

Proof. See Lemma 7.3 in [9]. ¤

Definition 2.4. For a fixed ξ ∈ Wσ i k we define the space

L2([0, T ]; Hs(Wσ i k)) = {v = v(x, t), v( · , t) ∈ Hs(Wσ i k), such that

||| v |||2=
∫ T

0

‖v( ·, t)‖2dt < +∞};

L∞([0, T ]; Hs(Wσ i k)) = {v = v(x, t), v( · , t) ∈ Hs(Wσ i k) such that

||| v |||∞= ess sup
t∈[0, T ]

‖v( ·, t)‖ < +∞}.

Remark 2.3. The usual Sobolev space is Hs(IR) = Hs(W0 0 0) without a weight.

Remark 2.4. We shall derive a priori estimates assuming that the solution is
C∞, bounded as x → −∞, and rapidly decreasing as x → +∞, together with all of
its derivatives.

According to the notation 1, we obtain

ut + δu3 − ε(∂1g)u2 + (∂0f)u1 = 0(2.5)

for equation (1). The equation is considered for −∞ < x < +∞, t ∈ [0, T ] and T
arbitrary positive.

We would like to construct a mapping T : L∞([0, T ]; Hs(IR)) → L∞([0, T ]; Hs(IR))
with the following property. Given u(n) = T (u(n−1)) and ‖u(n−1)‖s 6 c0 we have
‖u(n)‖s 6 c0, where s and c0 > 0 are constants. In fact, this property tells us that
T : IBc0(0) → IBc0(0) where IBc0(0) = {v(x, t); ‖v(x, t)‖s 6 c0} is a ball in the space
L∞([0, T ]; Hs(IR)). To guarantee this property we will appeal to an a priori estimate
which is the main object of this section.

By differentiating (2.5) twice we obtain

∂tu2 + δ u5 − ε (∂1g)u4 + (∂0f)u3 − 2ε ∂(∂1g)u3

+2∂(∂0f) u2 − ε ∂2(∂1g)u2 + ∂2(∂0f)u1 = 0.(2.6)
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Let u = Λv where Λ = (I − ∂2)−1. Then, ∂tu2 = − vt + ut. By replacing in (2.1) we
have

− vt + δΛv5 − ε(∂1g)Λv4 + (∂0f)Λv3 − 2ε∂(∂1g)Λv3 + 2∂(∂0f)Λv2

− ε∂2(∂1g)Λv2 + ∂2(∂0f)Λv1 − [δΛv3 − ε(∂1g)Λv2 + (∂0f)Λv1] = 0(2.7)

where g = g(Λv1) and f = f(Λv).
The equation (2.7) is linearized by substituting a new variable w in each coefficient;

− vt + δΛv5 − ε∂1g(Λw1)Λv4 + ∂0f(Λw)Λv3 − 2 ε∂(∂1g(Λw1))Λv3

+2∂(∂0f(Λw))Λv2 − ε∂2(∂1g(Λw1))Λv2 + ∂2(∂0f(Λw))Λv1

−[δΛv3 − ε∂1g(Λw1)Λv2 − ∂0f(Λw)Λv1] = 0(2.8)

Lemma 2.3. Let v, w ∈ Ck([0, ∞); HN (IR)) for all k, N , which satisfy (2.8).
Let ξ > c1 > 0. For each integer α there exist positive nondecreasing functions E, F
and G such that for all t > 0

∂t

∫

IR

ξv2
αdx 6 G(‖w‖λ)‖v‖2α + E(‖w‖λ)‖w‖2α + F (‖w‖α)(2.9)

where ‖ · ‖α is the norm in Hα(IR) and λ = max {1, α}.
Proof. See Lemma 3.1 in [27]. ¤
We define a sequence of approximations to equation (2.8) as

