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A four parameter integral identity and a few consequences

M.L. Glasser
ABSTRACT. The identity
S 6 2+2Ez+b2 %) b/ z24+2ax+a?
/0 \/x2+2ﬁm+b2 / \/m2+2az+a2
is derived, applied to the Struve function Hg and used to deduce the reduction
formula
o @ 2 2 b2 o
/ (Vat+2he+ b +a), / F)eP EL[(B + b)tdt.
0 Va2 + 2Bz + b2 0

where F' is arbitrary.

1. Introduction

Integrals rational in two different quadratic surds, as shown by Legendre [4, 5],
can be evaluated, or at least reduced to three standard forms, by elliptic substitutions.
An attempt to investigate what happens in non-rational cases led, in a previous study
(Glasser, unpublished), to a curious connection between a Jacobian elliptic function
and a modified Bessel function. The examination of a second example has resulted in
the striking integral identity

1 1 / —v/a(z+B)—+/a(x+b)
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> dzx
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involving four parameters restricted only to the convergence of the integrals. In this
note (1.1) will be proven and several examples and consequences will be presented.
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2. Derivation
We begin with the integral
o 4 o= (ay/z2+82+aVz?+b7)

(21) I(a,ﬂ,a,b) = o \/(1‘2 +62)(I2 _|_b2)

From [3] one has

(2.2) / e Jo (B x2 — dx—\fa + B TVAK jp(Va? + 52),

1

which after a simple change of variable and noting the exponential form of K5, can
be rearranged to read

e A +a? . o tJo(iEt)
VAZ + z2 o Vit2+u?

Inserting this twice into (2.1) produces a triple integral of which one is

(2.3) e AVET gy

(2.4) /000 xJo(tz)Jo(t'z)de = §(t — ).

Therefore, one integration remains, which is I(3, a, b, a). The replacement of x by \/z
then gives (1.1).

3. Discussion

The integrals in (1.1) can be rewritten in various ways. With v = = 4+ 3 the
left-hand side becomes

ef\/@ —+/a(u+b— ﬂ / p vae a(z24+b—p3)
re ——
B \/ﬂ Vu+ b— 1‘2 + b— ﬁ
Then by introducing x —+/3 as the new integration variable and canceling the common

exponential pre factor which occurs after a similar manipulation of the right-hand side,
we obtain

dx.

(3.1)

2+25w+b2 ') €_b r24+2ax+a?
(32) o T
xz T 287 + b2 0 V2 4+ 2ax + a?

For example, setting b = a = 0 in (3.2) gives
:c(:c+2[3) oo e—,(i’w
—dz
VT x+26 o Va2+a?

where the right-hand side is a tabulated Laplace transform [2]. Hence, after a simple
manipulation we have the representation for the Struve function

(3.3)

(3.4) \/F e —zasinh20 g —[Ho(%a) ~Yo(3a)).
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By setting a = a in (3.2) one finds

*° d
(35) / efa(:ch z2+2ﬁz+b2)—x — eaﬁEl (&(b + B))7
0

Vaz+ 28z + b2

where F1(t) denotes the exponential integral function [1]. In addition, (3.5) leads to
the identity, for any function f with Laplace transform F

/°° Flz + /2?2 + 20z + b2
0

Va2 + 28z + b2

Thus, e.g. for0<v <1

(3.6)

gz — /OO F()e® Er[(B + b)t]dt.
0

o dx
3.7 _
3.7) /0 (Va2 +28z+1+z)V /22 + 28z +1

1 -1
ﬁus?nﬂ'l/ (6:;)1 2F1(1,1;2—y;m)’
and, more generally, for 0 < b < ¢,
(c*=b%)/2(B+e) "
’ % + 2B + b

(=B (B+) g
—F .
/ S F((b+ )+

To conclude, we examine the form (2.1) takes when the surds are rationalized by
the elliptic substitution [5] = sc(u, k), where k = (1 — 32/b%)'/2. Then

(3.9) V1+ 2?2 =nc(u, k) and V1 + k222 = de(u, k)

where k' = /b. In this case
sn(u, k) af

dn(u, k)
en(u ) exp —ab

en(u, k) en(u, k) du

K(k)
(3.10) I(a, B,a,b) = k’/
0

which is therefore invariant under the replacement k&' — I’ = a/a.
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