−v
(n)
t + δΛv

(n)
5 − ε(∂1g)Λv

(n)
4 + (∂0f)Λv

(n)
3

− 2ε∂(∂1g)Λv
(n)
3 − δΛv

(n)
3 + O(Λv

(n−1)
2 , Λv

(n−1)
1 , . . .) = 0,(2.10)

where g = g(Λv
(n−1)
1 ), f = f(Λv(n−1)) , and where the initial condition is given

by v(n)(x, 0) = ϕ(x) − ∂2ϕ(x). The first approximation is given by v(0)(x, 0) =
ϕ(x) − ∂2ϕ(x). Equation (2.10) is a linear equation at each iteration which can be
solved in any time interval in which the coefficients are defined. This equation has the
form

∂tv = δΛv5 − εΛv4 + b(1)Λv3 + b(0)(2.11)

Lemma 2.4. Given initial data in ϕ ∈ H∞(IR) =
⋂

N>0 HN (IR) , there exists a
unique solution of (2.11). The solution is defined in any time interval in which the
coefficients are defined.

Proof. See [26]. ¤
Theorem 2.1. (Uniqueness) Let ϕ ∈ H3(IR) and 0 < T < +∞. Assume that

f satisfies A.1-A.3. and g satisfies B.1-B.4, then there is at most one solution u ∈
L∞([0, T ]; H3(IR)) of (2.5) with the initial data u(x, 0) = ϕ(x).

Proof. See Theorem 4.1 in [27]. ¤
We construct the mapping T : L∞([0, T ]; Hs(IR)) → L∞([0, T ]; Hs(IR)) by

u(0) = ϕ(x)

u(n) = T (u(n−1)) n > 1
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where u(n−1) replaces w in (2.8) and u(n) replaces v which is the solution of (2.8).
By Lemma 2.4 there exists a unique u(n) in C((0, +∞); HN (IR)). The choice of c0

and the use of the a priori estimate shows that T : IBc0(0) → IBc0(0) , where IBc0(0)
is a bounded ball in L∞([0, T ]; Hs(IR)).

Theorem 2.2. (Local Existence) Assume that f satisfies A.1 - A.4, and g sat-
isfies B.1 - B.4. Let N > 3 be integer. If ϕ ∈ HN (IR), then there is T > 0 and u ,
such that u is a strong solution of (2.5). u ∈ L∞([0, T ]; HN (IR)) with the initial
data u(x, 0) = ϕ(x).

Proof. See Theorem 4.2 in [27]. ¤

Corollary 2.1. Let ϕ ∈ HN (IR) with N > 3 , such that ϕ(γ) → ϕ in HN (IR).
Let u and u(γ) be the corresponding unique solutions given by Theorems 2.1 and The-
orem 2.2 in L∞([0, T ]; HN (IR)) with T depending only on supγ ‖ϕ(γ)‖H3(IR) . Then
u(γ) ∗

⇀ u weakly in L∞([0, T ]; HN (IR)) and u(γ) → u strongly in L2([0, T ]; HN+1(IR)).

Theorem 2.3. (Persistence) Let i > 1 and L > 3 be non-negative integers,
0 < T < +∞. Assume that u is the solution of (2.5) in L∞([0, T ]; H3(IR)) with the
initial data ϕ(x) = u(x, 0) ∈ H3(IR). If ϕ(x) ∈ HL(W0 i 0) then

u ∈ L∞([0, T ]; H3(IR)
⋂

HL(W0 i 0))(2.12)

where σ is arbitrary, η ∈ Wσ, i−1, 0 for i > 1.

Proof. Similar to Theorem 2.2. ¤

3. Main inequality

Lemma 3.1. Let u be a solution of the initial value problem (2.5). Then we have
the following inequality

∂t

∫

IR

ξu2
αdx +

∫

IR

ηu2
α+1dx +

∫

IR

θαu2
αdx +

∫

IR

Rαdx 6 0,(3.1)

with

η = (3δ + 2εc) ∂ξ,

θα = −ξt − δ∂3ξ − 2ε∂2[(∂1g)ξ] + ε(α + 1)∂[(∂2
1g)ξu2]− ∂(ξ∂0f)

+2ε

(
α + 1

2

)
[(∂2

1g)u3 + ∂(∂2
1g)u2] + 2(α + 1)(∂2

0f)ξu1,

Rα = O(uα, . . .).

Proof. Taking α-derivatives of the equation (2.5) (for α > 3) regarding to x ∈
IR we obtain

∂tuα + δ uα+3 − ε(∂1g)uα+2 − ε(α + 1)(∂2
1g)u2uα+1 + (∂0f)uα+1

(3.2) −ε

(
α + 1

2

)
[(∂2

1g)u3 + ∂(∂2
1g)u2]uα
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+(α + 1)(∂2
0f)u1uα + O(uα−1, uα−2, . . .) = 0.

By multiplying (3.2) by 2ξuα and integrating over x ∈ IR we have

2
∫

IR

ξuα∂tuαdx + 2δ

∫

IR

ξuαuα+3dx− 2ε

∫

IR

ξ(∂1g)uαuα+2dx

−2ε(α + 1)
∫

IR

ξ(∂2
1g)u2uαuα+1dx + 2

∫

IR

ξ(∂0f)uαuα+1dx

−2ε

(
α + 1

2

) ∫

IR

[(∂2
1g)u3 + ∂(∂2

1g)u2]ξu2
αdx + 2(α + 1)

∫

IR

(∂2
0f)u1u

2
αdx

+
∫

IR

2ξuαO(uα−1, uα−2, . . .)dx = 0.

Integrating by parts leads us to

∂t

∫

IR

ξu2
αdx +

∫

IR

(3δ + 2ε(∂1g)) ∂ξu2
α+1dx +

∫

IR

θαu2
αdx +

∫

IR

Rαdx = 0

with θα and Rα, as above. Using B.4 we come to the main inequality

∂t

∫

IR

ξu2
αdx +

∫

IR

(3δ + 2εc) ∂ξu2
α+1dx +

∫

IR

θαu2
αdx +

∫

IR

Rαdx 6 0.

¤

Lemma 3.2. If η ∈ Wσ i k is an arbitrary weight function, then there exists ξ ∈
Wσ, i+1, k which satisfies

η = (3δ + 2εc) ∂ξ.(3.3)

Proof. Indeed

ξ =
1

(3δ + 2εc)

∫ x

−∞
η(y, t)dy.(3.4)

¤

Lemma 3.3. The expression Rα in the main inequality is a sum of terms of the
form

ξ∂p0
0 ∂γ

xfuν1uν2 . . . uνp−1uνpuα and ξ∂p1
1 ∂γ

xguµ1uµ2 . . . uµq−1 uµq uα,(3.5)

where 1 6 ν1 6 ν2 6 . . . 6 νp 6 α and 1 6 µ1 6 µ2 6 . . . 6 µq 6 α.

p = p0 > 1 , γ = α + 1
q = q1 > 1 , γ = α + 1(3.6)

ν1 + ν2 + . . . + νp = α + 1
µ1 + µ2 + . . . + µq = α + q1 + 1(3.7)

p + νp−1 + νp 6 α + 3
q + µq−1 + µq 6 α + 4(3.8)
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4. Main theorem

In this section we state and prove our main theorem which tells us that if the initial
data u(x, 0) decays faster than polynomially on IR+ = {x ∈ IR ; x > 0} and possesses
certain initial Sobolev regularity, then the solution u(x, t) ∈ C∞ for all t > 0.

In the main theorem we assume 4 6 α 6 L + 2. For α 6 L + 2, we take an
arbitrary

(4.1) η ∈ Wσ, L−α+2, α−3 =⇒ ξ ∈ Wσ, L−α+3, α−3

Lemma 4.1. (Estimate of Error Terms) Let 4 6 α 6 L + 2 and the weight
functions be chosen as in (4.1), then

(4.2)

∣∣∣∣∣
∫ T

0

∫

IR

(
θu2

α + R
)
dxdt

∣∣∣∣∣ 6 c

where c depends only on the norms of u taken in

L∞([0, T ]; Hβ(Wσ, L−β+2, β−3))
⋂

L2([0, T ]; Hβ+1(Wσ, L−β+1, β−3))

for 3 6 β 6 α− 1, and the norms of u taken in L∞([0, T ]; H3(W0 L 0)).

Theorem 4.1. (Main Theorem) Let T > 0 and u(x, t) be a solution of (2.5) in
the region IR× [0, T ] , such that

u ∈ L∞([0, T ]; H3(W0 L 0))(4.3)

for some L > 2 and all σ > 0. Then,

u ∈ L∞([0, T ]; H3+l(Wσ, L−l, l))
⋂

L2([0, T ]; H4+l(Wσ, L−l−1, l))

for all 0 6 l 6 L− 1.

Remark 4.1. If the assumption (4.3) holds for all L > 2, then the solution is
infinitely differentiable regarding to the x -variable. Due to the equation (2.5), the
solution is C∞ with respect to both its variables.

Proof. (Induction on α) For α = 4 let u be a solution of (2.5) that satisfies
(4.3). The equation (2.5) implies that ut ∈ L∞([0, T ]; L2(W0 L 0)), where

u ∈ L∞([0, T ]; H3(W0 L 0)), ut ∈ L∞([0, T ]; L2(W0 L 0)).

Then u ∈ C([0, T ]; L2(W0 L 0))
⋂

Cw([0, T ]; H3(W0 L 0)). Hence, u : [0, T ] 7→ H3(W0 L 0)
is a weakly continuous function. In particular, u( · , t) ∈ H3(W0 L 0) for all t. Let
t0 ∈ (0, T ) and u( · , t0) ∈ H3(W0 L 0). Then, there are {ϕ(n)} ⊆ C∞0 (IR) , such
that ϕ(n)( · ) → u( · , t0) in H3(W0 L 0). Let u(n)(x, t) be a unique solution of
(2.5) with u(n)(x, t0) = ϕ(n)(x). Then, by Theorems 2.1 and 2.2 there exists a
unique solution u of (2.5) u(n) ∈ L∞([t0, t0 + δ]; H3(W0 L 0)) with u(n)(x, t0) ≡
ϕ(n)(x) → u(x, t0) ≡ ϕ(x) in H3(W0 L 0) , on a time interval [t0, t0 + δ] , where
δ > 0 does not depend on n . Now, by Theorem 2.3, we have u(n) ∈ L∞([t0, t0 +
δ]; H3(W0 L 0))

⋂
L2([t0, t0 + δ]; H4(Wσ, L−1, 0)) with a bound that depends only on
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the norm of ϕ(n) in H3(W0 L 0). Furthermore, Theorem 2.3 guarantees the non-
uniform bounds

sup
[t0, t0+δ]

sup
x

(1 + |x+|)k | ∂αu(n)(x, t)| < +∞

for each n, k and α. The main inequality (3.1) and the estimate (4.2) are, therefore,
valid for each u(n) in the interval [t0, t0 + δ]. η may be chosen arbitrarily in its
weight class (4.1), and then, ξ is defined by (3.4) and the constant c1, c2, c3, c4 are
independent of n. From (3.1) and (4.2) we have that

sup
[t0, t0+δ]

∫

IR

ξ[u(n)
α ]2dx +

∫ t0+δ

t0

∫

IR

η[u(n)
α+1]

2dxdt 6 c,(4.4)

where c is independent of n by (4.2). The estimate (4.4) is proved by induction for
α = 4, 5, 6, . . . Thus, u(n) is also bounded in

(4.5) L∞([t0, t0 + δ]; Hα(Wσ, L−α+3, α−3))
⋂

L2([t0, t0 + δ]; Hα+1(Wσ, L−α+2, α−3))

for α > 4. We have u(n) → u in L∞([t0, t0 + δ]; H3(W0 L 0)). By Corollary 2.9 it
follows that u belongs to the space (4.5). Since δ is fixed and t0 is arbitrary chosen
from the interval (0, T ), this result is valid over the entire interval [0, T ]. ¤
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